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Abstract 

Background  The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding 
of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the pre-
dominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, 
which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. 
Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates 
host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding 
will help refine management practices and advance the development of new therapeutics for long-term helminth 
control.

Methods  Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infec-
tions with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome 
sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. 
contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction 
amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen 
content.

Results  The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and tran-
scripts were differentially expressed between resistant and susceptible animals. A genome-wide association study 
identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body 
weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and dif-
ferentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated 
with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory 
responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae 

Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Parasites & Vectors

*Correspondence:
Simone Cristina Méo Niciura
simone.niciura@embrapa.br
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-024-06205-9&domain=pdf


Page 2 of 19Niciura et al. Parasites & Vectors          (2024) 17:102 

Background
Helminths cause significant economic and production 
losses in small ruminant livestock systems [1]. Haemon-
chus contortus, the barber’s pole worm, is the most preva-
lent pathogenic nematode affecting small ruminants in 
tropical regions [2]. In contrast, chemical treatments, 
which are the main approaches currently used for its 
control, are becoming less effective owing to the develop-
ment of anthelmintic resistance [3].

Therefore, there is a need to develop new alternative 
control strategies to reduce the parasite burden on pro-
duction systems. One interesting animal-centric control 
strategy is to use sheep breeds that are naturally more 
resistant to gastrointestinal nematodes or, alternatively, 
to select more resistant individuals within breeds [4]. 
Some indigenous breeds have adapted to survive with 
low maintenance requirements and high parasitic chal-
lenges [5]. An example of such a breed is the Morada 
Nova, a native Brazilian hair sheep breed that has high 
gastrointestinal nematode resistance compared to other 
tropical-adapted and high-productive sheep breeds [6]. 
Better molecular characterization of Morada Nova can 
support the use of this indigenous breed in production 
systems as a long-term helminth control strategy [7] 
and advance our understanding of the mechanisms of 
immune responses and parasite resistance in other sheep 
breeds.

Knowledge of pathology of haemonchosis is essential 
for establishing new therapeutics and control strategies. 
This can be assisted by omics technologies, which can 
be used to increase our understanding of helminth and 
host responses [8]. Multi-omics approaches can aggre-
gate various layers of information to elucidate complex 
host-parasite interactions [9], particularly those that 
are regulated by several genes with minor effects and 
are influenced by diverse environmental conditions. 
Genomics can reveal the genetic mechanisms underly-
ing parasite resistance in hosts, whereas transcriptom-
ics can identify the mechanisms through which hosts 
respond to infections, or those used by parasites to 
establish infection and modulate the host immune sys-
tem. Integrating both host and parasite data quantified 
through genomic and transcriptomic layers, such as 

those used in expression quantitative trait loci (eQTL) 
studies [10], can provide a more in-depth knowledge of 
interactions.

Another factor in the parasite-host molecular sce-
nario is the host microbiota, which has received 
increasing attention in recent years owing to the effect 
of the microbiome on resistance to gastrointestinal 
nematodes [11], H. contortus burden [12], and Tela-
dorsagia circumcincta female fertility [13] in sheep. 
Symbiosis between microorganisms and their hosts, 
particularly ruminants, is crucial for providing nutri-
ents, carbohydrates, and proteins [14]. However, gas-
trointestinal nematode infections alter the typical host 
microbiota, resulting in microenvironmental dysbiosis 
[15, 16]. H. contortus infections change the bacterial 
genera in the abomasum and rumen [15], and T. cir-
cumcincta increases the bacterial population involved 
in pro-inflammatory processes, which may contribute 
to the immunopathology of helminth disease [16]. Fur-
thermore, the microbiota may influence parasite and 
host gene expression, as they can interact with host/
parasite cells and affect gene regulation, switching cer-
tain cellular processes on or off.

The aim of this study was to improve our understand-
ing of the parasite-host-microbiota interactions that lead 
to increased resistance to H. contortus in Morada Nova 
sheep using an integrated multi-omics approach with 
transcriptome sequencing (RNA-seq) data from sheep 
abomasum and H. contortus, 50  K sheep genotypes, 
and 16S ribosomal RNA (rRNA) gene sequencing of the 
microbiota from sheep feces and rumen content.

Methods
Sample collection and phenotypes
Sheep
The Morada Nova sheep and the phenotypes used in this 
study have been previously described [17]. Briefly, 274 
lambs (136 males and 138 females), the progeny of four 
sires and 156 dams from the Embrapa Pecuária Sudeste 
flock, were born in two breeding seasons (March to May 
2017 and 2018). All lambs were raised under the same 
environmental conditions.

family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were 
expressed only in parasites isolated from susceptible sheep.

