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Abstract 

Background The latest national survey on the distribution of human parasites in China demonstrated that Guang‑
dong was among the endemic provinces with the highest Clonorchis sinensis infection rates. High‑resolution, age‑ 
and gender‑specific risk maps of the temporal and spatial distributions are essential for the targeted control work.

Methods Disease data on the prevalence of C. sinensis infection from 1990 onwards, either age‑ and gender‑spe‑
cific or aggregated across age and gender, were collected through systematic review and four large‑scale surveys 
in Guangdong Province. Environmental and socioeconomic variables were obtained from open‑access databases 
and employed as potential predictors. A Bayesian geostatistical model was developed to estimate the C. sinensis infec‑
tion risk at high spatial resolution.

Results The final dataset included 606 surveys at 463 unique locations for C. sinensis infection. Our findings sug‑
gested that following an initial increase and stabilization, the overall population‑adjusted prevalence had declined 
to 2.2% (95% Bayesian credible interval: 1.7–3.0%) in the period of 2015 onwards. From 2015 onwards, moderate 
and high infection risks were found in the northern regions (e.g. Heyuan and Shaoguan cities) and the southern Pearl 
River Delta (e.g. Foshan, Zhongshan, Zhuhai and Jiangmen cities), respectively. Age‑ and gender‑specific risk maps 
revealed that males had a higher infection risk than females, and the infection risk was higher in adults compared 
to children.

Conclusions Our high‑resolution risk maps of C. sinensis infection in Guangdong Province identified the spatial, tem‑
poral, age and gender heterogeneities, which can provide useful information assisting tailored control strategies.
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Background
Clonorchiasis is an important foodborne parasitosis 
caused by infection with Clonorchis sinensis (C. sinensis). 
The parasite has a complex life cycle, involving freshwa-
ter snails as the first intermediate host and freshwater 
fish and occasionally shrimps as the second intermedi-
ate host. Human or carnivorous mammals, as the defini-
tive host, are infected with C. sinensis mainly through the 
consumption of raw or undercooked freshwater fish car-
rying metacercariae [1–3]. The mild infections often have 
nonspecific symptoms [4, 5], whereas severe infections 
may lead to various complications, including cholelithi-
asis, cholecystitis, cholangitis and cholangiocarcinoma 
[6, 7]. Furthermore, C.  sinensis was identified by the 
International Agency for Research on Cancer (IARC) 
as a group 1 carcinogen of humans [8]. Approximately 
15 million people were estimated to be infected with 
C. sinensis, the majority of whom lived in East Asia (i.e. 
China, the Republic of Korea and northern Vietnam) [9, 
10]. Particularly, China accounted for the largest share 
(85%) with an estimated 13 million people infected [11, 
12]. There were two major endemic regions in China: the 
southeastern region (including Guangxi and Guangdong 
provinces) and the northeastern region (including Hei-
longjiang and Jilin provinces) [13, 14].

Guangdong Province, located in southeast China, 
covered by dense river networks, is abundant in aquatic 
products [15, 16]. In certain areas of the province, resi-
dents have the deeply rooted habit of eating raw fresh-
water fish [17, 18]. Up to now, several large-scale surveys 
have been carried out in Guangdong. The first and the 
second national surveys, conducted in 1988–1992 and 
2001–2004, respectively, revealed that Guangdong had 
the highest prevalence (1.8% and 5.4%) of C. sinensis 
infection across China [19, 20]. In 2010, a large provincial 
survey observed an increased prevalence of 6.2% [21]. 
This number dropped to 4.2% in the third national survey 
(2015–2016), the latest one, ranking second among all 
provinces in the country [22]. Results obtained from the 
above four surveys showed a downward trend of preva-
lence from 2010 onwards but a significant heterogene-
ity in space. Particularly, moderate-to-high prevalence 
was found in the southern Pearl River Delta part and 
the northern areas [22]. The time intervals between the 
above surveys were relatively large, during which small 
surveys were conducted across different locations in the 
province. However, it is difficult to obtain the spatial-
temporal risk in different areas only based on the simple 
statistical description of historical survey data.

