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Abstract 

Background The cat flea (Ctenocephalides felis), a parasite commonly found on both dogs and cats, is a competent 
vector for several zoonotic pathogens, including Dipylidium caninum (tapeworms), Bartonella henselae (responsible 
for cat scratch disease) and Rickettsia felis (responsible for flea-borne spotted fever). Veterinarians recommend 
that both cats and dogs be routinely treated with medications to prevent flea infestation. Nevertheless, surveys 
suggest that nearly one third of pet owners do not routinely administer appropriate preventatives.

Methods A mathematical model based on weighted averaging over time is developed to predict outdoor flea 
activity from weather conditions for the contiguous United States. This ‘nowcast’ model can be updated in real time 
as weather conditions change and serves as an important tool for educating pet owners about the risks of flea-borne 
disease. We validate our model using Google Trends data for searches for the term ‘fleas.’ This Google Trends data serve 
as a proxy for true flea activity, as validating the model by collecting fleas over the entire USA is prohibitively costly 
and time-consuming.

Results The average correlation (r) between the nowcast outdoor flea activity predictions and the Google Trends 
data was moderate: 0.65, 0.70, 0.66, 0.71 and 0.63 for 2016, 2017, 2018, 2019 and 2020, respectively. However, there 
was substantial regional variation in performance, with the average correlation in the East South Atlantic states being 
0.81 while the average correlation in the Mountain states was only 0.45. The nowcast predictions displayed strong 
seasonal and geographic patterns, with predicted activity generally being highest in the summer months.

Conclusions The nowcast model is a valuable tool by which to educate pet owners regarding the risk of fleas 
and flea-borne disease and the need to routinely administer flea preventatives. While it is ideal for domestic 
cats and dogs to on flea preventatives year-round, many pets remain vulnerable to flea infestation. Alerting pet 
owners to the local increased risk of flea activity during certain times of the year may motivate them to administer 
appropriate routine preventives.
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Background
Ctenocephalides felis, the cat flea, is the most common 
ectoparasite found on dogs and cats in North America 
and in many parts of the world [1, 2]. In addition to 
blood-feeding, cat fleas are known vectors of several 
pathogens, including Dipylidium caninum, Bartonella 
henselae and Rickettsia felis-like organisms (RFLO; i.e. 
Rickettsia felis and R. asembonensis) [1, 3]. Importantly, 
several of these pathogens are zoonotic. Flea allergy 
dermatitis is the most common dermatologic disease in 
dogs and cats and is caused by a hypersensitivity reaction 
to the saliva of the cat flea [4]. Because of the significant 
health risks to pets and humans, numerous topical and 
systemic products to control on-animal flea infestations 
are available, some of which can help control home 
infestations. However, previous studies examining pet 
owner behavior show that there are significant gaps in 
the purchase and administration of these preventives, 
which may be used on a seasonal basis [5]. Veterinary 
parasitologists recommend these products be given to 
all pets year-round, but exclusion of wildlife from raised 
patios and porches, reduction of pet off-leash activity and 
additional environmental treatment and management 
may be necessary at certain times of the year or in specific 
geographic regions where environmental conditions 
are best suited for flea development [4]. Understanding 
flea seasonality may help people working with outdoor 
hunting kennels, community animals, shelter animals 
and/or indoor-outdoor animals determine the specific 
times of the year to increase their flea preventive efforts. 
Management practices such as treating the shaded, 
protected microhabitats where fleas can develop with 
approved insecticides may become necessary at certain 
times, but the broad use of environmental pesticides is 
not recommended or warranted.

 The focus of the present study is to develop and 
validate a forecasting dynamic model to predict outdoor 

flea activity risk in the contiguous United States from 
environmental factors.