Conclusions  The present study identified chromosome regions, genes, transcripts, and pathways involved 
in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. 
These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary 
approaches to control H. contortus infection in sheep.

Keywords  GWAS, RNA-seq, 16S rDNA-sequencing, eQTL, Parasite resistance, Barber’s pole worm
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Parasitological examination
For egg per gram (EPG) counts, 2  g of feces collected 
from the rectum were mixed with 28  mL saturated 
sodium chloride solution and evaluated in a McMaster 
chamber, then the total number of counted gastrointesti-
nal strongyles eggs was multiplied by 50 [18].

Fecal cultures [19] performed at the end of each artifi-
cial infection revealed 100% Haemonchus.

Artificial infection and phenotyping
Lambs (3  months old) were treated with monepantel 
(2.5 mg/kg; Zolvix®) to eliminate natural infection (96.4% 
Haemonchus, 2.1% Cooperia, and 1.5% Trichostrongylus) 
with gastrointestinal nematodes. After 2 weeks, the ani-
mals were experimentally infected with 4000 third-stage 
larvae (L3) of the Echevarria H. contortus isolate [20]. 
This isolate, retrieved in Brazil in 1991, exhibited anthel-
mintic susceptibility to levamisole (100%), ivermectin 
(100%), and albendazole (98.9%) [20], and was obtained 
before the launch of monepantel on the market.

Phenotyping of individuals was based on EPG obtained 
on day 0 (day of infection) and in four collections at 
7-day intervals after H. contortus prepatent period [21], 
from days 21–42 (days 21, 28, 35, and 42 after infection). 
On day 42 of the first artificial infection, the lambs were 
treated again with monepantel and, after 15  days, were 
subjected to a new parasitic infection with the same H. 
contortus isolate, following the same sampling protocol. 
On day 42 of the second parasitic challenge, the EPG 
mean was calculated from the ten collection dates, and 
the animals were ordered based on the mean EPG and 
ranked as resistant (EPG mean ranging 10–1765) or 
susceptible (EPG mean ranging 3923–24,112) to H. con-
tortus. Notably, the natural infection, comprising H. con-
tortus with historical multidrug resistance [22], was not 
totally eliminated after the first and second monepantel 
treatments, resulting in EPG counts on day 0 in both arti-
ficial challenges (Table 1). Therefore, the day of infection 
(day 0) was included in the calculation of the EPG mean.

All four sires and 79 of the 156 dams were phenotypi-
cally evaluated in two parasite challenges, following the 
same protocol used for the lambs, between September 
2018 and January 2019.

Statistical analyses for heritability estimation
Considering the Morada Nova lamb-sire-dam trios, EPG 
phenotypic information for four sires, 79 dams, and 147 
lambs, totaling 230 individuals, were available. These 
animals were used to build the additive genetic relation-
ship matrix (A matrix) using the AGHmatrix [23] and 
pedigreemm [24] R (version 4.2.1 [25]) packages, and 

heritability (h2) was estimated using the NAM package 
[26].

Selection of lambs for the genome‑wide association study 
(GWAS)
A total of 44 lambs from the top- and bottom-ranked ani-
mals (Table 1) were split into two groups with high and 
low EPG means, with a 21.5 × variation in EPG means 
between the groups. Lambs were also selected to balance 
the sex distribution between the groups and, as much as 
possible, the number of offspring per sire. Blood samples 
from each of the four sires and 44 lambs were collected 
through the jugular vein and subjected to DNA extrac-
tion [27]. All 48 DNA samples were genotyped using an 
Illumina 50  K single-nucleotide polymorphism (SNP) 
array.

Selection of lambs for transcriptome and metabarcoding 
sequencing
Five resistant and five susceptible animals were selected 
for transcriptome sequencing (RNA-seq) and metabar-
coding (16S rRNA) sequencing. As expected, an une-
qual distribution of genders occurred [28] with a larger 
number of females in the resistant group. To better 
characterize the local host response in the early phase 
of infection [29], these ten lambs were dewormed with 
monepantel, allocated to cemented stalls, subjected to 
a third challenge with 4000 L3 from the same H. contor-
tus isolate, and euthanized 7  days later. The abomasum 
was retrieved, and fragments of the fundic region were 
collected, immediately frozen in liquid nitrogen with-
out any additional processing, and stored at – 80 ℃ for 
RNA extraction. Furthermore, 10 g of feces from the rec-
tal ampulla was collected 2  weeks before slaughter, and 
50  mL of rumen content of the slaughtered sheep was 
stored in liquid nitrogen for microbiota investigation.

