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Abstract 

Background More than half of the global population lives in areas at risk of dengue (DENV) transmission. Develop‑
ing an efficient risk prediction system can help curb dengue outbreaks, but multiple variables, including mosquito‑
based surveillance indicators, still constrain our understanding. Mosquito or oviposition positive index (MOI) has been 
utilized in field surveillance to monitor the wild population density of Aedes albopictus in Guangzhou since 2005.

Methods Based on the mosquito surveillance data using Mosq‑ovitrap collection and human landing collection 
(HLC) launched at 12 sites in Guangzhou from 2015 to 2017, we established a MOI‑based model of the basic den‑
gue reproduction number (R0) using the classical Ross‑Macdonald framework combined with a linear mixed‑effects 
model.

Results During the survey period, the mean MOI and adult mosquito density index (ADI) using HLC for Ae. albopictus 
were 12.96 ± 17.78 and 16.79 ± 55.92, respectively. The R0 estimated from the daily ADI  (ADID) showed a significant sea‑
sonal variation. A 10‑unit increase in MOI was associated with 1.08‑fold (95% CI 1.05, 1.11)  ADID and an increase of 0.14 
(95% CI 0.05, 0.23) in the logarithmic transformation of R0. MOI‑based R0 of dengue varied by month and average 
monthly temperature. During the active period of Ae. albopictus from April to November in Guangzhou region, a high 
risk of dengue outbreak was predicted by the MOI‑based R0 model, especially from August to October, with the pre‑
dicted R0 > 1. Meanwhile, from December to March, the estimates of MOI‑based R0 were < 1.

Conclusions The present study enriched our knowledge about mosquito‑based surveillance indicators and indi‑
cated that the MOI of Ae. albopictus could be valuable for application in estimating the R0 of dengue using a statisti‑
cal model. The MOI‑based R0 model prediction of the risk of dengue transmission varied by month and temperature 

†Xiang Guo and Li Li contributed equally to this work.

*Correspondence:
Xiaohong Zhou
daizhouxh@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-024-06121-y&domain=pdf


Page 2 of 9Guo et al. Parasites & Vectors           (2024) 17:79 

in Guangzhou. Our findings lay a foundation for further development of a complex efficient dengue risk prediction 
system.

Keywords Aedes albopictus, Dengue, Surveillance system, Basic reproduction number

Background
Dengue fever, caused by dengue virus (DENV), is the 
most prevalent mosquito-borne disease in tropical 
and subtropical areas, with more than half of the 
global population living in areas with risk of dengue 
transmission [1, 2]. Due to human population growth, 
increase of population mobility, unplanned urbanization, 
expansion of dengue vectors, especially Aedes aegypti 
and Ae. albopictus, global warming, etc., the global 
burden of dengue has been increasing significantly in 
recent decades [3–7]. Since the re-emergence of a dengue 
outbreak in Foshan, Guangdong Province, in 1978, 
DENV has been epidemic in Southern China, especially 
in the provinces of Guangdong, Yunnan, Fujian and 
Zhejiang [8–11]. It is a real challenge regarding diagnosis, 
treatment, prevention and control of dengue infection 
because of the diversity of the clinical presentation [1]. 
The development of a novel vaccine and improvements 
in case management may improve the management, 
which still mainly depends on effective Aedes vector 
surveillance and control [12].

As Aedes biting data from human landing collections 
(HLCs) or human-baited double net traps (HDNs) in large-
scale schemes are not available, Aedes surveillance systems 
based on ovitraps, immature stage surveys, adult mosquito 
trapping (BG Sentinel Trap, light trap or gravid female 
traps) and their correlated surveillance indicators [adult 
mosquito density index (ADI), Breteau index (BI), container 
index (CI), house index (HI), standard space index (SSI), 
eggs per ovitrap per week, female adults per sticky trap 
per week, etc.] have been widely performed in many 
epidemic areas [13–16]. In Guangzhou, the sentinel system 
has preliminarily been developed since 1978, though the 
indicators used for surveillance were very limited in the 
beginning. Since 2002, an Ae. albopictus surveillance net 
based on BI, HI and CI has been systematically established. 
Since 2005, an improved ovitrap named the mosquito and 
oviposition trap (Mosq-ovitrap) has been used to measure 
the mosquito or oviposition positive index (MOI) of the 
wild Ae. albopictus population in field surveillance [17].

