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Abstract 

Background Mosquito‑borne diseases are a major concern for public and veterinary health authorities, highlighting 
the importance of effective vector surveillance and control programs. Traditional surveillance methods are labor‑
intensive and do not provide high temporal resolution, which may hinder a full assessment of the risk of mosquito‑
borne pathogen transmission. Emerging technologies for automated remote mosquito monitoring have the potential 
to address these limitations; however, few studies have tested the performance of such systems in the field.

Methods In the present work, an optical sensor coupled to the entrance of a standard mosquito suction trap 
was used to record 14,067 mosquito flights of Aedes and Culex genera at four temperature regimes in the laboratory, 
and the resulting dataset was used to train a machine learning (ML) model. The trap, sensor, and ML model, which 
form the core of an automated mosquito surveillance system, were tested in the field for two classification purposes: 
to discriminate Aedes and Culex mosquitoes from other insects that enter the trap and to classify the target mosqui‑
toes by genus and sex. The field performance of the system was assessed using balanced accuracy and regression 
metrics by comparing the classifications made by the system with those made by the manual inspection of the trap.

Results The field system discriminated the target mosquitoes (Aedes and Culex genera) with a balanced accuracy 
of 95.5% and classified the genus and sex of those mosquitoes with a balanced accuracy of 88.8%. An analysis 
of the daily and seasonal temporal dynamics of Aedes and Culex mosquito populations was also performed using 
the time‑stamped classifications from the system.

Conclusions This study reports results for automated mosquito genus and sex classification using an optical sensor 
coupled to a mosquito trap in the field with highly balanced accuracy. The compatibility of the sensor with commer‑
cial mosquito traps enables the sensor to be integrated into conventional mosquito surveillance methods to provide 
accurate automatic monitoring with high temporal resolution of Aedes and Culex mosquitoes, two of the most con‑
cerning genera in terms of arbovirus transmission.
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Background
Mosquitoes (Diptera: Culicidae) act as vectors of sev-
eral pathogens such as malaria parasite, dengue (DENV), 
Zika (ZIKV), yellow fever (YFV), chikungunya (CHIKV), 
and West Nile (WNV) viruses that cause diseases which 
result in hundreds of thousands of human deaths per year 
worldwide, primarily in tropical countries of Africa, East 
and Southeast Asia, and South America [1]. In Europe, 
autochthonous vector species such as Culex pipiens 
and invasive vector species such as Aedes albopictus are 
responsible for the transmission of endemic (e.g. WNV, 
Usutu, Sindbis, Tahyna, and Batai viruses, lymphatic fila-
riasis, and avian malaria) and imported (CHIKV, DENV, 
and ZIKV) pathogens, respectively, and pose a threat 
to public and veterinary health in the continent [2]. To 
mitigate the impact of mosquito-borne diseases (MBD), 
surveillance programs for both native and invasive spe-
cies are used by public health organizations worldwide 
to monitor trends in vector populations and to assess the 
effectiveness of control programs [3, 4]. The availability 
of high-quality surveillance data is essential for these 
tasks and to model the risk of MBD [5]. 

Traditional entomological methods for mosquito mon-
itoring generally entail the use of physical traps, which 
primarily target adult mosquitoes as a proxy for patho-
gen transmission risk [6]. These methods are very costly 
in terms of the human resources involved in the tasks of 
sample collection in the field, taxonomical identification 
of the samples, and data processing. Furthermore, the 
time lag between the time of capture and the analysis of 
the samples and processing of the results may hinder a 
full understanding of the real-time dynamics of mosquito 
populations. This delay can limit the proper assessment 
of disease transmission risk and the timely application 
of control measures. Consequently, the application of 
new technologies, including machine learning (ML), to 
the automated and remote real-time characterization of 
mosquito populations may have a positive impact on the 
state of the art in entomological surveillance [7, 8].

Over recent years, there has been an increasing num-
ber of studies aimed at taxonomically classifying mosqui-
toes and other attributes of mosquito biology using either 
acoustic [9–12] or optical sensors [13–19], which take 
advantage of insect bioacoustic properties. The study of 
these properties, especially the mosquito flight tone or 
wing beat frequency, has been used for mosquito char-
acterization and classification purposes since the 1940s 
[20, 21]. However, the existence of overlapping frequency 
distributions among different mosquito species [14, 22] 
led to the exploration of other predictor variables such 
as spectrograms, power spectral density, Mel frequency 
cepstral coefficients, and optical depolarization ratio, 
which provide better classification results [15, 17, 19]. In 

addition to the choice of features, the choice of ML algo-
rithm and its configuration parameters has been shown 
to contribute to the overall classification accuracy [15, 17, 
19].

