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Abstract 

Background  Amblyomma americanum, the lone star tick, is an aggressive questing species that harbors several 
pathogens dangerous to humans in the United States. The Southeast in particular has large numbers of this tick due 
to the combined suitable climate and habitats throughout the region. No studies have estimated the underlying 
distribution of the lone star tick across the state of Georgia, a state where it is the dominant species encountered.

Methods  Ticks were collected by flagging 198 transects of 750 m2 at 43 state parks and wildlife management areas 
across the state from March to July of 2022. A suite of climate, landscape, and wildlife variables were assembled, 
and a logistic regression model was used to assess the association between these environmental factors and the pres‑
ence of lone star ticks and to predict the distribution of these ticks across the state.

Results  A total of 59/198 (30%) transects sampled contained adult or nymph A. americanum, with the majority 
of transects containing these ticks (54/59, 91.5%) in forested habitats. The presence of A. americanum was associated 
with elevation, normalized difference vegetation index (NDVI) on January 1, isothermality, temperature seasonal‑
ity, and precipitation in the wettest quarter. Vast regions of central, eastern, and southern coastal Georgia (57% 
of the state) were categorized as suitable habitat for the lone star tick.

Conclusions  This study describes the distribution of the lone star tick across the state of Georgia at a finer scale 
than the current county-level information available. It identifies specific variables associated with tick presence 
and provides a map that can be used to target areas for tick prevention messaging and awareness.
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Background
Tick-borne disease (TBD) cases have been rising over 
the past decade in the United States, with approximately 
20,000 reported in 2004 and more than 50,000 in 2019 [1, 

2]. Although most of these cases are attributed to Lyme 
disease, other TBDs have also been on the rise, includ-
ing spotted fever rickettsiosis, anaplasmosis, babesiosis, 
and ehrlichiosis. Additionally, there has been increasing 
incidence of alpha-gal syndrome, an emerging allergy to 
galactose-alpha-1,3-galactose present in red meat, asso-
ciated with lone star (Amblyomma americanum) tick 
bites [3]. With this rise in emerging and established TBDs 
and pathologies, it is important to understand the areas 
at highest risk of human exposure to ticks in order to tar-
get communication and prevention efforts.

Amblyomma americanum has a wide geographical 
range in the USA, spanning the East Coast and Midwest 
[4]. This range has been expanding over the past few 
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decades, with its native range in the Southeast expand-
ing into the Upper Midwest/Northeast through multi-
ple ecological mechanisms (e.g., climate change, host 
dispersal), and this expansion will likely continue in the 
future [5–7]. Lone star ticks are host generalists that 
feed on a wide variety of mammals, which also influ-
ences their ability to expand their range without spe-
cific host limitations [8]. These ticks parasitize humans 
at high rates; studies in the Southeast show that 
53–83% of ticks found on humans are lone star ticks [9, 
10]. Areas in the Northeast have also begun to see a rise 
in human contact with lone star ticks, with one study in 
New Jersey demonstrating A. americanum rapidly out-
pacing the previous most commonly encountered tick, 
Ixodes scapularis, over a period of 10 years [11].

While blood meal sources are important, ticks spend 
the majority of their life off-host and are therefore 
greatly affected by environmental factors [12]. One of 
the main risks to lone star ticks is desiccation, which 
influences the preferred habitats and regions suit-
able for the tick [13]. Researchers conducting ecologi-
cal niche studies have used this knowledge to choose 
relevant climate and habitat variables to predict the 
suitability of different areas for A. americanum incor-
porating measures of temperature, precipitation, 
humidity, and landscape/land use [14, 15]. However, 
studies evaluating abiotic and biotic factors associ-
ated with the local distribution and abundance of A. 
americanum have had mixed results. Some research-
ers have found a lack of association between habitat 
and A. americanum [16, 17], while others have found 
strong links between forested habitat and A. america-
num presence [18–20]. There are additionally no clear 
“best” climate variables for predicting A. americanum 
distribution, with studies finding significant relation-
ships with a variety of different measures of tempera-
ture, precipitation, and humidity [14, 18, 21]. These 
differences may be influenced by regional heterogeneity 
in areas where the tick is being studied, highlighting the 
need to conduct more studies on smaller geographi-
cal scales. Identifying the specific factors influencing 
A. americanum distribution in an area is important 
for identifying locations most at risk for exposure to 
these ticks and the pathogens they carry. While most 
of this research in the USA has focused on the Lyme 
disease vector (I. scapularis) [22–24], A. americanum is 
an effective vector of lesser-known bacteria and viruses 
such as Ehrlichia species, Rickettsia species, Heartland 
virus, Bourbon virus, Francisella tularensis, and the 
agent of southern tick-associated rash illness [25, 26], 
and is not nearly as well studied [27]. These diseases 
are predicted to increase in burden as the lone star tick 

continues its northward range expansion and increases 
its opportunities for human biting [6, 11].