Based on these tools and mosquito-based surveillance 
indicators, the establishment of an efficient dengue risk 
prediction system relying on indicator thresholds is 
helpful to effectively control the dengue epidemic. Using a 
logistic regression model combining data of the reported 
cases with the Aedes surveillance indices, BI = 5.1 and 
CI = 5.4 were suggested to control the epidemic efficiently 

with the fewest resources, and BI = 4.0 and CI = 5.1 were 
suggested to achieve effectiveness [18]. By comparing the 
relationship of the MOI and BI, Duan et  al. developed 
an epidemic forecast and phased response system for 
dengue fever control and prevention in which MOI 
could be classified into four levels: < 5, 5–20, 20–40 
and > 40 [19]. However, assessment is complex and not 
straightforward, so determining the relationship between 
mosquito abundance and dengue epidemics still faces 
challenges. On the one hand, the currently available 
information of Aedes population density indices may not 
predict risk for human infection (vector competence, 
etc.), which is influenced by environmental factors. On 
the other hand, larval/pupal indices (RI and BI) may not 
correlate directly with adult mosquito abundance.

In our previous studies, we systematically investigated 
and revealed the quantitative relationships between 
the ecological environmental factors and the biological 
behaviour parameters of Ae. albopictus populations 
including photoperiodic diapause incidence (DI), 
host-seeking density and route index (RI), which 
demonstrate the power of large-scale surveys combined 
with mathematical modelling [20–22]. Following this 
conception, the relationship between monitoring 
indicators (MOI as an example) and Aedes mosquito 
biting density can be effectively quantified through 
field surveys on a controllable scale, which can help 
connect the available Aedes population data collected in 
surveillance networks with dengue epidemic risk. In this 
study, based on the MOI data of Ae. albopictus collected 
from a 2-year, 12-site field investigation in Guangzhou, 
we established the MOI-based R0 model of dengue risk 
prediction under the Ross-Macdonald framework, 
which is valuable for development of a more convenient 
and effective risk assessment system to block dengue 
transmission.

Method
Study area and sampling sites
Like our previous studies [20–22], this study is part 
of a programme for monitoring and investigating the 
wild population of Ae. albopictus; the field experiments 
were conducted from 2015–2017 in Guangzhou, China 
(Additional file  1: Figure S1). Sanyuanli (SYL) in Yuexiu 
District, Jiahe (JH) in Baiyun District and Jiangpu (JP) 
in Conghua District in Guangzhou were chosen as the 
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study areas, as in our previous work, representing three 
urbanisation levels: urban, suburban and rural settings 
(Additional file  1: Figure S1). Each setting included four 
land use categories: park, residential area, construction site 
and school (Additional file  1: Figure S1). Socioeconomic 
characteristics including population density and land 
structure of these three areas were described in our 
previous work [21].

Mosquito surveillance by Mosq‑ovitraps and Human 
landing collection
Mosquito surveillance by Mosq-ovitraps for each site 
was carried out once a month, based on the National 
Standard of Technologies of China [23]. A network 
of 600 Mosq-ovitraps was set up for 12 sites, with 50 
at each study site. The traps were placed in the same 
locations each month. After 4 days in the field, the traps 
were brought to the laboratory and assessed for the 
presence of mosquito eggs, larvae and adults [17]. The 
Aedes MOI population index was calculated according 
to the following formulae: MOI = (number of ovitraps 
containing at least 1 Ae. albopictus adult or egg)/(ovitraps 
collected from the observation area) × 100 [17].

HLC for each site was carried out by two qualified 
operators for each site twice a month, based on the 
National Standard of Technologies of China [23]. Each 
operator gave their consent to carry out HLC after 
being informed of potential risks. Operators were 
attired in dark-coloured clothing and stood in the shade 
without direct sunlight. The collections were performed 
for 15  min. During the monitoring period, operators 
vigilantly monitored the exposed side of the leg. Biting 
female mosquitoes were caught with a mechanical 
aspirator as soon as they landed on the skin. Considering 
the schedule feasibility of conducting simultaneous 
multisite investigations long term in the field, HLCs were 
performed from 9:00–15:00 on each observation day. 
ADI was calculated by the follow formula: ADI = [number 
of female Ae. albopictus collected/(number of operators 
× (15 min/60 min) × number of observations].