Despite the growth of research in automated remote 
mosquito surveillance [8], few published papers describe 
the evaluation of solutions in the field [10, 23, 24]. Tech-
nical constraints such as interference from ambient noise 
in the case of acoustic sensors [22], presence of heavy 
rain during the sampling period [25], proportion of mos-
quitoes relative to other flying insects in the capture [23], 
capture efficiency of the sampling devices [24], and ambi-
ent environmental temperature, which is known to affect 
mosquito flight tone [26], may limit the usage of these 
systems for field monitoring of mosquito populations. 
The only example of a commercial mosquito sensor with 
reported results is the BG-Counter (Biogents, Regens-
berg, Germany) [25], which is claimed to distinguish 
mosquitoes from other insect species and whose perfor-
mance was shown to have a high rate of misclassifications 
when the proportion of non-mosquitoes was significant 
[23].

In this contribution, we present the results of a field 
study of an automated mosquito surveillance system 
in which an optical sensor coupled to the entrance of a 
standard mosquito suction trap automatically differen-
tiated target mosquitoes (Aedes and Culex) from other 
insects that enter the trap and identified the genus and 
sex of these target mosquitoes. We previously reported 
high levels of accuracy for genus and sex classification of 
Aedes and Culex mosquitoes in the laboratory using the 
same technology [19]. In the current study, a new ML 
dataset was built with 14,067 mosquito flights in the lab-
oratory, corresponding to a wider range of larval density 
and ambient temperature conditions to cover the mor-
phological variability and ambient temperature range of 
the target genera in nature. A new ML model was trained 
using this dataset. The sensor and trap were deployed and 
assessed in the field during periods of mosquito activity 
at two different locations in a Mediterranean climate area 
with a predominance of Cx. pipiens and Ae. albopictus, 
potential vectors of imported and endemic arboviruses.

Methods
Optical sensor
The optical sensor (Irideon, Barcelona, Spain) comprises 
a light gray waterproof enclosure (width 25.5 × diameter 
18 × height 13 cm) with a black inlet tube of 10-cm diam-
eter at the top of the unit and a light gray outlet tube on 
the underside. The sensor contains an optical emitter, 
comprising a rectangular array of 940-nm wavelength 
light emitting diodes (LEDs), which together emit a col-
limated beam (width 10.5 × height 7 cm) of near-infrared 
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light towards an optical receiver formed by a correspond-
ing array of photodiodes. The emitter and receiver face 
each other through a transparent circular tube of 10.5 cm 
diameter which traverses the enclosure from top to bot-
tom to create a sensing zone with a volume of 600   cm3. 
The sensor was placed on the entrance of a BG-Mosqui-
taire mosquito trap (Biogents, Regensburg, Germany). 
The trap contains a suction fan, removable catch bag, 
and flap valve, which automatically opens when the fan 
is powered. The suction fan creates a downward flow of 
air through the inlet tube of the sensor and into the trap. 
When an insect flies close to opening of the inlet tube, 
it is likely to be sucked into the tube, down through the 
sensing zone, and through the flap valve and into the 
catch bag. As the flying insect passes through the sens-
ing zone, it casts a fast-changing shadow upon the optical 
receiver because of the modulation of the light beam by 
the wing flap of the insect, and this signal is recorded by 
the sensor. Two cables exit the sensor: one is connected 
to a 12-VDC power supply, such as the supply included 
with the BG Mosquitaire trap, and the other is connected 
to the trap to power the fan. A diagram which illustrates 
the operation of the sensor and trap is shown in Fig. 1.

Two variants of the sensor were used in the present 
work: a laboratory version, which was used to record 
mosquito flights in the laboratory to build the ML 
dataset, and a field version, which was used to record 
mosquito flights in the field for automated mosquito clas-
sification using the ML model previously trained with 
the laboratory data. The two variants differ only by their 
method of data communication, which was via USB to 
a laptop computer for laboratory use, or wireless com-
munication via the mobile phone network to a server for 
field use. Further details about the sensor were reported 
in our previous work [19].

Mosquito‑rearing conditions for the creation of the dataset
Two populations of Ae. albopictus and one population of 
Cx. pipiens were reared in the laboratory from immature 
stages (eggs and larvae respectively) collected in the field: 
Ae. albopictus, population of Rubí (2020), Barcelona, 
Spain (41.50674, 2.00778); Ae. albopictus, population of 
Vilamoura (2020–2022), Algarve, Portugal (37.08546, 
8.11929); and Cx. pipiens, population of Bellaterra (2020, 
2022), Cerdanyola del Vallés, Barcelona, Spain (41.49903, 
2.10872). The mosquito strains obtained in Barcelona 
were reared in the insectarium facilities of IRTA-CReSA 
(Campus of the Autonomous University of Barcelona, 
Cerdanyola del Vallès, Barcelona, Spain). The Ae. albopic-
tus strain obtained in Portugal was reared in the insectar-
ium facilities of CEVDI/INSA (Águas de Moura, Setúbal, 
Portugal).