Though studies have been conducted to estimate the 
distribution of A. americanum in other states in the USA 
[18, 20], a comprehensive study assessing these factors 
has not been conducted in Georgia, a state in the native 
range of A. americanum, where it is the most commonly 
encountered tick [28, 29]. Work in Florida by Kessler 
et  al. [20] demonstrated suitable habitat in the north-
ern regions of the state near the Georgia border, finding 
associations with forest cover, isothermality, precipita-
tion in the wettest month, mean temperature in the wet-
test quarter, precipitation seasonality, and maximum 
normalized difference vegetation index (NDVI). Given 
the increasing trends in the occurrence of alpha-gal syn-
drome in the state of Georgia [3], as well as the detec-
tion of Heartland virus in native A. americanum ticks 
in the state [30], developing detailed maps that quantify 
tick suitability has become a research priority. The objec-
tive of this study was to use climate, environmental, and 
habitat predictors collected at a wide array of natural 
and protected areas across all major Georgia ecoregions 
to model the distribution of A. americanum. Using this 
model, areas of Georgia can be identified as having a high 
likelihood for the presence of these ticks and targeted for 
sampling or intervention in the future.

Methods
Study site
This study was conducted across the entire state of Geor-
gia. The state contains six level III ecoregions as desig-
nated by the Environmental Protection Agency (EPA), 
each characterized by unique vegetation, soil, climate, 
geology, and other biotic and abiotic factors creating dis-
tinct ecosystems [31]. Georgia has a humid subtropical 
climate, with elevation ranging from 1458 m in the Blue 
Ridge region to   −3 m in the Southern Coastal Plain [32, 
33]. It receives precipitation throughout the year, averag-
ing 127 cm per year over the past century [34].

Site selection
Sampling locations were chosen from Georgia state parks 
and wildlife management areas to target rural areas of 
human recreational exposure (e.g., hunting, hiking). To 
ensure coverage across the entire state, all state parks 
and wildlife management areas were assembled, and 
five sites per ecoregion were randomly selected (with 
the exception of the Southwestern Appalachians due to 
its small representation in Georgia). A further 18 sites 
were added to the initial 25 to fill geographical gaps and 
achieve broad coverage. Upon arrival, if sites were found 
to be inaccessible (flooded, road closures, etc.), the near-
est comparable site was selected for sampling.
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Tick collections
Ticks were collected via flag sampling of 750  m2 tran-
sects measured using a measuring wheel and bounded 
with bright-colored stakes according to standard proto-
cols [35]. Five transects, on average, were selected at each 
site, with each transect containing one habitat type. Rep-
licates of habitat type (e.g., pine forest, deciduous forest, 
grassland) were determined based on the dominant veg-
etation at the site. For example, if a site consisted mostly 
of deciduous forest, multiple deciduous forest transects 
would be sampled. Transect locations were geotagged 
in Web Mercator (WGS84) in the center of the transect 
using an iPhone 13 (Apple Inc., Cupertino, CA, USA) and 
Google Maps (Google LLC, Mountain View, CA, USA). 
Transects were recorded with a unique identifier for the 
site, and transect numbers and pictures of the transect 
were taken for further habitat characterization. Collected 
ticks were placed in labeled plastic vials by transect and 
underwent microscopic identification of sex, species, and 
life stage using taxonomic keys [36, 37]. Collections took 
place between March and July of 2022, with the majority 
taking place between May and July to match the season-
ality of A. americanum in Georgia [38, 39].