RNA‑seq
Total RNA was extracted from fragments of the fundic 
region of the abomasum using QIAzol Lysis Reagent 
(Qiagen, Germany) and TissueRuptor (Qiagen, Ger-
many), and purified in a silica column with an RNeasy 
Mini kit (Qiagen, Germany). RNA concentration (ng/µL) 
and purity (A260/A280 ratio) were estimated in Qubit 
using an HS RNA kit (Thermo Fisher Scientific, USA) 
and in NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific, USA), respectively. RNA samples were 
submitted to RNA-seq after quality confirmation through 
RNA Integrity Number ≥ 7.5 in Agilent 2100 Bioanalyzer 
(Agilent Technologies, USA). RNA-seq libraries were 
prepared using the TruSeq Stranded mRNA kit (Illu-
mina, USA) and sequenced using an Illumina HiSeq2500 
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Table 1  Mean and standard deviation of eggs per gram (EPG) during Haemonchus contortus challenges in Morada Nova lambs

a  Animals selected for RNA-seq. ID animal identification, SD standard deviation, M male, F female, R resistant, S susceptible

ID Sex Sire Dam Days at the first challenge Days at the second challenge Mean SD Rank

0 21 28 35 42 0 21 28 35 42

819 F 3 210 0 0 0 0 0 0 0 0 0 100 10 32 R

783 F 1 166 0 0 0 50 0 0 0 0 0 100 15 34 R

886 F 3 401 0 0 0 50 50 0 50 0 0 0 15 24 R

803 F 3 370 0 0 0 0 0 0 0 0 50 100 15 34 R

795 F 4 230 0 50 0 0 100 0 0 50 25 38 R

836a F 1 289 0 50 0 0 150 100 0 100 150 200 75 75 R

897a F 2 489 0 100 100 50 0 0 200 350 50 0 85 113 R

893 F 2 389 0 100 0 1000 350 0 0 50 0 0 150 318 R

883a F 4 532 50 0 200 100 100 50 100 250 450 600 190 194 R

949 F 4 439 0 0 0 0 0 0 50 0 100 2100 225 660 R

818a M 3 210 0 0 0 100 550 0 50 850 700 0 225 337 R

805 F 1 283 0 100 50 900 400 0 0 50 700 500 270 333 R

732a F 1 382 0 0 250 1850 1450 50 0 0 450 50 410 676 R

762 M 4 7 150 0 800 150 2850 0 50 250 550 650 545 858 R

891 M 1 249 0 100 350 2950 2600 500 400 100 300 650 795 1065 R

988 M 3 333 200 400 1050 1950 2450 350 50 150 1500 500 860 841 R

789 M 4 177 0 100 150 600 1300 50 350 2100 2700 2200 955 1034 R

917 M 4 254 200 100 900 3100 1800 550 1000 1950 800 500 1090 932 R

797 M 3 403 0 300 350 700 3000 2000 1700 850 600 2100 1160 979 R

918 M 4 508 0 1750 4700 2750 100 350 1550 800 900 1400 1430 1422 R

894 M 2 389 150 400 3250 5600 4200 400 500 1600 700 850 1765 1908 R

906 F 2 503 100 700 5350 9400 11,300 600 3200 2250 1500 1050 3545 3923 S

944 F 2 542 150 2950 7850 17,300 8850 400 700 250 200 500 3915 5732 S

985 F 3 368 0 550 7950 21,750 26,450 1600 0 0 100 1200 5960 9916 S

921 M 2 122 50 8000 12,500 12,500 7400 1400 6350 1200 5800 6100 6130 4347 S

898 M 2 431 50 14,800 17,100 12,000 16,650 650 1200 1000 800 400 6465 7589 S

740 F 3 349 50 1450 9100 6200 4000 0 3350 15,700 13,200 11,950 6500 5692 S

1038 F 3 252 50 7500 12,100 18,300 19,350 400 500 700 3550 3800 6625 7461 S

907 M 3 415 400 10,450 13,000 12,100 3850 650 4100 2550 900 18,400 6640 6340 S

756 F 3 527 0 15,000 14,550 100 100 0 2650 14,000 15,600 13,000 7500 7376 S

852a M 1 391 100 3500 19,000 20,000 22,000 0 3000 1100 8700 2750 8015 8871 S

739 M 3 349 50 3700 26,250 10,550 6200 150 3350 9000 9700 14,200 8315 7811 S

1053a F 1 299 0 5400 6550 18,750 33,550 350 500 4000 4950 9500 8355 10,447 S

718 M 1 252 0 3150 12,700 14,950 10,600 50 4700 12,450 6500 20,700 8580 6821 S

923a F 1 223 0 8800 11,700 15,850 10,200 600 5150 13,600 8000 12,300 8620 5309 S

742 M 1 401 0 50 12,100 10,550 25,100 0 1450 13,050 8350 20,000 9065 8870 S

727 M 1 184 50 100 7350 7350 9200 0 4100 10,500 25,000 37,200 10,085 12,072 S

1013a M 3 509 300 6000 21,200 20,500 35,000 9150 1500 3300 9800 7400 11,415 10,931 S