Fleas undergo a complete metamorphosis, with egg, 
larvae, pupae and adult stages, and all life stages persist 
in the environment until the adult finds a suitable host to 
feed on. Like many insects, the life-cycle of the cat flea 
can be altered by a variety of abiotic factors, including 
the presence of moist, shaded, protected microhabitats, 
environmental temperature and relative humidity (RH) 
[4]. Cat flea eggs and larvae have the highest survival rate 
between 13 °C and 35 °C and between 50% and 92% RH, 
with faster development time as temperatures increase 
[6]. Overall, the pupal stage is the most environmentally 
stable life stage, but the time to adult emergence also 
changes with temperature. Adults can emerge from the 
cocoon as soon as 12  days post-pupation at 27  °C but 
can take up to 155  days at 15  °C [7]. Temperature and 
humidity play a role at each life stage for both survival 
and developmental speed; therefore, efforts to predict 
flea exposure risk should include environmental data 
collected prior to and during adult emergence.

Previous research by Beugnet et  al. created a 
mathematical model to describe the population dynamics 
of home flea infestations under a variety of conditions 
[8]. This work was expounded on in 2009 to create a 
matrix (recreated in Table  1) to describe the relative 
outdoor activity of fleas based on local temperature and 
humidity readings throughout France [9]. Here, activity 
is defined as the ability of fleas to develop from egg to 
adult, which would allow them to feed and reproduce. 
With the changing global climate, many researchers are 
investigating the changing distribution of arthropods, 
including C. felis. In Spain, models using regional 
environmental variables were combined with future 
climate projections to model distribution of the flea 
population and predict the spread of fleas throughout 
the country [10]. Similarly, prediction models of 

Table 1 Ctenocephalides felis felis activity index table

 The table contains results from Beugnet et al. [9]

The activity index is a relative index of between 0 and 100 reflecting the ability of fleas to develop from egg to adult

Relative humidity Ctenocephalides felis felis activity  indexa at:

< 10 °C 10–15 °C 15–20 °C 20–25 °C  25–30 °C  30–35 °C > 35 °C

 < 40% 0 0 0 0 0 0 0

 40–50% 0 0 0 10 10 0 0

 50–60% 0 0 10 20 20 10 0

 60–70% 0 0 30 40 40 20 0

 70–80% 0 0 30 100 80 30 0

 80–90% 0 0 40 100 100 50 10

 > 90% 0 0 40 100 100 60 10
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flea populations in Australia support the southward 
expansion of the flea populations as temperatures 
along the northern coast become unsuitable for flea 
development [11]. Species distribution modeling has 
been used with great success to predict the geographic 
distribution and relative abundance of several arthropods 
in addition to fleas, including ticks (Ixodes [12, 13] and 
Dermacentor spp. [14, 15]) and mosquitoes (Aedes [16, 
17], Anopheles [18] and Culex [19, 20] spp.). Many of 
these tick and mosquito species are vectors of disease 
of serious public health concern and are thus subject 
to routine surveillance. Ongoing surveillance makes it 
possible to validate predictive models of the geographic 
distributions of these species. Unfortunately, flea 
surveillance is much more limited, making it difficult 
to validate predictions of flea abundance or habitat 
suitability.

In the absence of widespread flea surveillance efforts, 
predictive models of flea activity are difficult to validate. 
Given the large number of wildlife reservoirs for the cat 
flea, flea infestations on domestic dogs and cats would 
not provide an accurate account of flea populations. 
Gálvez et  al. conducted flea surveillance on dogs across 
various bioclimatic zones in Spain, but they did not 
correlate their findings with the model created using the 
climatic variables [10]. In the USA, the flea surveillance 
data necessary to validate a flea activity forecasting 
model do not exist. In the absence of such data, we 
propose using Google Trends data as a surrogate for flea 
surveillance data. Automated data mining programs, 
like Google Trends, have become more frequently used 
to track public interest in specific topics across time 
and geographic region. This technique has been used to 
predict outbreaks of diseases like respiratory syncytial 
virus [21], monitor the introduction and spread of 
Chikungunya [22] and track the introduction of invasive 
animal species [23]. This method has also been used to 
track the seasonality and regionality of searches for ticks 
in comparison to the local temperature and humidity 
[24]. In this latter study, there was a correlation between 
the number of searches and favorable climate for tick 
activity that predictably varied throughout the year. Here, 
we present a flea forecast model for the USA and attempt 
to validate it using Google Trends data.