High-resolution risk maps, showing the temporal and 
spatial distribution of disease risk, are particularly impor-
tant in guiding control strategies and intervention plans 
[23, 24]. Bayesian geostatistical modeling, as a flexible 

and robust inferential approach to producing high-res-
olution disease risk maps [25], has been widely used in 
multifarious studies on foodborne parasitosis in differ-
ent countries or regions [26–30]. Based on this method, 
Lai et al. produced a risk map of C. sinensis infection in 
China, including the high-resolution spatial distribu-
tion of C. sinensis infection in Guangdong [26]. How-
ever, the above study, based on survey data between 
2000 and 2015, just roughly separated the study period 
into two segments and thus could not reflect either the 
detailed temporal changes or the current status of the 
disease. Besides, as data were aggregated regardless of 
age and gender, age- and gender-specific infection het-
erogeneities were not considered. To address the above 
limitations, in this study, we aimed (i) to provide age- and 
gender-specific risk maps and (ii) to evaluate the current 
status and the temporal changes in C. sinensis infection 
risk over 30 years in Guangdong, thus providing impor-
tant references for control and prevention of the disease 
in the province.

Methods
Data source
Disease data
As most of the surveys on clonorchiasis in Guang-
dong have been carried out since the first national sur-
vey around 1990, we set our study period from 1990 
onwards. Geo-referenced data on clonorchiasis from the 
four large-scale surveys were aggregated as the number 
of examined and number of positive individuals in two 
genders (male and female) and seven age groups (0–9, 
10–19, 20–29, 30–39, 40–49, 50–59 and ≥ 60 years old), 
provided by Guangdong Provincial Center for Disease 
Control and Prevention (Guangdong CDC). Addition-
ally, we did a systematic review to collect relevant papers, 
extending the study time of Lai’s work [26]. In Lai’s study, 
a systematic review was undertaken in PubMed, ISI Web 
of Science, China National Knowledge Internet (CNKI) 
and Wanfang Data from January 1, 2000, until January 10, 
2016 [26]. Our extension review identified studies from 
January 1, 1990, to December 31, 1999, and from Janu-
ary 10, 2016, to March 17, 2023. We followed Lai’s study 
[26] to set the search terms and the criteria for inclusion, 
exclusion and extraction of data. Finally, we combined 
all available disease data from the above sources for sub-
sequent analysis. Geographical coordinates of survey 
locations were obtained via Google Maps (https:// www. 
google. com).

Environmental, socioeconomic and demographic data
Environmental, socioeconomic and demographic data 
were obtained from different open-access data sources 
(with details in Additional file 1: Table S1). Land surface 

https://www.google.com
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temperature (LST) in the daytime and at night and nor-
malized difference vegetation index (NDVI) were aver-
aged yearly. According to between-class similarities, we 
reclassified land cover data into five categories: (i) forest; 
(ii) shrublands and grass; (iii) wet areas; (iv) croplands; 
(v) urban. All data were converted to raster files with 
5 × 5  km2 spatial resolution, identical to the resolution of 
risk maps of our study.

Statistical analysis
As most of the surveys used Kato-Katz as the diagnostic 
method, to ensure consistency in the diagnostic tech-
nique, we only kept prevalence data diagnosed by this 
method. A sample size n = 50 was assigned to surveys 
where only prevalence was reported. The year of publi-
cation minus 3 was assigned to the survey with the sur-
vey date missing. The survey period was equally divided 
into six categories: 1990–1994, 1995–1999, 2000–2004, 
2005–2009, 2010–2014 and from 2015 onwards. Data 
obtained from the literature were community-based, 
aggregated across age and gender, but data provided by 
Guangdong CDC were age group- and gender-specific; 
we introduced an age-gender-specific variable contain-
ing 15 age-gender groups to comprehensively analyze all 
available data reflecting age and gender heterogeneity: 
(i) surveys aggregated across age and gender, (ii) females 
aged < 10  years, (iii) males aged < 10  years, (iv) females 
aged 10–19  years, (v) males aged 10–19  years, (vi) 
females aged 20–29 years, (vii) males aged 20–29 years, 
(viii) females aged 30–39  years, (ix) males aged 
30–39  years, (x) females aged 40–49  years, (xi) males 
aged 40–49  years, (xii) females aged 50–59  years, (xiii) 
males aged 50–59  years, (xiv) females aged ≥ 60  years 
and (xv) males aged ≥ 60  years. Particularly, the first 
group referred to the data obtained from the literature 
that aggregated across age and gender. Categorical vari-
ables were transformed into dummy forms, and continu-
ous variables were standardized to mean 0 and standard 
deviation 1. As for any pair of continuous variables with 
Pearson’s correlation coefficient > 0.7, we dropped the 
one with lower quality to avoid collinearity.