Larvae were maintained in plastic trays with two lar-
val density regimes (50 and 250 larvae/tray) in 750  ml 
of dechlorinated tap water, renewed three times per 
week, and fed with fish food pellets (Goldfish Sticks-
TETRA, Melle, Germany). Pupae were placed in plas-
tic cups inside insect-rearing cages with dimensions of 
30 × 30 × 30  cm (BugDorm-1 Insect Rearing Cage, Meg-
aView Science, Talchung, Taiwan). Adults were fed with 
10% sucrose solution ad libitum, which was removed 24 h 
before the flight assays of the females to increase their 
appetite, host-seeking activity, and likelihood of entering 
the trap. All females used in the experiment were nullipa-
rous, and their age ranged from 2 to 16 days. The age of 
the males ranged from 2 to 9 days.

Each development stage of the mosquito life cycle took 
place inside a climatic chamber at controlled environ-
mental conditions of: 28  °C temperature, 80% relative 
humidity, and a light:dark photoperiod of 12:12 h for Ae. 
albopictus and 11:11 h (plus 1 h of dusk and 1 h of dawn) 

Fig. 1 Components of the optical sensor and trap system: (1) 
exterior of the sensor unit; (2) inlet tube; (3) optical emitter; (4) optical 
receiver; (5) field of view of the sensor; (6) outlet tube; (7) mosquito 
suction trap; (8) catch bag; (9) fan
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for Cx. pipiens. All mosquito colonies were maintained 
until a maximum of 15 generations to minimize any 
changes to flight characteristics due to the adaptation of 
wild populations to prolonged confinement.

Flight assays in the laboratory and training of the machine 
learning model
The sensor and trap were placed in an insect cage 
(BugDorm-4S4590 width 47.5 × diameter 47.5 × height 
93.0  cm, MegaView Science, Talchung, Taiwan) inside 
a climatic chamber. The trap was fitted with a sachet of 
BG-Sweetscent chemical attractant (Biogents, Regens-
berg, Germany) to attract mosquitoes towards the sensor 
and trap. Flight assays were performed at different tem-
peratures to cover the range of temperature at which the 
assayed mosquito species are known to have flight activ-
ity: ~ 15–35 °C for Ae. albopictus [27] and ~ 15–30 °C for 
Cx. pipiens [28].

Before the flight assays, mosquitoes were anesthetized 
using carbon dioxide and separated in small cardboard 
boxes sorted by genus (Aedes or Culex) and sex (female 
or male). All mosquitoes were held in the climatic cham-
ber at the designated ambient temperature for 24 h prior 
to the start of the assay to acclimatize them. They were 
then released into the insect cage containing the sensor 
in batches of 25 individuals every 15  min. Aedes albop-
ictus and Cx. pipiens were assayed at 18  °C, 23  °C, and 
28 °C in the facilities of IRTA-CReSA (in a climatic cham-
ber: CCK-0/5930 m, Dycometal, Barcelona, Spain). Aedes 
albopictus was also assayed at 33  °C in the facilities of 
CEVDI/INSA (in a climatic chamber: FITOCLIMA S600, 
Aralab, Rio de Mouro, Portugal). They were released 
30 cm from the entrance of the sensor to ensure that they 
could fly freely before being sucked into the sensor and 
to minimize the possibility of multiple insects passing 
through the sensor at the same time. Mosquitoes that did 
not enter the trap during the assay were removed from 
the insect cage with an electronic entomological aspirator 
(IA-INSECT02USB, Infoagro Systems, Madrid, Spain). 
After each flight assay, the catch bag was collected, and 
the specimens inside were frozen and then counted.

After each laboratory assay, the recordings were down-
loaded from the sensor to a laptop computer and then 
processed using a Python script to produce playable and 
viewable audio files.

During data cleaning, each recording was exam-
ined manually, and those considered to be invalid were 
excluded from the dataset, e.g. recordings containing 
double flights or those where the mosquito was deemed 
to have hit the wall of the flight tube inside the sen-
sor. A machine learning model was generated using the 
methodology described in our previous work [19]. The 
gradient boosting algorithm using the XGBoost library 

[29] was trained with fourfold cross-validation on the 
extracted spectrograms of a balanced sub-dataset. A test 
set was previously separated from the dataset to evaluate 
the trained model on unused data.