Methods
Forecast development
Our forecasting methodology is rooted in the work of 
Beugnet et  al. who developed a mathematical model to 
predict outdoor flea activity for the cat flea based on 
temperature and RH [9]. For our study, weather data were 
obtained from 105 National Oceanic and Atmospheric 
Association (NOAA) weather stations (Fig.  1). Hourly 

data were obtained from each station from 1 January 
2016 to 31 December 2020. Daily temperature and RH 
averages were then calculated by taking the arithmetic 
average of the 24 measurements for each day. For each 
station (s) and each day (t), the corresponding outdoor 
flea activity level A(s, t) was computed from the daily 
average temperature and RH using Table  4 in Beugnet 
et  al. [9], which is reproduced here as Table  1. These 
results are also based on research from Rust and Dryden 
[4] and Michel Franc’s PhD dissertation (National 
Veterinary School of Toulouse, Toulouse).

The aim of the forecast is to estimate outdoor flea 
activity for the upcoming week. Flea activity in the 
upcoming week depends not only on the weather 
conditions for that week, but also on past weather 
conditions. In optimal conditions, the flea life-cycle can 
be completed in approximately 21–30 days; consequently, 
the environmental conditions in the preceding 3 weeks 
are key to the survival and development of the larvae 
and pupae [4]. If conditions in the recent past have been 
unfavorable, then present activity will be lower due to 
decreased flea survival rates and slower developmental 
rates during the unfavorable period, resulting in fewer 
fleas. Our model incorporates the effect of past activity 
through weighted averaging. Specifically, the forecasted 
flea risk index at station s on day t is given by

where w
(

j
)

= φ
(

j/17.82
)

 and φ(x) denotes the probability 
density function of a standard normal random variable 
evaluated at x; the bandwidth of this Gaussian kernal is 
chosen that w(−21) = w(0)/2 , that is, the activity from 
the present day receives twice as much weight as the 
activity from the most distant day. The forecasted flea 
risk index for a given location on day t is thus a weighted 
average of the outdoor flea activity from the past 21 days 

F(s, t) =

7
∑

i=−21

w(i)A(s, t + i)
∑7

j=−21 w(j)

Fig. 1 Sites for the 105 NOAA weather stations from which weather 
data were obtained to develop the nowcast flea activity forecast. 
NOAA, National Oceanic and Atmospheric Association
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and the upcoming 7 days. Data from the upcoming 7 
days are included to allow the model to forecast future 
outdoor flea activity. As weather forecasts are often not 
reliably available for  more than 7 days into the future, 
only 7 days of future data are included.

The forecasted flea risk index map for day t was created 
by kriging the F(s, t) values over all stations using a 
Gaussian covariance model. Kriging was performed using 
the krige function in the R Gstat package [25].

Forecast validation
To validate the forecasted flea risk index, we used Google 
trends data. In particular, we used a geographically 
oriented metric reported by Google Trends that 
summarizes the number of searches for ‘fleas’ under the 
category ‘Pets and Animals’ as a surrogate for flea activity 
[26]. This metric provides a relative index of between 0 
and 100 reflecting the number of Google searches for 
a specific topic conducted within a geographic region 
and time period. The index is relative to the geographic 
region and time period under consideration and does not 
allow for direct comparisons of the number of searches 
across regions. The Google Trends data used for our 
analysis were normalized using Google’s proprietary 
algorithm at the state and yearly level, which allows 
comparisons within the same year for the same state but 
does not allow for comparisons between different states 
in the same year or between different years in the same 
state. The proprietary algorithm rescales the number of 
searches in each state and year to produce an index of 
between 0 and 100 [27]. Since the degree of rescaling 
is different for each state and each year, one state can 
have a higher index than another without having more 
total searches. Similarly, the same state could have a 
higher index value in 1 year than another without having 
more searches in that year. This rescaling is necessary 
to account for differences in population among states 
and over time. However, within a given state and year, 
a higher index value does imply a higher number of 
searches. Georgia did not have Google Trends data 
available for all of the study years and was excluded from 
the validation analysis. For each of the remaining 47 
contiguous US states and each year between 2016 and 
2020, weekly trends data were obtained. This weekly data 
exhibited a considerable amount of volatility, particularly 
for states with smaller populations. Cubic B-splines were 
used to smooth the trends data. The spline model was fit 
to the trends data from each state-year separately with 
degrees of freedom ranging from 3 to 10. The degree of 
freedom resulting in the minimum Bayesian information 
criterion (BIC) was used to produce the final smoother 
for each state-year pair (see Fig.  2 for examples of the 