Predictive variables
Predictors chosen for this study were based on previous 
A. americanum distribution models and spanned mul-
tiple categories including climate, landscape/land use, 
and wildlife ranges [14–16, 20, 40, 41]. For climate, all 19 
bioclimatic variables were included from WorldClim ver-
sion 2.1 at a resolution of approximately 1  km2 [42]. We 
additionally obtained meteorological data from the God-
dard Earth Observing System Composition Forecasting 
(GEOS-CF) for Georgia from March to August 2022 [43]. 
The GEOS-CF data have a native resolution of 0.25°, and 
we further applied an inverse distance-weighted (IDW) 
interpolation using Euclidean distance to assign tempera-
ture and relative humidity values to each transect loca-
tion on the day of sampling. Land cover was extracted 
using the 2019 National Land Cover Database (NLCD) at 
30 m resolution via Google Earth Engine [44, 45]. Using 
field pictures and habitat characterization, a few transect 
points were reclassified when comparing the NLCD clas-
sification (e.g., open water to mixed forest when a point 
had been taken on the edge of a body of water). These 
classifications were additionally dichotomized into forest 
(deciduous, evergreen, and mixed) versus non-forest (all 
other categories) for variable selection. Elevation (NASA 
Shuttle Radar Topographic Mission [SRTM] v4, 90 m res-
olution) [46] and NDVI (MODIS [Moderate Resolution 
Imaging Spectroradiometer] V6.1, 16-day composites, 
250  m resolution) [47] were extracted for each transect 

using the mean and median values, respectively, in a 
square buffer of 27 m (resulting in 729 m2 to mimic sam-
pling methods) using Google Earth Engine. Lastly, utiliz-
ing the Georgia Department of Natural Resources Deer 
Harvest Dashboard, a deer density map by county was 
included in our variable selection [48].

Statistical methods/modeling
The dichotomized presence or absence of A. americanum 
adults and nymphs in each transect was used as the out-
come variable for distribution modeling. Both life stages 
were counted together because both were found in the 
majority of transects, and we were not interested in a par-
ticular life stage. The transects were then split at random 
into training (85% of transects) and testing (15%) data-
sets for model evaluation. This split was chosen due to 
the small overall number of transects, to maximize tran-
sects used for model development. The locations of the 
training and testing datasets were representative of each 
ecoregion in Georgia. For training, 19 transects were in 
Blue Ridge, 20 in Ridge and Valley, 62 in Piedmont, 43 in 
the Southeastern Plains, and 29 in the Southern Coastal 
Plain. Of the total testing locations, the relative represen-
tation of each ecoregion was 14% (3/22) for Blue Ridge, 
20% (5/25) for Ridge and Valley, 5% (3/65) for Piedmont, 
14%  (7/50) for the Southeastern Plains, and 19%  (7/36) 
for the Southern Coastal Plain.

All potential predictors were included in the model, 
and backward selection was conducted using the ste-
pAIC function in the MASS package (v7.3-54) in R (ver-
sion 4.0.4). Interaction terms involving forested habitats 
were also assessed. Once an initial set of predictors were 
dropped through this function (minimizing the Akaike 
information criterion [AIC]), collinearity was assessed 
using the CAR package (v3.0-12), and additional predic-
tors were dropped by collinearity size (variance inflation 
factor [VIF] > 10) and least statistical significance. The 
final model followed the above criteria, stopping when 
all predictors had VIFs < 10 and when AIC no longer 
decreased upon variable removal. The selected final 
model was then assessed for predictive accuracy and fit 
using the testing dataset. Continuous predicted values for 
the probability of A. americanum presence were gener-
ated using the final model on the testing set. To dichoto-
mize this predicted probability, the optimal cut point was 
determined using the OptimalCutpoints package (v1.1-
5), maximizing the efficiency of the model. Addition-
ally, a receiver operator characteristic (ROC) curve was 
generated to compare the optimal cut point computed 
with the sensitivity and specificity relationships on the 
curve. Values above the cut point were classified as pres-
ence, while those less than or equal to the cut point were 
considered absence. The sensitivity, specificity, accuracy, 
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area under the ROC curve (AUC), and kappa values were 
calculated for the model on both the training and testing 
datasets.

Mapping
Raster surfaces of all predictors and point locations of all 
transects were imported into ArcGIS Pro (v2.8.0). Col-
lected tick totals were represented as density per 100 m2 
sampled according to the Centers for Disease Control 
and Prevention (CDC) metastriate tick surveillance 
guide recommendations [35]. The density of A. ameri-
canum per 100  m2 sampled at each site was calculated 
by taking the total A. americanum adults and nymphs 
collected at the site, dividing by the total distance tran-
sected at the site, and multiplying by 100. For the predic-
tive maps, the Raster Calculator function in the Spatial 
Analyst extension was used to enter the model statement 
using the coefficients generated in R and the raster sur-
faces corresponding to the variables in R. The Raster 
Calculator function was used again with the formula 1/
(1 + Exp[−1×model]) to generate a continuous prob-
ability surface at a spatial resolution of approximately 
1 km2 for the niche of the tick in Georgia based on the 
model. This probability map output was additionally 

dichotomized in another map using the ROC cutoff value 
to indicate areas that would be categorized as suitable 
habitat for A. americanum ticks.