858 F 4 387 50 10,450 25,000 15,850 38,450 0 5450 8700 15,000 9000 12,795 11,729 S

863 F 4 282 7300 16,000 36,500 56,100 0 3000 3550 12,200 12,500 16,350 18,404 S

781a M 4 339 100 150 20,350 21,900 8900 0 11,000 36,500 45,950 31,100 17,595 16,361 S

1049 F 4 486 0 1400 12,400 34,450 44,200 5300 14,450 40,000 14,450 18,517 16,793 S

1052 M 4 296 300 16,000 28,100 46,150 49,300 9450 12,000 16,100 30,900 25,800 23,410 15,772 S

1048 M 4 382 50 16,250 22,600 39,500 42,500 7350 22,500 27,500 81,950 28,911 24,112 S
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system. For each sample, approximately 40 million reads 
in a 100 bp paired-end (PE) protocol were sequenced.

After sequencing, FASTQ files were visualized using 
FastQC (version 0.11.7 [30]) to assess RNA-seq quality. 
Trimmomatic (version 0.39 [31]) was used to remove 
adapters, the first ten initial bases and 2–3 final bases, 
reads of < 50 bases, and reads with a phred score of < 15 in 
a 4-bp window.

Initially, three reference sheep genomes were com-
pared: Oar_rambouillet_v1.0 (GCA_002742125.1), Oar_
v3.1 Texel (GCA_000298735.1), and ARS-UI_Ramb_v2.0 
(GCF_016772045.1) (data not shown). As ARS-UI_
Ramb_v2.0 (version 104) showed higher alignment rates 
and number of transcripts compared to the others, and 
this genome assembly was selected as the reference for 
subsequent analysis. HISAT2 (version 2.1.0 [32]) was 
used to index the sheep reference genome and align the 
trimmed paired reads. The resultant SAM files were con-
verted to BAM files using SAMtools (version 1.11 [33]), 
and statistics were generated using MultiQC (version 1.7 
[34]). The aligned and sorted BAM files were assembled 
using StringTie (version 2.1.3 [35]). Gene and transcript 
read counts were extracted using the Python (version 
3.6.6 [36]) prepDE.py3 script in the StringTie pipeline.

For differential gene expression analysis between sus-
ceptible and resistant animals, an initial filtering step in 
R software was used to remove lowly expressed genes 
with a count sum of < 50, and overexpressed genes with 
a mean count of > 100,000. The gene count matrix was 
analyzed using DESeq2 [37], with a Wald test adjusted 
p-value (q-value) of < 0.1, and using edgeR [38], with a 
false discovery rate (FDR) of < 0.05. Differential transcript 
expression was analyzed in ballgown [39] (q-value < 0.1) 
and DESeq2 (q-value < 0.05). In all analyses, both | fold 
change (FC) |> 1.5 and adjusted p-values were regarded 
as thresholds. Regarding p-values, in the absence of 
results at < 0.05, an adjusted p-value of < 0.1 was used. 
The differential expression of the overexpressed genes 
was investigated separately using the t-test, DESeq2, and 
edgeR. The biological roles of the differentially expressed 
and overexpressed genes were investigated using Gene-
Cards (version 5.15 [40]).

Variant calling and annotation of RNA‑seq data
For variant calling from the abomasum RNA-seq data 
[41], trimmed PE reads were mapped to the indexed 
sheep reference genome using the 2-pass mode of STAR 
(version 2.7.3a [42]). The STAR aligner was used because 
of its higher tolerance for accepting mismatches and soft 
clipping compared with the HISAT2 [43]. SAMtools was 
used to index the BAM files, and Picard (version 2.25.0 
[44]) was used to add read groups, mark duplicates, and 
create a sequence dictionary. GATK (version 4.2.0.0 [45]) 

with SplitNCigar, BaseRecalibrator including known 
sheep variants [46], ApplyBQSR, and HaplotypeCaller, 
was used to call the variants. GATK GenomicsDBIm-
port was used to combine files from different animals, 
and GenotypeGVCFs was used for joint genotyping. 
GATK SelectVariants was used to select the SNPs, which 
were then filtered with VariantFiltration with –cluster-
window-size 35, –cluster-size 3, QD < 2.0, FS > 30.0, 
SOR > 3.0, MQ < 40.0, MQRankSum < −  12.5, and Read-
PosRankSum < −  8.0. BCFtools (version 1.9.64 [33]) was 
used to retrieve hard-filtered variants and remove poor-
quality calls per variant (GQ < 20, depth < 3 reads, no 
calls, MAF < 0.05, missing genotypes > 10%, and multial-
lelic sites). A total of 51,434 SNPs were identified.