Bayesian geostatistical logistic regression models with 
spatially specific random effects were applied to analyze 
the survey data with potential predictors. Here, 
Yik , nik , pik were respectively defined as the number of 
positive individuals, number of examined people, and 
prevalence of infection in age-gender group k (k = 1, 2, 
3, …, 15, representing the corresponding group of the 
age-gender specific variable, respectively) at survey 
location i (i = 1, 2, 3, …, l). We assumed that Yik arose 
from a binomial distribution Yik ∼ Bin(pik , nik ) , where 
logit

(
pik

)
= β0 +

∑
m=1βm × X

(m)
i + ϑi . β0 was the 

intercept, and βm was the regression coefficient of the 
mth covariate X (m)

i  . The spatial random effect ϑ was 
assumed to follow a zero-mean Gaussian distribution 
with a Matérn covariance function, that is 
Cov(ϑi,ϑj) =

σ 2
sp

2v−1Ŵ(v)
(κdij)

vKv(κdij) . Here, σ 2
sp was spa-

tial variance, expressed as 1/(4πκ2vτ 2sp) . dij was denoted 
the Euclidean distance between locations i and j, and κ 
was a scaling parameter. Kv was the modified Bessel 
function of the second kind, where v = 1 was regarded 
as a smoothing parameter. The spatial range, r =

√
8v/κ , 

denoted the distance at which spatial correlation 
becomes negligible (< 0.1).

The model was fitted through the integrated nested 
Laplace approximations (INLA) approach in a Bayesian 
framework, using the INLA package in R. We adopted 
less informative priors as follows: normal prior distri-
butions for the intercept and regression coefficients as 
β0,βm ∼ N (0, 1000) and log normal distributions for 
hyperparameters τsp and κ as log(τsp) ∼ lognormal(0, 100) 
and log(κ) ∼ lognormal(0, 100) , respectively.

Moreover, to obtain the best set of predictors for a 
parsimonious model, a variable selection process was 
adopted. First, to identify the best functional form of 
continuous variables, continuous ones were divided 
into three-level categorical ones based on a preliminary 
exploration for potential non-linear outcome predictor 
relationships. We respectively developed two univari-
ate Bayesian geostatistical models for the continuous or 
categorical form of each continuous predictor and chose 
the form with the minimum log score as the best func-
tional form. Second, the backward elimination approach 
was used to identify the best set of fixed effect covariates 
for the final model [31]. Additionally, based on previous 
studies, survey period, age and gender were identified as 
the influencing factors for C.  sinensis infection [32–34]; 
hence, the corresponding variables were kept in the mod-
els during the whole variable selection process.

For model validation, all observed locations (N) were 
randomly divided into two sets, with 80% of locations as 
a training set and the remaining 20% as a validation set. 
We calculated the following indicators to assess model 
performance: mean error ( ME = 1

N ×
∑

i=1(πi − π̂i) ), 

mean absolute error 
(
MAE = 1

N ×
∑
i=1

∣∣πi − π̂i

∣∣
)

 , the 

coverage of observations within 95% Bayesian credible 
intervals (BCIs) of posterior distribution of estimated 
prevalence and the area under the receiver-operating 
characteristic (ROC) curve (AUC). Here, πi and π̂i were 
denoted as the observed and estimated prevalence at 
location i.

Age- and gender-specific estimates of C. sinensis infec-
tion risk were obtained using Bayesian kriging at each 
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pixel of a regular grid of 5 × 5  km2 spatial resolution 
across Guangdong Province. We calculated the over-
all estimated prevalence and the number of infected 
individuals at both provincial and city levels, based on 
pixel-level age- and gender-specific estimated prevalence 
weighted by population density. To validate the rational-
ity of the grouping method of age and gender, we com-
pared the overall prevalence estimated based on age- and 
gender-specific prevalence and that based on surveys 
aggregated across age and gender.

All statistical analyses were conducted using R software 
(version 4.0.3), and the high-resolution risk maps were 
depicted using ArcGIS (version 10.2).

Results
Data summaries
We identified 4377 records through a literature search, 
while 53 records stemmed from Lai’s study, and the four 
large-scale surveys’ data were provided by Guangdong 
CDC (Fig.  1). According to the inclusion and exclusion 
criteria, the final dataset included 606 surveys on C. 
sinensis infections at 443 unique locations from 1990 to 
2023. The summary of survey data is shown in Additional 

file 1: Table S2, while survey locations with the observed 
prevalence in each period are presented in Fig. 2.