Field trial of the automated mosquito surveillance system
The sensor and trap were deployed in the municipali-
ties of El Prat de Llobregat in 2021 (field trial 1) and 
Rubí in 2022 (field trial 2) in the province of Barcelona 
(Catalunya, Spain). These locations have a Mediterra-
nean climate, typified by hot dry summers, mild rainy 
winters, and variable temperatures in autumn and spring. 
The specific location of the sensor and trap at each site 
(Fig. 2) was selected to provide shade, nearby vegetation, 
shelter from rain and wind, and access to electrical power 
in a place where mosquitoes were known to be present.

The field trials were performed in the months of peak 
mosquito activity. Field trial 1 ran from July to October 
2021 and used collection cycles (the time between catch 
bag placement and sample collection) of 24 h. Field trial 
2 ran from June to September 2022 and used collection 
cycles of 24 to 72 h. In each trial, dry ice was used as a 
source of carbon dioxide to attract mosquitoes to the 
trap. Samples were frozen at − 20  °C shortly after col-
lection and inspected by a trained entomologist to taxo-
nomically classify and count the content.

The flying insects that entered the trap were automati-
cally detected and recorded by the sensor. Each record-
ing included the sensor GPS coordinates, date and time 
(time stamp), measured ambient temperature, and rela-
tive humidity at the time of capture. The field sensor sent 
batches of sensor recordings via the mobile phone net-
work to the server every 30 min. Each new field recording 
was automatically classified as either a target mosquito, 
in which case the classification model for genus and sex 
was applied, or a non-target. The method was based on 
the calculation of means and a covariance matrix for the 
laboratory dataset, which were used to generate a proba-
bility density function. The values from each field record-
ing were passed to the probability density function, which 
returns the probability of these values occurring, and 
this probability was compared to a pre-defined thresh-
old value. If the calculated probability was greater than 
or equal to the threshold value, then the recording was 
classified as a mosquito; otherwise, it was classified as a 
non-target. The threshold value was established based on 
the laboratory data and was then fine-tuned to maximize 
the target detection accuracy of the sensor, compared to 
the manual mosquito counts, using field data from previ-
ous unpublished trials. The classification results, with the 
associated capture time stamps and environmental data, 
were downloaded from the server as.csv files and used 
for the analysis in this work.
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Data analysis of sensor classification in the field
Two main functions of the automated mosquito surveil-
lance system were assessed: (i) target mosquito detection, 
i.e. the ability of the system to discriminate Aedes and 
Culex target mosquitoes from non-target insects which 
also enter the trap, and (ii) the ability of the system to 
correctly classify mosquito genus and sex, i.e. to classify 
the Aedes female, Aedes male, Culex female, and Culex 
male classes.

The relationship between the sensor count (mosqui-
toes counted by the sensor) and manual count (mos-
quitoes counted by manual inspection) was assessed by 
correlation analysis and linear regression analysis and 

was visualized using a time series plot and a scatter plot 
of manual count versus sensor count per collection cycle. 
The Pearson correlation coefficient (r) and P-value for 
significance were obtained to analyze how both variables 
were related. Regression coefficients, i.e. the R2 coeffi-
cient of determination and the linear slope and intercept 
were calculated to indicate how well the regression pre-
dictions based on sensor count approximated the manual 
count. A regression slope of greater/less than one would 
indicate that overall, sensor counts were greater/lower 
than the manual counts.

A further evaluation metric used in this work was bal-
anced accuracy (BA). This metric was determined by 

Fig. 2 a Field trial 1: The sensor and trap deployed near Can Comas, a nineteenth century country house located in the Baix Llobregat Agrarian 
Park in the municipality of El Prat de Llobregat, Barcelona, Spain (41.341286, 2.078259). The park is a protected natural and rural space located 
in the alluvial plains of the delta and the lower basin of the Llobregat River. Land use in the area includes rainfed and irrigated agricultural crops 
(mainly fruit and vegetables), livestock (primarily sheep), and the Barcelona‑El Prat International Airport. b Field trial 2: The sensor and trap 
deployed in the backyard of a private house in a residential area of Rubí, Barcelona, Spain (41.472816, 2.032258). The area is a typical peri‑urban 
area, comprising detached houses with a garden or small sparsely planted orchard, some green areas with playgrounds and sport zones, roads, 
and services such as petrol stations and supermarkets. The neighborhood is bounded by two creeks which are tributaries to the Llobregat River
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using the number of true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) using 
the manual classification as the reference. TP and TN are 
the numbers of positive and negative cases respectively 
that the system classified correctly. FP is the number of 
negative cases that the system incorrectly classified as 
positive, and FN is the number of positive cases that the 
system incorrectly classified as negative. To calculate 
TP, TN, FP, and FN for a particular class, this class was 
defined as the positive class and the other class(es) were 
defined as the negatives. For the positive class, TP equals 
the minimum common value of the sensor and manual 
count. If the sensor count was greater than the manual 
count, then the difference was taken as FP; otherwise, FP 
equaled zero. If the sensor count was less than the man-
ual count, then the difference was taken as FN. TN is cal-
culated by subtracting FP from the manual counts for the 
negatives. BA gives equal weighting to the proportion of 
positives and negatives that are correctly classified, and 
it is appropriate when classes are imbalanced [30], as is 
the case for the field captures in this work. The equation 
for BA is BA =

Se+Sp
2

 (where Se refers to sensitivity and 
Sp to specificity). Sensitivity, also known as true-pos-
itive rate or recall, indicates the proportion of positives 
that are correctly classified by the system ( Se = TP

TP+FN
 ). 