Estimate of R0 based on HLC
The Ross-Macdonald model, established in 1970, is con-
sidered the critical framework in risk assessment of mos-
quito-borne pathogen transmission [24]. It involves the 
whole progress of dengue transmission including sus-
ceptible, exposed, infectious and recovered conditions 
of humans and susceptible, exposed and infectious con-
ditions of mosquitoes, as well as the mosquitoes’ biting 
behaviour regarding humans [24]. In the Ross-Macdon-
ald model framework, mosquito biting rates can be used 
to estimate the basic reproduction number (R0), which 
is defined as the total number of secondary infections 

produced by introducing a single infective case into a 
susceptible population (if R0 > 1, there is a risk for disease 
establishment in a certain area, while if R0 < 1, an intro-
duced case may lead to a few new cases by chance, but the 
disease is not expected to establish or cause a large out-
break). We estimated R0 of DENV using a Ross-Macdon-
ald model, and the formula for the estimation is as follows 
[24]:

where k is the human biting rate. m means mosquito 
mortality rate. χV  represents the transmission efficiency 
from an infected human to mosquito, while χH indicates 
the transmission efficiency from an infected mosquito 
to human. 1/ωV  is the length of the extrinsic incubation 
period. 1/γ indicates the infectious period in human 
hosts. kV /H is the ratio of mosquitoes per human. To 
estimate kV /H , we first predicted the raw daily ADI 
 (ADIR) with the hourly mosquito density, which was 
observed between 09:00 and 15:00 (described in Yin et al. 
[20]), based on a quasi-Poisson mixed-effects model 
(Additional file 2: Text S1). Then, we estimated the daily 
ADI  (ADID) by multiplying the predicted  ADIR. The 
values of parameters and corresponding references are 
given in Additional file 3: Table S1.

To examine the temporal variations of  ADID and R0, 
we used kernel regression to smooth the time series. A 
bootstrap method was used to estimate the 95% confidence 
intervals (95% CIs) of the smoothed  ADID and R0.

Associations of MOI with  ADID and R0
A quasi-Poisson mixed-effects model was used to assess 
the association between MOI and  ADID as follows:

where ADIDit is the daily ADI at the sampling site i at 
the time point t. Quadratic functions were applied to 
calendar month and monthly mean temperature. A 
linear function was used for MOI. β11 − β15 and α1 are 
regression coefficients for calendar month, monthly 
mean temperature, MOI and intercept. α1i is a random-
effect intercept for investigation site.

A linear mixed-effects model was used to associate MOI 
and the logarithmic transformation of R0 as follows:
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where log(R0it) is the logarithmic transformation of R0 
at the sampling site i at the time point t. The functions 
used for calendar month, monthly mean temperature 
and MOI were the same as in the model for assessing the 
association between MOI and  ADID.

We present the exposure-response curves of the 
associations between MOI and R0 by month, given 
the monthly mean temperature equals the average of 
monthly mean temperatures in Guangzhou during the 
study period.

Sensitivity analysis
Sensitivity analysis was conducted to assess the association 
between MOI and R0 for two extreme scenarios in which 
minimum and maximum estimates of R0 were obtained 
by using the lowest or highest bound of parameters shown 
in Table 1. In addition, 0.1 and 0.2 (instead of 0.15) were 
added to  ADI9–15 when associating  ADIR and  ADI9–15.

Other data collection and analysis software
Temperature data were downloaded from the open 
database Guangzhou Climate Data Network (http:// data. 
tqyb. com. cn/ weath er/ index. jsp). All analyses and data 
visualisation were carried out using R (version 3.5.1.) 
software. The ‘mgcv’ package was used to fit the quasi-
Poisson mixed-effects model and the linear mixed-effects 
model.

log (R0it) = β21Monthit + β22Month2it

+ β23Tempit + β24Temp2it
+ β25MOIit + α2 + α2i

α2i ∼ N

(

0, σ 2
2

)