Results
In total, 630 ticks were collected in 198 transects at 43 
locations in Georgia. Of these, 568 (90%) were either 
A. americanum adults or nymphs, 24 were I. scapularis 
adults, 30 were Dermacentor variabilis adults, and eight 
were Amblyomma maculatum adults. Fifty-nine of the 
198 transects sampled had adult/nymph A. americanum 
present, with totals ranging from 1 to 77. Amblyomma 
americanum density per site ranged from 0 to 2.43 ticks 
per 100 m2 sampled (Fig. 1).

The majority of transects sampled (140/198, 70.7%) 
were categorized as forest in the field (deciduous, mixed, 
or pine), with percentages of forest versus other tran-
sects ranging from 56% of transects in the Southeastern 
Plains ecoregion to 91% of transects in the Blue Ridge 
ecoregion. In ecoregions where A. americanum ticks 
were found (all but the Blue Ridge region), the majority 
were found in forested transects (Fig. 2). More than one 
third—54 of 140 (38.6%)—of forested transects sampled 
contained A. americanum, while only five of 48 (10.4%) 

Fig. 1  Density of A. americanum at each site per 100 m2 sampled. The total number of A. americanum collected at each site was divided by the total 
transected distance and multiplied by 100 to display the density of adult and nymph A. americanum. Larger white circles represent sites with higher 
density of lone star ticks
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grassland transects contained A. americanum. In other 
words, in transects where A. americanum ticks were 
found (n = 59), 91.5% of these were forested (n = 54). 
Clustering of A. americanum was also more common in 
forest habitats, with around 10 ticks per tick-containing 
transect, versus around three ticks per tick-containing 
transect in grassland habitats. Although forest appears to 
be descriptively significant, this effect was not seen dur-
ing the modeling phase, likely due to the differences in A. 
americanum presence in forests across the ecoregions of 
the state (Fig. 2).

Model characteristics
After initial backward selection, 13 bioclimatic variables, 
temperature on the day of sampling, the NDVI value on 
January 1, and elevation were included in the final model 
selection. The final model deleted predictors to reduce 
VIF to < 10 while also minimizing AIC increases (Addi-
tional file  2: Table  S1). Predictors present in the final 

model were elevation, NDVI on January 1, Bioclim 3 (iso-
thermality), Bioclim 4 (temperature seasonality), and Bio-
clim 16 (precipitation in the wettest quarter) (Table 1). All 
three bioclimate variables were negatively associated with 
tick presence. Thus, as isothermality, temperature sea-
sonality, and the amount of precipitation in the wettest 

Fig. 2  Bar graph of the percentage of transects where A. americanum was found, split by habitat in each ecoregion (BR Blue Ridge, RV Ridge 
and Valley, P Piedmont, SP Southeastern Plains, SC Southern Coastal Plain). In total, 0/20 (0%) forested transects contained lone star ticks in Blue 
Ridge, 31/51 (60.8%) in Piedmont, 1/17 (5.9%) in Ridge and Valley, 12/24 (50%) in the Southern Coastal Plain, and 10/28 (35.7%) in the Southeastern 
Plains. For grassland/other transects, 0/2 (0%) had lone star ticks in Blue Ridge, 2/14 (14.3%) in Piedmont, 0/8 (0%) in Ridge and Valley, 0/12 (0%) 
in the Southern Coastal Plain, and 3/22 (13.6%) in the Southeastern Plains

Table 1  Model predictors and coefficients for the best logistic 
regression model

***P <0.0001, **P <0.001, *P <0.01, NS not significant

Beta Std error Z-value Pr ( >|z|) Significance

Intercept 34.792 11.369 3.060 0.002 **

Bioclim 3 −0.287 0.115 −2.506 0.012 *

Bioclim 4 −0.018 0.008 −2.266 0.023 *

Bioclim 16 −0.032 0.008 −3.965 7.35e−05 ***

Elevation 0.003 0.002 1.448 0.148 NS

NDVI (Jan 1) 0.0002 0.0002 0.917 0.359 NS
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quarter increased, the likelihood of finding A. america-
num decreased. Given the more difficult interpretation of 
isothermality, we show in Additional file 2: Fig. S1 the rela-
tionship between Bioclim 3 and the probability of detecting 
A. americanum, whereas Additional file  2: Fig. S2 shows 
the distribution of isothermality across Georgia. Elevation 
and the NDVI on January 1 were positively associated with 
tick presence, so as the elevation or NDVI value increased, 
the likelihood of finding A. americanum ticks increased 
(Table 1).