Specificity, also known as true-negative rate, indicates the 
proportion of negatives that are correctly classified by the 
system ( Sp =

TN
TN+FP

).
The daily and seasonal temporal dynamics of Aedes 

and Culex mosquitoes were also analyzed by descriptive 
statistics using the time-stamped classification results in 
which the sensor genus counts per hour were averaged 
for each month over the length of each trial.

Results
Performance of the machine learning model using 
the laboratory data
A total of 15,208 mosquito flights were recorded in the 
laboratory, of which 7.5% were rejected during data 
cleaning to yield 14,067 valid flights. The valid flights 
were randomly under-sampled to obtain a balanced data-
set from which 1000 flights were set aside as the test set. 

The trained ML model achieved an average balanced 
accuracy of 93.9% for the classification of Aedes female, 
Aedes male, Culex female, and Culex male flights in the 
test set. The BA results per class were: 91.0% for Aedes 
female, 93.4% for Aedes male, 96.7% for Culex female and 
94.4% for Culex male. A confusion matrix of these clas-
sification results is shown in Additional file 1: Table S1. 
The same ML model was then used to classify the record-
ings from the sensor in the field.

Manual classification of the field samples
A total of 53 samples (catch bags) were collected from the 
traps and underwent manual inspection: 32 in field trial 
1 and 21 in field trial 2. Of these, seven showed signs of 
significant mosquito depredation and/or degradation and 
were excluded from the analysis because of the impact it 
would have on the manual count. A further two samples 
were also excluded because of mobile network connectiv-
ity issues during those collection cycles. Therefore, a total 
of 44 samples were inspected and used in the analysis: 29 
from field trial 1 and 15 from field trial 2.

In total, 3634 mosquitoes were classified manually 
(1665 in field trial 1 and 1969 in field trial 2) compris-
ing the following species in decreasing order of number: 
Cx. pipiens, Ae. albopictus, Culiseta longiareolata, Aedes 
caspius and Coquillettidia richiardii (Table 1). Culex pip-
iens, Ae. albopictus and Cs. longiareolata were found in 
both trials, while Ae. caspius was only found in field trial 
1 during September and early October. Only one speci-
men of Cq. richardii was found, in field trial 1.

The mean proportion of target mosquitoes (Aedes 
and Culex) compared to total insects in the samples 
was 32.4% in field trial 1 and 47.1% in field trial 2 with 
the non-target group mostly comprising Phlebotominae, 
Chironomidae, and a wide variety of small dipterians. 
The proportions of each genus and sex class within the 
target mosquitoes, from highest to lowest, were: Culex 
female (76.6% in field trial 1 and 67.1% in field trial 2), 
Aedes female (15.0% in field trial 1 and 18.9% in field trial 
2), Aedes male (4.6% in field trial 1 and 9.2% in field trial 
2), and Culex male (3.8% in field trial 1 and 4.8% in field 
trial 2).

Table 1 Total number of mosquitoes and other insects by manual inspection of the samples in each field trial

Sample composition Field trial 1 Field trial 2

Mosquitoes Target Culex Culex pipiens 1261 1387

Aedes Aedes albopictus 270 543

Aedes caspius 39 0

Non‑target Other genus Culiseta longiareolata 94 39

Coquilletidia richiardii 1 0

Other insects Non‑target – Non‑culicidae insects 3188 2125
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Automated target mosquito detection in the field
There was a strong positive correlation between the 
number of target mosquitoes counted by the sen-
sor and by manual inspection in both field trials 
(r = 0.983, P-value = 0.000 in field trial 1 and r = 0.915, 
P-value = 0.000 in field trial 2). This good agreement 

between manual and sensor counts is shown in Fig.  3, 
even when the manual count changed significantly from 
one collection cycle to the next because of natural con-
ditions. Linear regression analysis indicated a good fit of 
the linear regression line to manual count versus sensor 
count (R2 = 0.984, P-value = 0.000), as shown in Fig.  4a. 