Result
Mosq‑ovitrap and HLCs data
During the survey period, 14,400 Mosq-ovitraps were 
utilized in the field investigation from March 2015 to 
February 2017 at 12 sites in Guangzhou (Fig.  1). We 
recovered 13,655 Mosq-ovitraps, and the total recovery 
rate was 84.83%. The eggs and adults caught by Mosq-
ovitraps were mostly Ae. albopictus according to species 
identification. Of these, 1656 Mosq-ovitraps were found 
positive for Ae. albopictus adults or eggs. The calculated 
MOIs ranged from 0 to 89.36, and the mean MOI was 
12.96 ± 17.78 (Fig. 1). The mean calculated Ae. albopictus 
ADI by HLCs in 15 min was 16.79 ± 55.92. Regarding the 
different land use categories (RES, PAR, CON and SCH) 
and urbanisation levels (urban, SYL; suburban, JH; rural, 
JP), both MOIs and ADIs in the wild population of Ae. 
albopictus in Guangzhou showed a consistent seasonal 
dynamic with an obvious active period from April to 
November (Fig. 1, Additional file 4: Figure S2).

Among the four land use categories, MOI and ADI had 
the following ranges and mean values: 0 to 70.5 and 0 to 
161.5, respectively (mean values 11.9 ± 16.3 and 10.1 ± 23.7, 
respectively) in PAR; 0 to 65.2 and 0 to 144.0, respectively 
(mean values 9.6 ± 14.6 and 10.4 ± 21.3, respectively) in 
RES; 0 to 89.4 and 0 to 616.5, respectively (mean values 
12.9 ± 19.4 and 41.0 ± 103.7, respectively) in CON; 0 to 75.0 
and 0 to 30.0, respectively (mean values 15.5 ± 20.0 and 
5.6 ± 8.1, respectively) in SCH (Additional file 4: Figure S2). 
At the three urbanization levels, these two indexes showed 
0 to 70.5 and 0 to 34.0, respectively (mean values 9.5 ± 14.2 
and 4.4 ± 6.7, respectively) in SYL; 0 to 83.0 and 0 to 161.5, 
respectively (mean values 15.3 ± 20.9 and 13.0 ± 24.6, 
respectively) in JH; 0 to 89.4 and 0 to 616.5, respectively 
(mean values 12.6 ± 17.2 and 33.0 ± 91.42, respectively) in 
JP (Additional file 4: Figure S2).

Table 1 Parameters for estimating R0 in the Ross‑Macdonald model

T temperature
a Described in detail in Additional file 3: Table S1

Parameter Value (range) References

k 0.09 (0.05, 0.16) Manica et al. [25]

m
m =

{

0.000114T 2 − 0.00427T + 0.0639, T ≥ 15.0 ◦C

0.5, T < 15.0 ◦C

Brady et al. [26]

χH 31% (10%, 50%) Lambrechts et al. [27]
Paupy et al. [28]

χV 31% (10%, 50%) Lambrechts et al. [27]
Paupy et al. [28]

1/ωV 10 (7, 14) days Nur Aida et al. [29]

1/γ 6 (3, 7) days Manore et al. [30]

X 0.101 Manica et al. [25]

kV/H Time‑dependent Estimated using a quasi‑
Poisson mixed  modela

http://data.tqyb.com.cn/weather/index.jsp
http://data.tqyb.com.cn/weather/index.jsp


Page 5 of 9Guo et al. Parasites & Vectors           (2024) 17:79  

Estimates of  ADID and R0 based on HLCs
Estimates of  ADID of Ae. albopictus and  ADID-based R0 
of dengue in 12 investigation sites in Guangzhou from 
March 2015 to February 2017 are presented in Fig.  1. 
The estimated MOI,  ADID and R0 varied among investi-
gation sites and months (Fig.  1, Additional file  5: Figure 
S3). Between March 2015 and February 2017, the overall 
smoothed  ADID and R0 increased from January–February 
to June, peaking during June to July, and then decreased 
in general (Fig. 1). Higher  ADID and R0 were observed in 
construction sites than in other ecological habitats (Fig. 1).

Associations of MOI with  ADID and R0
MOI was positively associated with  ADID and the logarith-
mic transformation of R0. Specifically, a 10-unit increase 
in MOI was associated with 1.08-fold (95% CI 1.05, 1.11) 

 ADID (Table 2) and an increase of 0.14 (95% CI 0.05, 0.23) 
in the logarithmic transformation of R0 (Table 3).