The model performed better on the testing dataset than 
on the training dataset (Table 2). Although the model had 
good sensitivity on the training set (ability to predict areas 
of tick occurrence that truly had ticks when sampling), this 
decreased when applied to the testing dataset. The reverse 
was true for specificity; the model performed better at call-
ing areas that did not have A. americanum ticks (when they 
did not have ticks upon sampling) for the testing dataset 
than the training dataset. Two transects in the training 
set had missing values for NDVI on January 1 and were 
dropped from predictive calculations in the model (FMT3 
and JET5, both located in the Southern Coastal Plain 
ecoregion). The kappa value is an accuracy statistic that 
takes into account random chance. The value for the train-
ing set (0.33) indicates that the model performance is “fair,” 
while the level of agreement for the testing set is “moder-
ate” [49]. The AUC was also computed, yielding 70% for the 
training set and 80% for the testing set.

Distribution maps
The map of the probability of A. americanum presence 
demonstrates that the areas at highest risk of encountering 
this tick are in eastern and central Georgia and the south-
ern edge of the coast (Fig. 3). There were missing data for 
the rest of the coast. Areas less suitable for questing A. 
americanum included large parts of northern and south-
eastern Georgia. Because of the missing data for some of 
the coastal areas, no prediction was made for some of this 
region, though where present on the southern edge of the 
coast, increased suitability was projected.

The map was further categorized into presence/
absence of the tick based on the most efficient cut-off 
point in the model (0.2508), and this map reveals all 
areas where A. americanum can be expected to be pre-
sent and questing (Fig.  4). The areas indicated as suit-
able habitat span large swaths of the Piedmont and 

Southeastern Plain ecoregions, with some additional 
locations along the Southern Coastal Plain and the edge 
between the Ridge and Valley and the Blue Ridge ecore-
gions [31]. In total, 57% of the area of Georgia was pre-
dicted to be suitable for A. americanum questing.

Table 2  Model performance

Accuracy Sensitivity Specificity Kappa AUC​

Training (n = 171) 0.66 0.80 0.60 0.33 0.70

Testing (n = 25) 0.84 0.71 0.89 0.60 0.80

Fig. 3  Probability of A. americanum occurrence across Georgia, 
estimated from the best-fit logistic regression model of tick presence. 
Areas that are yellow to red indicate areas with a higher probability 
of finding questing lone star ticks. White reflects missing data

Fig. 4  Estimated ecological niche of A. americanum in Georgia 
using the optimal probability cut point maximizing sensitivity 
and specificity (0.2508). Red areas indicate locations that would have 
suitable habitat for A. americanum based on the final model
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Discussion
TBDs constitute the majority of vector-borne illnesses 
reported in the United States and have been on the rise 
over the past century [2]. Though many studies have been 
devoted to characterizing the distribution of I. scapularis 
and Lyme disease in the Northeast [23, 50–52], there has 
been less focus on other tick species such as A. america-
num and its pathogens in the Southeast, where it is the 
dominant tick species [53]. Understanding the distribu-
tion of this medically important vector is crucial to iden-
tifying areas at highest risk of tick contact for targeting of 
TBD prevention resources and messaging.

In this study, we conducted intensive field sampling 
across the state of Georgia to identify locations with 
questing A. americanum. Incorporating remote sensing 
data and other biologically important variables, we cre-
ated a logistic regression model to predict areas with the 
highest suitability for nymph and adult life stages of A. 
americanum. The model identified large regions of cen-
tral, eastern, and southern coastal Georgia as having the 
highest probability of containing lone star ticks. Before 
this study, the only information on A. americanum spe-
cies distribution in Georgia was aggregated at the county 
level, and many counties, especially in the southern half 
of the state, were missing data [28, 41]. Georgia pre-
sented one of the largest data gaps in the Southeast [41], 
and our study and maps show that using regional tick 
presence data overestimated the suitability of Georgia for 
A. americanum. The distribution maps created here can 
be used to estimate areas where people may encounter 
questing lone star ticks in Georgia. They can guide epide-
miological studies quantifying the role of A. americanum 
in human illnesses.