smoothed and unsmoothed trends data from California, 
Mississippi and New York from 2020).

To assess the correlation between the Google trends 
data and the forecasted flea risk index, the forecasted 
flea risk index was aggregated to the state and weekly 
level. The kriged daily forecasted flea risk was averaged 
over each state. These daily state-level averages were 
then averaged over each week (see Fig. 2 for example of 
the weekly averages for California, Mississippi and New 
York). For each state and each year, a linear regression 
model was then fit taking the weekly average flea 
forecast risk index from that state as the response and 
the smoothed Google Trends index as the predictor. 
The degree of correlation between the two datasets is 
assessed with correlation (r) and R2.

Results
The forecasted outdoor flea activity maps for 2016–2020 
are best visualized as a movie (Additional file  1: Video 
file); however, excepts from this video showing the 
forecast outdoor flea activity maps for 1 January 2020, 1 
April 2020, 1 July 2020 and 1 October 2020 are included 
here (Fig.  3). During the spring months, activity begins 
to slowly increase throughout much of the southeastern 
USA, with higher activity levels spreading northward 
from the Gulf Coast (see Fig.  3b). During the summer 
months, activity is very high in the Southeast states 
and moderate in the Midwest and Northeast states (see 
Fig.  3c). By mid to late summer, there is also moderate 
activity on the Pacific Coast, although generally at lower 
levels than that seen in the Southeast states. Activity 
levels remain low in the Rocky Mountain and Southwest 
states throughout the year. During the fall, activity levels 
begin to subside in the Northeast and Southeast states, 
with the area of highest activity contracting back towards 
the Gulf Coast (see Fig. 3d). Similar trends are observed 
for the years 2016–2019.

The mean R2R values over all 47 states were 0.42, 
0.49, 0.43, 0.51 and 0.40 for 2016, 2017, 2018, 2019 and 
2020, respectively, indicating a moderate correlation 
between the forecasted outdoor flea activity level and the 
Google trends data (Fig. 4). These R2 values correspond 
to correlations (r) of 0.65, 0.70, 0.66, 0.71 and 0.63, 
respectively. The states with the highest R2 value in each 
year were North Carolina (2016: 0.88), South Carolina 
(2017: 0.90), California (2018: 90.1) South Carolina (2019: 
0.92) and Oklahoma (2020: 0.93) (Fig. 4).

Discussion
The forecasted outdoor flea activity video displays 
seasonal patterns where environmental conditions are 
favorable for flea development and emergence. The flea 
emergence cycles are predictable each year based on 
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recurring climatic patterns, although yearly variations in 
the temperature and humidity affect the exact timing and 
duration of flea emergence.

The greatest year-round risk for fleas is in the far 
southern regions of the USA which stay warm and humid 
throughout the year. As seen in Fig.  3a, conditions in 
southern Florida remain hospitable for flea emergence 
throughout the winter, as has been previously reported 
[28]. To a lesser extent, these conditions exist along 
the Gulf Coast across to Texas and represent a risk for 
year-round flea infestations. By mid-spring, increasing 

temperatures create favorable environments throughout 
much of the Southeast USA extending up to Virginia 
(Fig. 3b). Some of the Upper Midwest states, like Illinois, 
will typically begin to notice infestations in habitats that 
are protected from direct environmental conditions, 
such as under raised homes or decks [29]. During the 
summer months, June through August, the risk for flea 
infestations peaks in the Upper Midwest and Northeast 
regions of the USA (Fig. 3c). While favorable conditions 
still exist in the South, the extreme heat and lack of 
humidity may reduce the amount of time the larval and 