Subsequently, a database for the ARS-UI_Ramb_v2.0 
sheep reference genome was created and the variants 
were annotated using SnpEff (version 5.1 [47]). SnpSift 
[48] was used to detect high-impact variants, and the 
caseControl function was used to select homozygous 
variants between resistant and susceptible sheep (termed 
RNA-seq genotypes).

Genome‑wide association study
DNA from the four sires and 44 extreme phenotype 
lambs, including the ten lambs used in the RNA-seq 
study, were extracted through saline precipitation and 
stored at – 20 ℃. DNA integrity in 1% agarose gel elec-
trophoresis, concentration (ng/µL) and purity (260/280 
absorbance ratio ranging 1.8–2.0) in NanoDrop were 
assessed. The DNA samples were genotyped using an 
Illumina OvineSNP50v3 chip. Genotyping data were 
subjected to quality control with snpQC [49], and SNPs 
with GCScore < 0.5, MAF < 0.05, HWE < 10e-16, call 
rate < 0.90, and samples with call rate < 0.75 were assigned 
as missing values. No samples with > 10% missing values 
were detected. A total of 45,070 SNPs and all 48 samples 
were included in the following steps. The genotype fre-
quency of SNPs with missing data was imputed using the 
mean frequency of the other samples. Paternity was veri-
fied using a matrix of opposing homozygotes constructed 
using R [50].

These data were previously used for a case–con-
trol GWAS [51] based on the Oar_v3.1 Texel reference 
genome. In the present study, data from the 44 lambs 
were reanalyzed using the same reference genome as 
that used in the RNA-seq analysis. A custom script was 
used to lift the 50 K genotypes to the ARS-UI_Ramb_v2.0 
assembly by mapping the probe sequence to the refer-
ence and then re-aligning the nucleotides to the refer-
ence strand. The EPG mean normalized by cube-root 
transformation was used as a phenotype in an snpBLUP 
GWAS to identify significant SNPs at FDR < 0.05, and h2 
for EPG was estimated from the genomic data with the 
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NAM package in R. Only the genotypes from the arrays 
were used for the GWAS, as no significant results (data 
not shown) were obtained using the RNA-seq genotypes 
from the ten lambs.

Genes located 1  Mbp upstream and downstream of 
each significant SNP from the GWAS analysis were 
retrieved from the National Center for Biotechnology 
Information (NCBI) Genome Data Viewer [52], and gene 
function was investigated using GeneCards and a litera-
ture review to identify candidate genes for resistance to 
H. contortus.

eQTL analysis
The R MatrixEQTL package [53] was used for eQTL 
analysis using all SNP data (45,070 from the array and 
51,434 from RNA-seq genotypes) and the RNA-seq of the 
ten most extreme animals. Gene and transcript expres-
sions were RNA-seq read counts normalized by DESeq2 
variance-stabilizing transformation. Sex and sire were 
included as covariates. Cis-eQTL were defined as SNPs 
located up to 1  Mb from the regulated gene, whereas 
trans-eQTL considered distances of > 1  Mb. From all 
significant cis- and trans-eQTL (FDR < 0.05) retrieved, 
only those comprising significant SNPs from GWAS or 
RNA-seq genotypes and differentially expressed data are 
reported here.

Analysis of unmapped RNA‑seq reads
The RNA-seq study was originally designed to assess 
gene expression in sheep hosts, but as H. contortus L3 
penetrates the mucosal glands of the abomasum, primar-
ily in the fundic region, to molt into L4 [54], the pres-
ence of genetic material from the H. contortus parasite 
in the RNA-seq data was also investigated using reads 
unmapped to the sheep reference genome. The trimmed 
PE reads were aligned to the H. contortus reference 
genome (Haemonchus_contortus.PRJEB506.WBPS17.
genomic.fa) and assembled with an annotation file (Hae-
monchus_contortus.PRJEB506.WBPS17.annotations.gff3) 
retrieved from the WormBase ParaSite database (version 
17 [55]).

Because of the small amount of data and the resultant 
low read counts, no additional filtering was performed, 
and differential expression analysis was implemented 
through DESeq2, edgeR, ballgown, and t-tests using the 
same parameters previously described for sheep.