Figure  2 gives the color level plots of monthly mean 
temperature, MOI and estimated R0. Figure  3 presents 
the exposure-response curves of the associations between 
MOI and R0 by average of monthly mean temperature. 
The ranges of observed MOI largely increased during 
January to June and decreased afterwards, and the larg-
est observed MOI was ≥ 60 between June and September. 
From April to July and in November, R0 was estimated 
to be > 1 when MOI was > 43.6, 18.5, 38.9, 24.0 and 7.6, 
respectively, given specific average monthly mean tem-
peratures. The point estimates of R0 exceeded 1 during 
August and October. (Figs. 2 and 3).

Fig. 1 Estimates of  ADID and R0 based on HLCs. a, b Seasonal variation of ADI (a) and MOI (b) in the wild population of Aedes albopictus in Guangzhou. 
Horizontal lines in the boxes show the median and the bars crossing the boxes show the maximum and minimum except outliers. Black dots show 
outliers, while 11 outliers are not shown in (b) for better visualization of the seasonal dynamic of ADI. c, d Temporal variations of the  ADID (c) and R0 (d) 
between March 2015 and February 2017, Guangzhou. e, f Temporal variations of the  ADID (c) and R0 (d) in four land use categories between March 2015 
and February 2017, Guangzhou. In c–f, black lines represent the smoothed time series estimated with a kernel regression model. Orange and purple 
regions indicate the 95% confidence intervals of the smoothed time series of  ADID and R0, respectively.  ADID = daily ADI
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Model sensitivity analysis
Results of sensitivity analyses consistently indicated the 
positive associations between MOI and the logarithmic 
transformation of R0 (Additional file 6: Table S2).

Discussion
A better understanding of mosquito-based surveillance 
indicators is critical to establish an efficient dengue risk 
prediction system. Our study indicated that MOI of Ae. 
albopictus could be a valuable mosquito surveillance indi-
cator applied for estimating the R0 of dengue. Due to the 
different lifestyles of Ae. albopictus and  Ae. aegypti, Ae. 
albopictus is characteristically peridomestic while Ae. 
aegypti is domestic. Multidimensional heterogeneity of 
Ae. albopictus habitats showed in larval/pupal surveys 
was complexly determined by inconsistent dynamics of 
total aquatic habitats ecosystem, Ae. albopictus adult ovi-
position behaviour and its diapause egg hatching [21]. The 
larval/pupal survey results were also limited by the inves-
tigators’ experience. Thus, the application of CI, HI and BI 
in surveillance of Ae. albopictus has been unsatisfactory 
so far. However, the adult traps, such as BG-sentinel traps, 

are expensive to implement in large-scale schemes and 
all epidemic regions worldwide [31]. By contrast, MOI 
is a reflection of mosquito egg-laying behaviour, which 
is strongly correlated with the biting behaviour, which is 
also a more objective indicator of local mosquito density 
in the stable period in the investigation sites.

Based on the Ross-Macdonald theory, assessment of the 
complex and unclear relationship between the mosquito 
abundance index (MOI) and dengue epidemic was carried 
out using ADI as a bridge. Our previous study indicated 
that ADI varied across time points within a day [20, 21]. 
Therefore, we estimated the ADI for a whole day based on 
a model which related the ADI for a whole day and the ADI 
between 09:00 and 15:00 instead of using the ADI of a spe-
cific period to be the proxy of the ADI for a whole day. The 
climatic factor affects multiple parameters of the assess-
ment. In our study, we tried to include the climatic factor 
directly in the variable parameter to eliminate the second-
ary effects on biting frequency by affecting population 
density and making the level of the model clearer to avoid 
blindly increasing the complexity of the model. Further-
more, instead of including sampling site in the model as a 
fixed-effect variable, we treated sampling site as a random-
effect variable. The population-level results based on the 
models can indicate the overall situation in Guangzhou. 
However, such estimates may be too conservative (i.e. too 
high) in terms of dengue prevention and control, especially 
in areas with a high level of dengue transmission.

Concerning the predicted risk based on MOI, which 
varied by month, dengue transmission showed an obvi-
ous seasonal DENV epidemic pattern in Guangzhou. It 
showed R0 < 1 for nearly all MOIs and average monthly 
temperature conditions from November to April. 
Although the MOI values in April and November were 
similar to those in October, the R0 indicated low epidemic 
risk of DENV transmission for the lower average monthly 
temperature. The quantitative relation of low transmis-
sion risk in these months supported the beginning of 
DENV outbreaks in Guangzhou being mainly caused by 
imported cases [32, 33]. By contrast, in August, the point 
estimates of R0 exceeded 1 for an extremely wide range in 
this high average monthly temperature condition, which 
required powerful local mosquito control in Guangzhou. 
Furthermore, it is believed that multiannual cycles of the 
DENV epidemic took place across Southeast Asia and 
South China, which were highly coherent with the Oce-
anic Niño Index [34–36]. In years of El Niño, the increase 
in temperature will drive the increase in epidemic risk. 
Then, higher temperatures than multiyear average values 
in April and May will also cause the occurrence of an R0 
value > 1 warning line to come early.