Variable selection, geostatistical modeling and model 
validation
After variable selection, we included seven covariates 
for the final Bayesian geostatistical model. The pos-
terior summaries of model parameters are shown in 
Table 1. Compared to the infection risk in the 1990–1994 
period, higher risk was shown in the following periods, 
until the period 2015 onwards, when a lower risk was 
detected. There were significant differences in infection 
risk between age and gender groups. Females had a lower 
risk than males in each age group, and the infection risk 
increased significantly with age until 50–59  years old, 
where a slightly downward trend was shown. Compared 
to surveys aggregated across age and gender, all female 
age groups had a lower infection risk, while males > 
30 years old showed a higher risk. Regarding land cover, 
there was a higher C. sinensis infection risk for peo-
ple living in urban areas compared to people living in 
shrub and grass areas. Conversely, people living in crop-
land areas had a lower infection risk than those living in 
shrub and grass areas. A positive association was found 

Fig. 1 Data selection flow chart
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for the infection risk of C. sinensis with LST at night and 
night light, while a negative association was found with 
precipitation.

The final model was able to correctly estimate (within 
the 95% BCIs) 89.7% of the locations. The ME and MAE 
were 0.8% and 3.8%, respectively, suggesting that our 
model might slightly underestimate the infection risk 
(Additional file  1: Fig. S1). Additionally, there was no 
significant difference between the overall population-
adjusted estimated prevalence based on age- and gender-
specific prevalence (2.2%, 95% BCI: 1.7%–3.0%, in 2015 
onwards) and that based on surveys aggregated across 
age and gender (2.7%, 95% BCI: 2.1%−3.7%, in 2015 
onwards), suggesting that the grouping method of age 
and gender was rational.

Risk maps and estimated number of people infected
The model-based estimated risk maps of C. sinensis 
infection in different periods are presented in Fig. 3. Risk 
maps showed that the C. sinensis infection risk increased, 
followed by a relatively stable period, and then gradu-
ally decreased. In the recent time period (from 2015 
onwards), endemic areas were mainly distributed in the 
Pearl River Delta and a few areas of northeastern Guang-
dong. In the Pearl River Delta, high prevalence (> 20%) 

areas were majorly estimated in the cities of Foshan, 
Zhongshan, Zhuhai and Jiangmen. Particularly in some 
areas of southern Foshan, the estimated prevalence was > 
50%. In the northeastern part, moderate infection preva-
lence (5–20%) existed in a few areas of Heyuan and Shao-
guan City. High estimation uncertainty was mainly seen 
in the Pearl River Delta and some northeastern areas, 
particularly for estimates in the 1995–1999 and 2005–
2009 periods (Additional file  1: Fig. S2). Moreover, the 
gender- and age-specific high-resolution risk maps for 
the six time periods (Fig. 4 and Additional file 1: Figs. S3–
S7) showed that the infection risk of females was lower 
than that of males in each age group, and the infection 
risk increased with age until 50–59  years old and then 
gradually decreased.

The overall population-adjusted prevalence (Fig.  5A 
and Additional file  1: Table  S3) showed a first increase 
until 1995–1999, followed by relatively stable peri-
ods until 2005–2009, and has subsequently decreased 
since then, a similar temporal trend as in the risk maps. 
In the period of 2015 onwards, the overall population-
adjusted prevalence was estimated to be 2.2% (95% BCI: 
1.7–3.0%), corresponding to 2.64 (95% BCI: 2.07–3.67) 
million infected individuals. The population-adjusted 
prevalence and number of infected individuals for all 21 

Fig. 2 Survey locations and observed prevalence in Guangdong. A 1990–1994, B 1995–1999, C 2000–2004, D 2005–2009, E 2010–2014 and F 2015 
onwards
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prefecture-level cities in 2015 onwards are presented in 
Additional file 1: Table S4. Results indicated that Foshan, 
Zhongshan and Zhuhai were the top three cities with the 
highest prevalence of 11.2% (95% BCI: 8.4–16.3%), 7.8% 

(95% BCI: 4.7–16.3%) and 3.7% (95% BCI: 1.5–9.4%), 
respectively. On the other hand, the overall population-
adjusted estimated prevalence in each age and gender 
group across Guangdong (Fig.  5B) demonstrated that 