Fig. 3 Time series plots representing the number of target mosquitoes (sensor count and manual count) per collection cycle for each field trial. 
The x‑axis indicates the start date of each collection cycle. Collection cycles lasted 24 h in field trial 1 and 48 h in field trial 2 except those marked 
with *(= 24 h) or **(= 72 h)

Fig. 4 a Scatter plot and linear regression of sensor count versus manual count for target mosquito detection per collection cycle showing 
the regression line equation (slope and y‑intercept) and coefficient of determination, R2. b Scatter plot and linear regression of balanced accuracy 
of target mosquito detection per collection cycle versus the proportion of target mosquitoes in the catch showing the regression line equation 
(slope and y‑intercept) and coefficient of determination, R2
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The linear regression equation (y = 0.924x + 3.219) indi-
cated that sensor count was typically 7.6% lower than 
the manual count. The manual and sensor counts for 
target mosquito detection are given in Additional file 1: 
Table S2.

The average BA for target mosquito detection per col-
lection cycle was 95.9% in field trial 1 and 94.8% in field 
trial 2. Since the distribution of BA was skewed towards 
high values, the median, interquartile range (IQR), and 
first and third quartiles (Q1, Q3) are given, in Table 2. The 
correlation between the BA of target mosquito detection 
and the proportion of target mosquitoes in each collec-
tion cycle was not significant (r = 0.009, P-value = 0.956); 
this is also apparent in Fig. 4b, i.e. the BA of target detec-
tion was not dependent on the proportion of target 
mosquitoes in the samples. Furthermore, the correla-
tion between the BA of target mosquito detection and 
the duration of each collection cycle (24 h in field trial 1 
and 24–72 h in field trial 2) was not significant (r = 0.033, 
P-value = 0.834).

Automated mosquito genus and sex classification 
in the field
There was a strong positive correlation (r = 0.846, 
P-value = 0.000 in field trial 1 and r = 0.903, 
P-value = 0.000 in field trial 2) between sensor counts 
and manual counts for the four mosquito classes (Aedes 
female, Aedes male, Culex female, and Culex male) in 
both field trials; this agreement is shown in Fig.  5. Lin-
ear regression analysis indicated a good fit of the lin-
ear regression line to the data points of manual counts 
versus sensor counts per collection cycle (R2 = 0.972, 
P-value = 0.000) as shown in Fig. 6. The regression equa-
tion (y = 0.856x + 2.142) indicates that the sensor count 
for genus and sex was typically 14.4% lower than the 
manual count. The manual and sensor counts for genus 
and sex classification are given in Additional file  1: 
Table S2.

The BAs, calculated over the collection cycles, for each 
genus and sex class were calculated for both field trials. In 
field trial 1, the BA results per class were: 88.8% for Aedes 
female, 93.7% for Aedes male, 88.9% for Culex female, 
and 80.5% for Culex male. In field trial 2, the BA results 
were: 93.3% for Aedes female, 95.0% for Aedes male, 
87.8% for Culex female, and 85.7% for Culex male. The 
average BA of the four genus and sex classes was 88.0% 
in field trial 1 and 90.5% in field trial 2. Since the distribu-
tion of BA was skewed towards high values, the median, 
IQR, Q1, and Q3 are given, in Table 2. The BA for genus 
and sex was not correlated with the proportion of target 
mosquitoes in the samples (r = 0.153, P-value = 0.321) or 
to the proportion of Aedes (r = 0.262, P-value = 0.086), 
Culex (r = 0.146, P-value = 0.345), females (r = − 0.048, 
P-value = 0.756), or males (r = 0.037, P-value = 0.810) 
among the target mosquitoes.

Time resolution of the automated mosquito surveillance 
system
The daily and monthly/seasonal activities of Aedes and 
Culex mosquitoes for each field trial are represented 
in Fig. 7. In both field trials, the peak hourly counts for 
Culex mosquitoes (Cx. pipiens) are higher than those of 
Aedes (mostly Ae. albopictus but also Ae. caspius during 
September and October in field trial 1).

There is a noticeable difference in the activity of Culex 
between the two sites. Regarding the daily activity of 
Culex, in field trial 1 there was a high and pronounced 
peak of activity in the morning, after sunrise, and a lower 
and less pronounced peak in the evening at sunset. The 
morning peak was at 06:00–08:00 in July, which shifted 
to 07:00–08:30 in August, 07:30–09:00 in September, 
and 08:00–09:30 in October, but with very low counts. 
The evening peak was at 21:30–23:00 in July and August 
and at 20:00–21:00 in September. In field trial 2, Culex 
activity was apparent only during the dark photoperiod, 
starting around 21:00, just before sunset in the first and 
second months of summer (June and July) and continuing 

Table 2 Overall balanced accuracy results for target mosquito detection and for genus and sex classification for each field trial and for 
both field trials combined

Target mosquito detection Genus and sex classification

Field trial 1 (%) Field trial 2 (%) Field trial 1 and 2 
combined (%)

Field trial 1 (%) Field trial 2 (%) Field trial 1 and 2 
combined (%)

Average 95.9 94.8 95.5 88.0 90.5 88.8

Median 97.1 95.8 96.7 89.4 90.6 90.0

IQR 5.7 6.4 5.9 10.3 5.4 7.9

Q1 93.1 91.6 92.8 84.1 87.9 85.7

Q3 98.8 98.1 98.6 94.3 93.3 93.6
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overnight until sunrise at around 07:00 although the 
overnight counts were much lower in late summer and 
early Autumn (August and September) than in June and 
July.