Consistent with other literature, the majority of A. 
americanum collected in this study were found in for-
ested habitats [18–20]. Although the tick is consid-
ered to be a habitat generalist [17] and is found in some 
grassland transects in this study, most transects with 
A. americanum were deciduous, pine, or mixed forests. 
Interestingly, however, being a forested habitat was not a 
predictor included in the final model and was not statisti-
cally significant in model selection. This is likely because 
forest habitat alone does not guarantee that A. america-
num ticks will be present, and other factors such as cli-
mate, elevation, and wildlife density contribute more 
strongly to habitat suitability. In our sampling, we pri-
marily surveyed forested transects (140 of 198) in Geor-
gia, but in the two northern ecoregions (Blue Ridge and 
Ridge and Valley), A. americanum was present in only 
3% of these forested transects, while in the other three 
regions (Piedmont, Southern Coastal Plain, Southeastern 
Plains), it was found in 51% of forested transects (Fig. 2). 
Although the interaction terms tested using habitat and 

ecoregion were additionally nonsignificant, this example, 
consistent with other studies [16, 54], demonstrates that 
factors other than general habitat are crucial in deter-
mining the A. americanum niche.

The predictors present in the final selected model were 
elevation, NDVI on January 1, Bioclim 3 (isothermality), 
Bioclim 4 (temperature seasonality), and Bioclim 16 (pre-
cipitation of the wettest quarter). A comparable distribu-
tion modeling study was conducted previously by Kessler 
et al. [20] in Florida, and their model contained a related 
suite of final variables including forest cover, isothermal-
ity, precipitation in the wettest month, mean tempera-
ture in the wettest quarter, precipitation seasonality, and 
maximum NDVI. Florida shares two of Georgia’s six level 
III ecoregions, the Southeastern Plains and Southern 
Coastal Plain [31], and shares similar weather patterns to 
Georgia in the northern parts of the state. Though largely 
similar, Georgia has a wider range of climate and eleva-
tion through its six ecoregions, which likely underlies 
some differences in predictors and model performance 
between the studies.

The variables included in the final model of this study 
can be related to important characteristics with regard 
to A. americanum survival. Both isothermality and tem-
perature seasonality relate to variability in temperature, 
the first characterizing the daily temperature range com-
pared with annual temperature range, while the second 
is based on the standard deviation of monthly tempera-
ture averages [42]. Higher isothermality values indicate 
smaller annual seasonal temperature changes relative 
to diurnal temperature fluctuations and can be found in 
southeastern Georgia, while lower isothermality values 
are indicative of larger differences between summer and 
winter temperatures than daily temperatures and can be 
found in central, coastal, and northern Georgia (Addi-
tional file 2: Figs. S1 and S2). For temperature seasonal-
ity, the higher the value, the more variability there is in 
monthly temperature averages over the year (seen in 
areas of central and northern Georgia), and the lower the 
value, the less variability in temperature across the year 
(seen broadly across southern Georgia). These seasonal-
ity factors have been indicated as important predictors 
in other A. americanum distribution studies [20, 55], and 
temperature range is important to tick survival off-host 
[56]. In our model, both isothermality and temperature 
seasonality were negatively associated with tick presence 
when accounting for the other variables, indicating that 
the probability of finding A. americanum ticks decreased 
with increased seasonal temperature variability (tem-
perature seasonality) and larger diurnal temperature 
fluctuation compared with annual temperature range 
(isothermality). Lone star ticks are sensitive to freezing 
and desiccation seen with temperature extremes [57, 58], 
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so both high fluctuations in diurnal temperatures and 
high variability in annual temperatures may create sub-
optimal conditions and reduce habitat suitability.

Precipitation is also important to A. americanum tick 
survival, as humidity has been shown to be an impor-
tant factor in the A. americanum life cycle [57, 59]. Pre-
cipitation in the wettest quarter was negatively associated 
with the probability of tick presence, indicating that the 
more precipitation an area received in the wettest three 
months of the year, the less chance lone star ticks were 
present. Georgia receives ample precipitation year-round 
[34], so areas with the highest precipitation are likely 
more prone to flash flooding and swamp-like habitats 
(favored by high amounts of clay in the soil), potentially 
impacting oviposition and egg hatchability in early tick 
life stages [60] and decreasing questing behavior [61].