Microbiota from sheep feces and rumen content
DNA from the feces and rumen content of the ten lambs 
selected for RNA-seq was extracted using the Quick-
DNA™ Fecal/Soil Microbe Miniprep Kit (Zymo, USA) 
following the manufacturer’s instructions. Polymerase 
chain reaction (PCR) amplification of the bacterial and 

archaeal 16S rRNA genes was performed using a previ-
ously described primer set [56]. Libraries were sequenced 
on an Illumina MiSeq (2 × 250 bp) using an Illumina V3 
sequencing kit (Illumina, USA). Raw reads were qual-
ity checked, filtered for quality (> Q25), and trimmed 
at positions 220 (forward) and 175 (reverse), based on 
aggregated quality plots generated using QIIME 2 [57]. 
The remaining data were submitted to DADA2 [58] to 
resolve the sequences into amplicon sequence variants 
(ASV) and exclude chimeric sequences. Bacterial and 
archaeal sequences were classified using the SILVA data-
base (version 132 [59]). The conditional quantile regres-
sion (ConQuR) approach [60] was used to remove the 
batch effects caused by multiple sequencing runs and sex. 
Only the ASVs present in at least five lambs were consid-
ered. A total of 526 and 607 bacterial ASVs and 22 and 
28 archaeal ASVs from the feces and rumen, respectively, 
were considered for downstream analyses.

Multi‑omics integration
The final step of the analysis was the integration of fecal 
and ruminal microbiota abundance identified in the 16S 
rRNA data with the expression identified using RNA-
seq. Co-expression network analysis of ASVs, host genes/
transcripts, and H. contortus gene/transcript expres-
sion was performed using the R CEMiTool package [61]. 
CEMiTool uses an unsupervised filtering method based 
on the inverse gamma distribution for each gene selec-
tion used in the analyses and applies a soft-thresholding 
power β to determine a similarity criterion between pairs 
of features [61]. The CEMiTool parameters were set to 
apply_vst = TRUE, cor_method = “spearman”, network_
type = “signed”, and tom_type = “signed” to construct co-
expression networks. The minimum module size was set 
to 50 and 100 for gene and transcript expression levels, 
respectively. Genes within significantly associated mod-
ules were then subjected to Metascape [62] for biologi-
cal pathway and gene ontology enrichment analyses, with 
the input species set to Homo sapiens.

Results and discussion
RNA‑seq
The sheep abomasum RNA-seq reads ranged 31.1–
41.3 M per sample, with 97.9–98.5% of the reads mapped 
to the sheep ARS-UI_Ramb_v2.0 reference genome 
(64.5–70% of proper pairs). For the differential gene 
expression analysis, 9099 genes with zero counts and 
5891 genes with count sums < 50 were removed from the 
total of 33,800 genes.

Fourteen overexpressed genes (Table 2) were removed 
and analyzed separately; and no significant differential 
expression was detected between resistant and suscep-
tible animals. Among these overexpressed genes, PIGR, 
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COX1, and LGALS15 have been reported in the sheep 
abomasum in a transcriptome study comparing several 
tissues [63], and PIGR was the most abundant transcript 
found in the cattle abomasum [64]. These overexpressed 
genes are involved in gastrointestinal biological pro-
cesses and infection responses. Pepsin is the principal 
acid protease of the stomach [65]; lysozymes are involved 
in bacterial cell wall cleavage [66]; COX1 produces cyto-
protective prostaglandins for the stomach [67]; LGALS15 
(also known as ovgal11), associated with immune/
inflammatory responses and protection against infection 

[68], and intelectin-2, associated with the gastrointes-
tinal mucus [69], are present in the abomasum of sheep 
infected with H. contortus; immunoglobulin lambda 
expression is detected in gastric cancer [70]; and ND4 
mutations are considered biomarkers of preneoplastic 
lesions of the gastrointestinal tract [71].

Of the remaining 18,796 filtered genes (55.6%), 11 dif-
ferentially expressed genes (DEG) (Table 3) were detected 
between H. contortus-susceptible and H. contortus-
resistant animals using edgeR (Additional file 1: Table S1 
and Additional file  3:Fig. S1). Four genes (CCDC85B, 
LOC121819799, GAST, and LOC101121371) were upreg-
ulated in H. contortus-resistant sheep, whereas seven 
genes (LOC114116426, LOC101116991, LOC101104728, 
LOC101107420, GNLY, GRP, and IL13) were upregulated 
in susceptible sheep. Using DESeq2 (Additional file  1: 
Table  S2), only two DEGs were upregulated in suscep-
tible sheep (LOC101116991 and LOC114116426; both 
were DEGs shown in the edgeR results) (Table  3). The 
role of IL13 in the resistance to H. contortus is through 
smooth muscle hypercontraction and increased mucus 
production, resulting in the detachment of parasites 
from the gut wall [72]. IL13 upregulation in the sus-
ceptible Morada Nova is in accordance with a previous 
study using infected young sheep of a native breed [73]. 
However, IL13 has also been shown to be upregulated 
in adult resistant sheep [72]. In addition to animal age, 
infection duration should be considered, as genes related 
to the inflammatory response, T lymphocyte attraction, 
and leukocyte binding are upregulated in the abomasal 
lymph nodes of resistant animals at the beginning of T. 