A standard index of transmission intensity and threshold 
criteria is critical for controlling mosquito-borne infections. 

Table 3 Results of the model assessing the association between 
MOI and the logarithmic transformation of R0

b Regression coefficient, 95% CI 95% confidence interval, Temp monthly mean 
temperature.  Month2 and  Temp2 are quadratic terms of month and monthly 
mean temperature, respectively
a Regression coefficients of MOI were multiplied by 10, while the regression 
coefficient of intercept was divided by 10

Variable ba (95% CI) P

Month 1.71 (1.24, 2.18) < 0.001

Month2 − 0.11 (− 0.14, − 0.07) < 0.001

Temp 1.75 (1.43, 2.07) < 0.001

Temp2 − 0.04 (− 0.04, − 0.03) < 0.001

MOI 0.14 (0.05, 0.23) 0.003

Intercept − 2.61 (− 2.93, − 2.28) < 0.001

Table 2 Results of the models assessing the associations 
between MOI and  ADID

ADID daily ADI, 95% CI 95% confidence interval, Temp monthly mean 
temperature.  Month2 and  Temp2 are quadratic terms of month and monthly 
mean temperature, respectively
a Regression coefficients of  Temp2 and MOI were multiplied by 10, while the 
regression coefficient of intercept was divided by 10

Variable ba (95% CI) exp(b) (95% CI) P

Month 1.16 (0.33, 1.99) 3.19 (1.40, 7.28) 0.006

Month2 − 0.08 (− 0.14, − 0.02) 0.92 (0.87, 0.98) 0.007

Temp 0.45 (0.13, 0.76) 1.57 (1.14, 2.14) 0.006

Temp2 − 0.08 (− 0.14, − 0.01) 0.93 (0.87, 0.99) 0.016

MOI 0.08 (0.04, 0.11) 1.08 (1.05, 1.11) < 0.001

Intercept − 1.04 (− 1.41, − 0.66) 0.35 (0.24, 0.52) < 0.001
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Fig. 2 Color level plots of temperature, MOI and R0. The temperature ranges considered were the ranges of monthly mean temperatures observed 
in Guangzhou during the study period for each month, and the MOI ranges were what we observed at the 12 investigation sites

Fig. 3 Exposure–response curves of the associations between MOI and R0. Lines represent the predicted R0, given temperature equals the average 
of monthly mean temperatures for each month. Grey regions represent the corresponding 95% confidence intervals of the predicted R0 estimated 
from the linear mixed‑effects model. Blue regions indicate the observed ranges of MOI for each month
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As mentioned in the Introduction, some researchers have 
proposed using some index thresholds to prevent mosquito-
borne disease transmission. In the Guangzhou surveillance 
net, the risk levels are determined by the stationary BI (< 5, 
5–10, 10–20, > 20), MOI (< 5, 5–10, 10–20, > 20) and SSI 
(< 1.0, 1.0–1.5, 1.5–2.0, > 2.0) thresholds, respectively [19]. 
However, in our study, we found that the MOI thresholds 
associated with R0 = 1 varied across months as well as sce-
narios of different mean temperature. The current control 
and prevention trend requires precise disease risk estima-
tion; the modeling proposal in this study can be applied to 
further establish a reliable automated intelligent surveillance 
and warning system of Aedes-borne diseases.

Conclusions
In conclusion, our study indicates that the MOI of Ae. 
albopictus could be a valuable mosquito surveillance indi-
cator applied for estimating the R0 of dengue with a statis-
tical model. The MOI-based R0 model predicting the risk 
of dengue transmission varied by month in Guangzhou. 
Our findings could improve the development of an effi-
cient risk prediction system for dengue outbreaks.

Abbreviations
DENV  Dengue virus
MOI  Mosquito or oviposition positive index
R0  The basic reproduction number
HLC  Human landing collections
ADI  Adult mosquito density index
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