Fig. 2 The aggregated forecasted flea risk index for 2020 (solid black line joining open circles), raw 2020 Google Trends data (solid red line joining 
open circles) and smoothed 2020 Google Trends data (red solid line) from California (top left), Mississippi (top right) and New York (bottom)
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adult flea stages can survive outside of shaded, protected 
microhabitats [29]. The July map (Fig. 3c) also highlights 
the regions with the lowest risk of C. felis infestations 
from the Southwest up the Rocky Mountain range to 
Montana. This region is too dry throughout the majority 
of the year to fully support the life-cycle of the cat flea 
[29]. Further west there is a slight increase in the risk 
for cat fleas in California up to Oregon. The temperate 
climates of the Central Valley of California and Pacific 
Northwest are conducive for flea emergence year-round, 
but the cooler temperatures may extend the length of 
time it takes to complete the full life-cycle [30]. During 
the fall, activity levels begin to subside in the Northeast 
and Southeast, with overall levels decreasing and the 
leading edge of highest activity moving southwards 
towards the Gulf Coast (Fig.  3d). This north-to-south 
shift as temperatures begin to drop leads many of the 
central states in the eastern half of the USA to experience 
a fall flea resurgence that can last from early October 
to late November depending on yearly conditions. The 
forecast maps indicate when environmental conditions 
are favorable for fleas to develop and survive, but cat 
fleas can survive harsh conditions while on wildlife or 

domestic hosts, in dens or burrows or inside/under 
buildings. This is especially true of pre-emerged adult 
fleas still residing in the cocoon, which are able to 
halt emergence for up to approximately 150  days until 
conditions are favorable for survival [7]. This allows cat 
fleas to continue their life-cycle throughout the year, 
posing a risk to cats and dogs year-round.

The southeastern states generally displayed higher 
R2 values than the rest of the country, with the states of 
Arkansas, North Carolina, South Carolina and Tennessee 
ranking in the top five highest  R2  values for at least 3 
of the 5 years. Less populous states tended to have 
lower  R2  values. The states with the smallest  R2 values 
changed from year to year, and there were 13 unique 
states which ranked in the bottom five in terms of  R2  in 
one or more years. Of these 13 states, seven (Delaware, 
Idaho, Montana, Nebraska, North Dakota, Vermont, 
Wyoming) are among the 12 US states with fewer than 
two million people. Google Trends data are more reliable 
in states with larger populations, as the total volume of 
searches is higher in these areas. As a result, it is possible 
that the poorer performance in less populous states is 
due in part to the quality of the Google Trends data in 
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Fig. 3 A selection of forecasted flea activity index values for four selected time periods: 1 January 2020 (a), 1 April 2020 (b), 1 July 2020 (c) and 1 
October 2020 (d)]. The full video is available as Additional file 1: Video file
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these areas. Additionally, states that experience higher 
flea burdens, like those in the Southeast, had higher  R2  
values than those with lower flea burdens, like Montana 
and Wyoming. This can also affect the quality of the 
Google Trends data by selecting people who are more 
familiar with fleas and correctly searching for ways to 
control their infestations in states with high flea burdens, 
and also selecting people who are unfamiliar with fleas 
and incorrectly identifying pests within their home or on 
animals and searching for fleas.

Our model is subject to a few limitations. True seasonal 
data on flea populations are difficult to acquire. Very few 
comprehensive flea collection studies are being/have 
been conducted throughout the year in a specific state 
or region, let alone the entire USA. Many year-round 
studies focused on animal trapping or collecting fleas 
from animals brought to veterinary clinics [30, 31]. While 
these studies provide some local information, they do not 
describe the true risk of flea infestations as they are local, 
biased as to species investigated and based on on-host 

examinations, noting that on-host is only one of the ways 
that cat fleas survive harsh environmental conditions [7]. 
Therefore a reliable field method to validate forecasted 
flea models across the USA does not currently exist.