Table 2  Overexpressed genes in RNA-seq of the abomasum of 
Morada Nova sheep

Gene ID Gene name

LOC101105864 Pepsin A

LOC443320 Lysozyme C-1-like

LOC443322 Lysozyme 3a precursor

COX1 Cytochrome c oxidase subunit I

PIGR Polymeric immunoglobulin receptor

COX3 Cytochrome c oxidase subunit III

LGALS15 Lectin, galactoside-binding, soluble, 15

LOC114108841 Immunoglobulin lambda variable 2–14

LOC101122151 Intelectin 2

ATP6 ATP synthase F0 subunit 6

ND4 NADH dehydrogenase subunit 4

LOC121818276 NADH-ubiquinone oxidoreductase chain 1-like

LOC101107475 Ig alpha-1 chain C region-like

COX2 Cytochrome c oxidase subunit II

Table 3  Differentially expressed genes in the abomasum between H. contortus-susceptible and resistant Morada Nova sheep using 
edgeR and DESeq2

a  Detected in both edgeR and DESeq2 analyses

Gene ID Log FC FDR/q-value Gene name Upregulated

edgeR

 CCDC85B − 8.95 0.0011 Coiled-coil domain containing 85B Resistant

 LOC121819799 − 6.67 0.0060 ncRNA Resistant

 GAST − 13.43 0.0158 Gastrin Resistant

 LOC101121371 − 3.15 0.0257 60S ribosomal protein L37a Resistant

 LOC114116426a 7.33 0.0004 Protein C1orf43 homolog (pseudogene) Susceptible

 LOC101116991a 2.17 0.0060 Ribonuclease K6-like Susceptible

 LOC101104728 8.36 0.0060 Antimicrobial peptide NK-lysin Susceptible

 LOC101107420 3.98 0.0074 Phospholipase A2, membrane associated Susceptible

 GNLY 3.45 0.0141 Granulysin Susceptible

 GRP 9.09 0.0232 Gastrin releasing peptide Susceptible

 IL13 2.10 0.0474 Interleukin 13 Susceptible

DESeq2

 LOC101116991a 2.17 0.060 Ribonuclease K6-like Susceptible

 LOC114116426a 6.81 0.055 Protein C1orf43 homolog (pseudogene) Susceptible
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circumcincta infection but downregulated at later stages, 
indicating a delayed Th2 response in susceptible ani-
mals [29]. Associations between the GAST gene and the 
response to H. contortus[74] and between the GNLY gene 
and the response to Trichostrongylus colubriformis [75] 
have been previously reported.

A subset of ten genes (expressed in at least two sam-
ples and count sum of > 50 reads) was observed to be 
exclusively expressed in susceptible or resistant ani-
mals. Of these, six genes (CCDC85B, LOC121819799, 
GAST, ABCC11, LOC101106468, and LOC121818066) 
were expressed only in resistant sheep and four genes 
(LOC101104728, GNGT1, LOC114116426, and GRP) 
were expressed only in susceptible sheep (Table  4). 
Six of these genes (CCDC85B, LOC121819799, GAST, 
LOC101104728, LOC114116426, and GRP) were pre-
viously identified as DEGs (Table  3). In addition to the 
previously discussed genes associated with resistance 
to gastrointestinal nematodes (such as GAST and IL13), 
genes involved in adaptation (such as ABCC11 [76] and 
GNGT1 [77]) were detected.

From a total of 76,900 transcripts, 478 differentially 
expressed transcripts (DET) from 435 genes (includ-
ing LOC101116991, LOC114116426, LOC101107420, 
and IL13 DEGs) were detected using DESeq2 (Addi-
tional file  1: Table  S3), whereas ballgown (Additional 
file  1: Table  S4 and Additional file  4: Fig. S2) detected 
only three transcripts (TECPR1, LOC114111361, and 
LOC121818463 genes).