Regarding the daily activity of Aedes, there were gener-
ally two peaks of activity per day in both field trials: one in 
the early morning and one in the evening before the sun-
set. In field trial 1, the morning peak was at 06:00–07:00 

in July and 07:30–8:30 in August and September, and the 
evening peak was at 18:00–21:00 in August and at 19:00 
in September. In field trial 2, the morning peak was at 
06:00–07:00 in June and July (being more pronounced in 
July) and at 07:00–08:00 and 10:00–11:00 in September, 
with an evening peak between 18:00 and 20:00 from June 
to September.

Discussion
The present work tested the performance of an auto-
mated mosquito classification system in the field. The 
system comprises a commercial mosquito suction trap, 
optical sensor, and ML pipeline, enabling target mosqui-
toes (Aedes and Culex) to be discriminated from other 
insects which entered the trap and the genus and sex of 
these target mosquitoes to be classified. The data pro-
vided by the system also enable the real-time dynamics of 
the target mosquito populations to be determined with a 
time resolution as fine as 1 s. The ML model was trained 
using recordings from thousands of mosquitoes raised in 
the laboratory which flew through the sensor under dif-
ferent ambient temperature regimes.

The system distinguished the designated target mos-
quitoes (Aedes and Culex) from other flying insects that 
entered the trap with an average BA of 95.5% for the two 
field trials combined, meaning that the total number of 
target mosquitoes counted by the sensor was very similar 

Fig. 5 Time series plots showing the number of target mosquitoes (sensor count and manual count) for each genus and sex class per collection 
cycle for each field trial. The x‑axis indicates the start date of each collection cycle. Collection cycles lasted 24 h in field trial 1 and 48 h in field trial 2 
except those marked with *(= 24 h) or **(= 72 h)

Fig. 6 Scatter plot and linear regression of manual count 
versus sensor count for genus and sex detection per collection 
cycle showing the regression line equation (slope and y‑intercept) 
and coefficient of determination, R2
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to the number of mosquitoes counted manually. This 
suggests that the system would be suitable for mosquito 
surveillance and control activities such as: (i) identify-
ing the start and end of a mosquito activity season, (ii) 
monitoring seasonal tendencies to prioritize geographi-
cal areas of intervention, or (iii) doing quality control 
checks of control measures aimed at reducing mosquito 
populations.

The BA results for mosquito target detection were not 
correlated with the proportion of target mosquitoes in 
the catch. This is in contrast to the results presented in 
Day et al. [23] where the mean daily accuracy of the BG-
Counter sensor ranged from 9.4 to 80.1% across sites and 
was highly dependent on the proportion of mosquitoes 
in the catch, giving high levels of accuracy (80.1%) only 
in one site when the mean daily proportion of mosqui-
toes was high (89%).In our work, the overall proportion 
of target mosquitoes was 39.8%, and the BA for target 
mosquito detection was high (from 92.9 to 100%) for all 
collection cycles, even with a proportion of target mos-
quitoes as low as 3%. These results indicate that the pre-
sent system performs target mosquito detection with 
a low rate of false positives. This result can be advanta-
geous in routine mosquito surveillance programs in 
which carbon dioxide is usually substituted by a more 
cost-effective attractant such as a chemical lure, which 
leads to a lower proportion of mosquitoes in the catch 
[31].

In this work, we also described the automated classifi-
cation of target mosquitoes by genus and sex in the field, 

which represents an advance in the state of the art [13–
17, 23, 24]. The system classified Aedes females, Aedes 
males, Culex females, and Culex males with an average 
BA of 88.8%. This can be very useful for public health 
agencies and biological research in order to detect pos-
sible introductions of Aedes invasive mosquitoes in new 
areas where autochthonous Aedes species are not pre-
sent or monitor population dynamics of Aedes and Culex 
mosquitoes. The genus and sex classification may also be 
useful as an indicator of vectorial capacity for arboviruses 
in urban and peri-urban areas where urbanization pro-
cesses have a major impact on species richness and favor 
the spread of invasive anthropophilic vectors such as Ae. 
albopictus [32–34]. The fact that the BA for genus and 
sex in the field (88.8%) was only slightly below the result 
obtained in the laboratory (93.9%) indicates that the ML 
model, which was developed under controlled labora-
tory conditions, has generalized well to mosquitoes in the 
field and validates the methodology developed to train 
the model.