The spatial resolution of the weather data used to 
generate the flea forecasts is relatively coarse (Fig.  1). 
However, it has the advantage of consisting of direct 
measurements at weather stations as opposed to 
estimates from climate models. The spatial resolution of 
the Google Trends data (state level) is another limiting 
factor, as is the inability to meaningfully compare 
Google Trends data across states or years. As the 
correlation between the flea forecast and the Google 
Trends data is relatively low in some areas (particularly 
in less populous states), it would be desirable to have 
finer spatial resolution data to more closely examine the 
degree of non-concordance. Our model demonstrates the 
feasibility of predicting flea activity from weather data. 
The development and validation of a model using finer 
scaled weather data is an excellent area for future work. 

Fig. 4 R2 values for each state from the linear regression model which regressed the weekly average forecasted flea activity index value 
on the smoothed Google Trends data for 2016 (top left), 2017 (top right), 2018 (middle left), 2019 (middle right) and 2020 (bottom left). The 
average R2 value across all 5 years for each state is shown in the bottom right. Google Trends data for Georgia were missing and therefore excluded 
from the analysis



Page 8 of 9Self et al. Parasites & Vectors           (2024) 17:27 

However, as the state-level Google Trends data are too 
spatially coarse to facilitate proper validation of a finer 
scale model, an alternate validation approach would be 
required.

Both the flea forecast and the Google Trends data are 
limited metrics which fail to fully capture flea activity. 
The flea forecast relies only on weather data and can 
(at best) only quantify outdoor flea activity. As indoor 
temperature and humidity usually differ substantially 
from outdoor conditions, the model’s ability to capture 
flea activity in domestic environments is quite limited. 
The model also fails to account for the effect of wildlife 
reservoir hosts, treatments and other flea prevention 
measures on flea activity. The Google Trends data are 
an imperfect proxy for flea activity and are subject to a 
number of potential biases. The number of searches for 
fleas could be influenced by many factors in addition to 
increased flea activity, including local television or social 
media discussion of fleas and/or pet owner perception of 
flea risk.

Conclusions
In this work, we develop a ‘nowcast’ for outdoor flea 
activity levels derived from temperature and RH data. 
We then used it to create daily nowcast predictions for 
outdoor flea activity for the contiguous United States 
for 1 January 2016 to 31 December 2020. Finally, we 
validated our nowcast predictions using Google Trends 
data on searches for fleas. We found that our nowcast 
predictions are correlated with Google Trends data at 
the state level, suggesting substantial overlap between 
the times and places predicted to have high outdoor flea 
activity and the corresponding volume of flea-related 
searches. Furthermore, the seasonal patterns exhibited 
by the nowcast agree with local published studies on flea 
activity over the course of the year [1].

Despite the high degree of concordance between 
the nowcast predictions and the Google Trends data, 
the proposed nowcast model has several limitations. 
The model incorporates outdoor weather conditions 
only and does not account for indoor environments, 
protected microhabitats or on-animal reservoirs. 
Furthermore, the predicted outdoor flea activity index 
is a relative activity index and does not have a direct 
biological interpretation. Finally, Google Trends data 
are not a perfect surrogate for flea activity, as users may 
search for information on fleas for reasons other than a 
suspected flea infestation. Future work could assess the 
degree of correlation between flea activity derived from 
active surveillance and the predicted nowcast activity 
and/or the Google Trends data. While such surveillance 
would be infeasible on a national scale, it might be 

feasible to conduct surveillance on a well-defined 
subpopulation (e.g. fleas on feral cats in a particular 
county or state). Current real-time daily outdoor flea 
activity nowcasts produced from this model are freely 
available on the web at https:// petdi sease alerts. org/ 
flea- forec ast- map/ by the Companion Animal Parasite 
Council.
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