Table 1 Posterior summaries of model parameters

a Significant effect identified by not including zero in the 95% BCI of posterior distribution of the corresponding coefficient

Variable Estimated median (95% BCI) OR Posterior 
probability of 
OR > 1

Year

 1990–1994 Ref Ref –

 1995–1999 0.98 (−0.32, 2.27) 2.68 (0.72, 9.69) 0.95

 2000–2004 0.43 (0.27, 0.59)a 1.54 (1.31, 1.80)  > 99.99

 2005–2009 1.01 (0.81, 1.22)a 2.75 (2.24, 3.39)  > 99.99

 2010–2014 0.40 (0.21, 0.59)a 1.49 (1.24, 1.80)  > 99.99

  ≥ 2015 −0.44 (−0.63, −0.24)a 0.64 (0.53, 0.78)  < 0.01

Age‑gender group (years)

 Surveys across age and gender Ref Ref –

 Female (0–9) −2.15 (−2.40, −1.91)a 0.12 (0.09, 0.15)  < 0.01

 Female (10–19) −1.35 (−1.53, −1.18)a 0.26 (0.22, 0.31)  < 0.01

 Female (20–29) −0.79 (−0.95, −0.63)a 0.45 (0.39, 0.53)  < 0.01

 Female (30–39) −0.58 (−0.72, −0.44)a 0.56 (0.49, 0.64)  < 0.01

 Female (40–49) −0.63 (−0.78, −0.48)a 0.53 (0.46, 0.62)  < 0.01

 Female (50–59) −0.31 (−0.46, −0.16)a 0.73 (0.63, 0.85)  < 0.01

 Female (≥ 60) −0.49 (−0.65, −0.33)a 0.61 (0.52, 0.72)  < 0.01

 Male (0–9) −1.94 (−2.15, −1.75)a 0.14 (0.12, 0.17)  < 0.01

 Male (10–19) −1.11 (−1.27, −0.95)a 0.33 (0.28, 0.39)  < 0.01

 Male (20–29) −0.07 (−0.22, 0.08) 0.93 (0.80, 1.08) 0.18

 Male (30–39) 0.40 (0.27, 0.53)a 1.49 (1.30, 1.70)  > 99.99

 Male (40–49) 0.57 (0.43, 0.70)a 1.76 (1.54, 2.01)  > 99.99

 Male (50–59) 0.65 (0.50, 0.79)a 1.91 (1.66, 2.20)  > 99.99

 Male (≥ 60) 0.46 (0.31, 0.61)a 1.59 (1.36, 1.84)  > 99.99

 LST at night (°C) 0.21 (0.11, 0.30)a 1.23 (1.12, 1.35)  > 99.99

LST in the daytime (°C)

  < 24.48 Ref Ref –

 24.48–28.47 −0.24 (−0.36, −0.12)a 0.78 (0.70, 0.88)  < 0.01

  ≥ 28.47 0.20 (−0.03, 0.43) 1.22 (0.97, 1.54) 0.96

Precipitation (mm)

  < 16337.64 Ref Ref –

 16337.64–18856.80 −0.29 (−0.37, −0.21)a 0.75 (0.69, 0.81)  < 0.01

  ≥ 18856.80 −0.23 (−0.31, −0.15)a 0.79 (0.73, 0.86)  < 0.01

 Night light 0.47 (0.35, 0.59)a 1.60 (1.43, 1.80)  > 99.99

Land cover

 Shrub and grass Ref Ref –

 Forest 0.45 (−1.30, 2.18) 1.58 (0.27, 8.82) 0.69

 Urban 0.24 (0.07, 0.42)a 1.27 (1.07, 1.52)  > 99.99

 Wet area 0.06 (−0.18, 0.30) 1.06 (0.84, 1.35) 0.69

 Crop −1.95 (−3.03, −1.01)a 0.14 (0.05, 0.36)  < 0.01

 Spatial range (km) 19.58 (16.02, 23.95) – –

 σsp 9.12 (7.07, 11.81) – –
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females had a lower prevalence than males. For females, 
the prevalence increased with age until 30–39 years old 
and then became stable. For males, the prevalence rose 
until 40–49 years old, followed by a slow decrease in the 
older age groups.