The daily activity patterns of Aedes and Culex mos-
quitoes were monitored in this study taking advantage 
of the high time resolution of the surveillance system. A 
bimodal activity coinciding with the daylight hours was 
identified for Aedes mosquitoes in both field trials as pre-
viously reported for this species [24]. Culex exhibit a typ-
ical endogenous night activity in field trial 2 but showed 
an unexpected peak just after sunrise in field trial 1. This 
plasticity in behavior could be explained by factors such 
as host availability, environmental conditions, predator 

Fig. 7 Time series plots of average hourly sensor count per month for the target mosquito genera
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inactivity, or bioform type [35]. Moreover, seasonality 
can have a considerable impact on vector feeding prefer-
ences which may drive the transmission of zoonotic path-
ogens to humans, amplifying the scope of an epidemic 
[36]. In our study, we observed a progressive shift of the 
early morning activity peak of Aedes and Culex to later 
hours over the duration of each trial from early summer 
to early autumn coinciding with the sunrise. Temporal 
variations in the activity of mosquito vectors can have a 
considerable impact on pathogen transmission [37], so a 
proper characterization of daily dynamics of local vector 
species may be of value for risk assessment and control 
programs [38].

Overall, the system presented here provides several 
advantages with respect to conventional manual surveil-
lance methods: (i) it significantly reduces the manual 
effort to gather and inspect each catch bag, especially 
when target mosquitoes must be sorted from a large 
number of non-target insects, and to manually record 
the results; (ii) it provides classification results much 
earlier than what is possible in routine monitoring pro-
grams with collection cycles of 7 to 15 days, enabling a 
faster epidemiological response when needed; (iii) it is 
not subject to the effects of predation and degradation of 
the sample; (iv) it associates a time of capture stamp to 
each classification result, enabling the activity dynamics 
of the target insects to be determined with time resolu-
tions down to one second; (v) the server provides auto-
mated results in the form of tables and graphs which may 
be downloaded or visualized on the server itself and may 
feed risks maps via the application programming inter-
face. The system also provides the following advantages 
compared to alternative automated mosquito classifi-
cation systems [13–17, 23, 24]: (i) it provides classifica-
tion of target mosquito genus and sex in the field, which 
has not been reported in the scientific literature to date; 
(ii) it provides reasonably good classification accuracy 
results (88.8%) for the target Aedes and Culex mosquito 
species over the range of ambient temperatures in which 
these species are known to be active, independently of 
the proportion of mosquitoes in the catch; (iii) it may 
be used with existing commercial mosquito traps used 
in routine entomological surveillance, allowing manual 
collection and inspection if needed. We believe that the 
good performance of the system presented is due to the 
combination of a sensing zone of significant volume, with 
a dataset that is closer to field conditions, resulting in a 
more efficient ML model for mosquito classification.

The technology described in this work has been shown 
to be a valuable tool in urban and peri-urban settings to 
monitor Ae. albopictus and Cx. pipiens populations, two 

of the major vector species in temperate areas [2], and 
has further potential. However, further work should be 
done to fully validate the findings by performing more 
field trials, especially in rural settings, with these and 
other mosquito species, including autochthonous Aedes 
and Culex species for which the model has not been 
trained. It would also be interesting to perform a more 
extensive training with additional biological traits (e.g. 
include different developmental stages of female’s gono-
trophic cycle). Furthermore, it should be noted that, with 
the exception of urban and peri-urban areas dominantly 
colonized by Ae. albopictus, genus identification may be 
insufficient in some regions for informing about vecto-
rial capacity for arboviruses. Consequently, to enable the 
system to be applied in a broader range of geographical 
regions, it would be desirable to achieve species identi-
fication by training the sensor with other vector spe-
cies of medical importance such as Aedes aegypti, Culex 
quinquefasciatus, or the Anopheles gambiae complex.

Conclusions
This work describes the field evaluation of an optical sen-
sor which operates with commercial mosquito traps rou-
tinely used in entomological surveillance. This approach 
enables the sensor to be integrated into conventional 
mosquito surveillance methods to provide automatic, 
high temporal resolution monitoring of populations of 
Aedes and Culex mosquitoes, two of the most concern-
ing genera in terms of arbovirus transmission. The sys-
tem automatically discriminates these target mosquitoes 
from non-target insects in the catch and classifies the tar-
get mosquitoes according to genus and sex, which over-
comes the manual effort associated with conventional 
methods to periodically visit the trap and to manually 
classify the contents of the catch. The system evaluated in 
the field in the present work, therefore, represents a sig-
nificant improvement in the state of the art of mosquito 
surveillance.
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