Elevation was positively associated with the probability 
of A. americanum presence when accounting for other 
variables in the model. This association may be counter-
intuitive, as A. americanum is more commonly found at 
lower elevations [62], and it was not found in our field 
collections in the highest-elevation ecoregion in Geor-
gia (Blue Ridge). However, this association is likely due 
to the inclusion of the other variables in the model. The 
univariate relationship between elevation and tick pres-
ence was negative but changed to positive when adding 
the climate and NDVI variables to the model. The cli-
mate variables had stronger associations with tick pres-
ence than elevation in this dataset and, because of this, 
may better explain outside characteristics associated with 
elevation (e.g., weather patterns in mountainous areas) 
that impact tick habitat suitability. Therefore, elevation, 
when accounting for NDVI on January 1, isothermality, 
temperature seasonality, and precipitation of the wettest 
quarter, shifts to a slight positive association to describe 
smaller regional nuances in the data.

The NDVI value measured on January 1, 2022, was pos-
itively associated with tick presence in the model. NDVI 
is a measure of vegetation health, with higher values 
indicating healthy vegetation [63, 64]. These values are 
lower in winter months than in summer months, as many 
plants undergo senescence in the colder months, losing 
leaves, flowers, fruits, etc. [65]. Areas that have higher 
NDVI relative to others during the winter are likely loca-
tions with some evergreen composition to their forest, 
as they would be less affected during these months [66]. 
Therefore, pine and mixed forests (higher NDVI values 
in January) were associated with higher probability of 
A. americanum presence. Pine forest microclimates are 
generally hotter and drier than deciduous forest micro-
climates, and as a result, ticks questing in the summer in 
these habitats experience more desiccating conditions 
[54]. As previously mentioned, A. americanum have not 

been exclusively associated with a single habitat in the lit-
erature [17] and have the ability to quest in drier condi-
tions due to the presence of a waxy cuticle [67]. Although 
we did not find a significant association between forested 
habitat and tick presence, NDVI in January may repre-
sent similar factors relating to the health of vegetation 
and pine/mixed forest habitats.

Modeling studies on habitat suitability and vec-
tor distribution are only as good as the data underlying 
the model and the types of data available for predictive 
selection [68]. In this study, although we traveled to 43 
locations in the state, there were still sections of Georgia 
that could not be covered due to size and limitation by 
locations of state parks and wildlife management areas. 
Additionally, there may be practices in these parks that 
impact tick populations, such as controlled burns [69], 
that we were not aware of during sampling and were una-
ble to account for in our model. Furthermore, ticks are 
not equally distributed in the environment and are fre-
quently clustered, which may, by chance, not have been 
selected within a given transect [70]. To combat this, 
multiple transects were conducted at each site and free 
flagging was conducted outside of transects to validate 
our results. Despite this, there is still a possibility that 
ticks were present in areas we sampled but we failed to 
detect them in our flagging. There may also be variables 
we are unable to include in our model that are important 
to tick abundance, such as wildlife movement and den-
sity, which would impact host availability for ticks.

The maps created in this study can be leveraged for 
additional lone star tick sampling for active surveillance 
across the state and for targeting areas for tick protec-
tion messaging. To improve upon the initial work done 
here, future distribution studies could utilize additional 
modeling techniques (machine learning techniques such 
as random forest models or MaxEnt [maximum entropy]) 
to create a composite result [21, 71]. Further work could 
characterize the other tick species distributions in Geor-
gia by sampling during their peak seasons (e.g., Ixodes 
in spring and fall) to more completely describe the tick 
landscape in the state. Lastly, this map may be com-
pared with TBD cases in the state to assess associations 
between counties at highest risk of the presence of lone 
star ticks and county rates of different associated diseases 
and pathologies (e.g., ehrlichiosis, alpha-gal) to further 
understand how areas with high tick suitability translate 
to human disease cases [18].

Conclusions
This study generated a predictive map of the State of 
Georgia to identify areas with highest habitat suitabil-
ity for A. americanum. This map can be used to esti-
mate where people are at highest risk of encountering 



Page 9 of 11Bellman et al. Parasites & Vectors           (2024) 17:62 	

questing A. americanum and target these areas for tick 
prevention messaging.
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