Discussion
In this study, we developed a Bayesian geostatistical 
model based on all available survey data since 1990 in 
Guangdong Province to depict age- and gender-specific 
high-resolution risk maps of C.  sinensis infection across 
the province over 30  years. The outcomes reflected the 
spatial temporal characteristics of C.  sinensis infection 
risk in Guangdong, providing an important reference 
for understanding the epidemiological status of clon-
orchiasis in the province. Furthermore, the added value 
of our study included the followings: First, we estimated 
the spatial temporal changes of C. sinensis infection risk 
and the current status in Guangdong. In the recent time 
period, the overall prevalence gradually decreased to 
2.2%, and high risk areas shrank to Foshan, Zhongshan, 
Zhuhai and Jiangmen cities, which suggested the effec-
tiveness of the control effort in Guangdong. Second, we 
depicted age- and gender-specific risk maps at high spa-
tial resolution and estimated the prevalence of different 

age-gender groups, which present the age and gender 
distribution across all locations, thus guiding areas with 
different infection risks to choose targeted control strate-
gies for different age and gender groups. Third, we iden-
tified several factors like precipitation, land cover and 
night light that were significantly related to C. sinensis 
infection in Guangdong.

Even though our results revealed a decreasing trend of 
C.  sinensis infection risk in Guangdong in recent years, 
significant spatial heterogeneity existed across the study 
region. The Pearl River Delta still had a highly endemic 
status, and parts of northeastern Guangdong exhibited 
a moderate prevalence, consistent with previous studies 
[22]. For a long time, people living in those areas have fol-
lowed the custom of eating raw or undercook fish, which 
could be the primary reason for higher prevalence com-
pared to other areas. The other possible reason may be 
that the Pearl River Delta is an economically developed 
region, where people have more possibilities to obtain 
raw fish, a relatively expensive commodity [21]. Regard-
ing the temporal trend, from 1990–1994 to 1995–1999, 
the estimated prevalence presented an increased ten-
dency. This was probably due to increased exposure to 
raw fish dishes, potentially driven by the rapid economic 
expansion and growth of the aquaculture industry [35, 

Fig. 3 The geographical distribution of Clonorchis sinensis infection risk in Guangdong Province in different time periods. A 1990–1994, B 1995–
1999, C 2000–2004, D 2005–2009, E 2010–2014 and F 2015 onwards
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Fig. 4 Geographical distribution of age‑ and gender‑specific Clonorchis sinensis infection risk in Guangdong from 2015 onwards. A–G Present 
C. sinensis infection of males in age groups 0–9, 10–19, 20–29, 30–39, 40–49, 50–59 and ≥ 60 years old. H–N Present C. sinensis infection of females 
in age groups 0–9, 10–19, 20–29, 30–39, 40–49, 50–59 and ≥ 60 years old, respectively
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36]. From 1995–1999 to 2005–2009, the infection preva-
lence showed a relatively stable pattern due to the promo-
tion of albendazole in 1993 [37] and the implementation 
of the “Plan for Control of Parasitic Diseases during the 
Ninth Five-Year Program in Guangdong Province” in 
1996 [38, 39]. Towards the end of 2005, the Guangdong 
government introduced the “Plan for Control and Pre-
vention of Priority Endemic Disease in Guangdong Prov-
ince (2005–2010)” [40]. Subsequently, additional control 
schemes were issued in 2006, including the “Implementa-
tion Plan for the Control of Clonorchiasis in Guangdong 
Province (2006–2010)” and the “Technical Plan for the 
Control of Clonorchiasis in Guangdong Province (Trial)” 
[41]. In compliance with these policies, seven demonstra-
tive pilots for comprehensive intervention were estab-
lished [42–44], and diverse regions in the province also 
initiated varying degrees of control and prevention work 
[45]. In 2017, the Guangdong government initiated the 
“Plan for Prevention and Control of Key Parasitic Disease 
in Guangdong Province (2016–2020)” to further enhance 
the control of clonorchiasis [46]. All these actions may 
have led to a gradual downward trend in infection risk in 
recent years.

We found that men had a higher infection risk than 
women, and adults had a higher risk than children. This 
was most likely because men and adults were more likely 
to consume raw fish dishes than women and children 
[22]. In addition, we found several factors significantly 

related to C. sinensis infection in Guangdong. Environ-
mental factors, such as precipitation and land cover, 
were identified as relevant factors, similar to findings on 
C. sinensis infection in South Korea [28]. One possible 
explanation was that these factors may have an effect on 
the survival and reproductive capabilities of intermediate 
hosts, subsequently influencing the risk in those specific 
regions. We also found that a socioeconomic factor, night 
light, was positively associated with infection risk, indi-
cating the disease was more likely to occur in areas with a 
more developed economy. This finding aligned with prior 
clonorchiasis studies in China [45, 47] but differed from 
results of studies in Korea [28] and studies on Opisthor-
chis viverrine, another important species of foodborne 
parasitosis endemic in southeast Asia [27]. Notably, in 
our study, the distance to the nearest water body was 
found insignificant in relation to C.  sinensis infection; 
thus, it was not selected after the variable selection pro-
cedure. This was inconsistent with results of Lai’s study, 
the study region of which was all of China [26]. As most 
areas of Guangdong are covered by dense river networks, 
there was not much difference in distances to the near-
est water body across the whole region, which may lead 
to no significant relationship between this factor and the 
infection risk.

Based on the above findings, targeted measures were 
suggested to assist the control and prevention of C. sin-
ensis in Guangdong. First, high population heterogeneity 

Fig. 5 The estimated prevalence of Clonorchis sinensis infection in Guangdong. A Temporal trends in estimated prevalence; B estimated prevalence 
of different age‑gender groups in 2015 onwards
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of infection risk demonstrated that a population-specific 
strategy is needed. Preventive chemotherapy should be 
prioritized and implemented for males and adults who 
frequently consume raw fish [48]. Second, mass health 
education is essential. Targeted health education should 
be provided for raising awareness about examination and 
treatment among males and adults [13]. For young chil-
dren, who are less entrenched in their customs and die-
tary habits than adults [49–51], education especially in 
schools should focus on increasing awareness of the dan-
ger and prevention of clonorchiasis, aiming to prevent 
raw fish consumption. Moreover, our findings indicated 
that high-risk areas were concentrated in the Pearl River 
Delta. Hence, it is crucial for the government to further 
enhance the establishment of the monitoring network, 
especially in the Pearl River Delta. This network should 
cover not only the surveillance of infection rates among 
humans and freshwater fish but also the sanitary environ-
ment within the region. Continuous monitoring should 
be sustained in historically endemic areas to prevent any 
potential reemergence of the disease.

This study had some limitations. First, to make full use 
of all available survey data, we introduced an age-gender-
specific variable to analyze both age- and gender-specific 
data together with data aggregated across age and gender. 
Sensitivity analysis indicated that there was no signifi-
cant difference between the overall population-adjusted 
estimated prevalence calculated based on age- and gen-
der-specific prevalence and that based on surveys aggre-
gated across age and gender, suggesting the method was 
rational. Second, we did not consider some key relevant 
covariates in the model, such as the distribution of resi-
dents’ dietary habit of eating raw fish, distribution of 
freshwater snails (e.g. Parafossarulus striatulus) and 
information on the detailed implementation of local con-
trol measures in different areas of Guangdong because 
of the unavailability of these factors. Nevertheless, the 
model validation showed a reasonable capacity for esti-
mation accuracy. Third, discretizing continuous variables 
might lead to some problems, such as information loss 
and spurious effects. In our study, we converted continu-
ous variables to multiple categories based on previous 
research and preliminary exploration to avoid the above 
problems as much as possible. Furthermore, we discre-
tized continuous variables for the following reasons: (i) 
we discretized continuous variables to capture the poten-
tial non-linear outcome-predictor relationships; (ii) for 
certain variables, such as age, the categorical form can 
offer easier epidemiological interpretation, which is help-
ful for policymakers to understand and apply as they 
put control strategies in place; (iii) considering privacy 
protection, the data we obtained was grouped by gen-
der and age; (iv) there were few survey data for certain 

years, so we divided the whole study period into seg-
ments to depict temporal variations rather than analyz-
ing yearly infection risk. To avoid more complex models 
and high estimation uncertainty, we divided the period 
into 5-year categories, which also fits the control promo-
tions in Guangdong. In addition, data from 2015 onwards 
were not further divided into finer time intervals, given 
that most survey data were obtained in the years up to 
2019, with fewer data available for the subsequent years. 
Results can be updated in the future if further represent-
ative and comparable surveys are obtained in subsequent 
years.

Conclusions
In conclusion, we present high-resolution model-based 
estimates of C. sinensis infection in Guangdong Province, 
China, identifying spatial, temporal, age and gender het-
erogeneities, thus providing useful information for con-
trol and prevention of the disease in the province.
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