Variant calling and annotation of RNA‑seq data
A total of 884,918 variants were detected in sheep abo-
masum RNA-seq data. After filtering, 51,434 autosomal 
SNPs remained and were associated with 264,604 effects, 
of which 0.04% had high impact and 24.8% had missense 
effects. Case–control selection of RNA-seq genotypes 

between resistant and susceptible sheep revealed 16 vari-
ants (Additional file  1: Table  S5) in three genes: TRAP-
PC6B (Chr18), MGRN1 (Chr24), and SPCS3 (Chr26). 
Among these, MGRN1 has been associated with resist-
ance to gastrointestinal nematodes in a previous study 
[78].

Genome‑wide association study
After quality control filtering of the genotype data, 45,070 
SNPs from 44 lambs were used in the snpBLUP GWAS. 
The observed SNP average heterozygosity was 0.38, and 
the diagonal mean value of the genomic relationship 
matrix (GRM) was 0.95, indicating no inbreeding in the 
population. This was also confirmed by the inbreeding 
coefficient estimation at 0 using the A matrix of the pedi-
gree data. The animals used in this study were raised in 
the state of São Paulo, which holds 10.4% of the Morada 
Nova population registered in Brazil [79]. However, high 
levels of inbreeding have been reported in animals from 
northwestern Brazil [80]. Production conditions under 
extensive or semi-intensive systems and animal selection 
practices vary significantly between Brazilian states; con-
sequently, the genetic background of the breed differs as 
well [81]. Nonetheless, Morada Nova animals exhibit suf-
ficient genetic variation to be used in breeding programs 
[80].

The opposing homozygous matrix identified two dis-
cordant sire-offspring pairs that needed to be reassigned. 
In the final data of the 44 lambs, 11 were offspring of sire 
1 (with a 28.1 × variation in EPG means between resistant 
and susceptible half-siblings), seven of sire 2 (7.5 × varia-
tion in EPG means), 13 of sire 3 (19.9 × variation in EPG 
means), and 13 of sire 4 (30.8 × variation in EPG means).

The h2 of EPG was estimated at 0.12 using the GRM 
and at 0.02 using the pedigree, noting the limited num-
ber of animals used to estimate h2, which also impaired 

Table 4  Mean counts per million (CPM) of genes exclusively expressed in the abomasum of Morada Nova sheep resistant or 
susceptible to H. contortus 

a  Detected in edgeR and/or DESeq2 analyses

Gene ID CPM in resistant CPM in susceptible Gene name Expressed

CCDC85Ba 4.06 0.00 Coiled-coil domain containing 85B Resistant

LOC121819799a 0.82 0.00 ncRNA Resistant

GASTa 87.29 0.00 Gastrin Resistant

ABCC11 0.53 0.00 ATP binding cassette subfamily C member 11 Resistant

LOC101106468 0.74 0.00 Transcription initiation factor TFIID subunit 9-like Resistant

LOC121818066 1.16 0.00 ncRNA Resistant

LOC101104728a 0.00 2.67 Antimicrobial peptide NK-lysin Susceptible

GNGT1 0.00 0.75 G protein subunit gamma transducin 1 Susceptible

LOC114116426a 0.00 1.31 Protein C1orf43 homolog Susceptible

GRPa 0.00 4.41 Gastrin releasing peptide Susceptible
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the confidence interval calculation. The reported herit-
ability estimates for EPG vary significantly in the range 
0.01–0.65, as it is a complex trait that is easily affected 
by breed, age, parasite, climate, natural versus artificial 
parasite infection, and other experimental conditions 
[4]. Further studies with larger numbers of individuals 
are required to address the reliability of selecting Morada 
Nova individuals that are resistant to H. contortus based 
solely on EPG. However, even if not used for animal 
selection, the genomic estimated breeding value (GEBV) 
for EPG is considered a good criterion for identifying 
animals for target-selective anthelmintic treatment [82], 
which can contribute to the control of gastrointestinal 
nematodes in flocks.

The snpBLUP GWAS (Fig.  1) detected three signifi-
cantly associated SNPs (FDR < 0.05): rs419988472 (intron 
variant in the DHRS9 gene) at position Chr2:140323047, 
OAR11_27473453.1 (rs161041632—exon variant in 
the MED11 gene) and s08310.1 (rs427555933 – inter-
genic variant) at positions Chr11:26501006 and 
Chr11:26595120, respectively, which overlapped in Fig. 1.

Within the ± 1 Mbp window of the significant SNPs, 
171 annotated genes were detected (Additional file  1: 

Table  S6). The candidates included genes with reported 
association with resistance to gastrointestinal nematodes, 
such as NLGN2 in goats [83] and CXCL16 and CD68 in 
cattle [84]; specific response and resistance to H. contor-
tus, such as ALOX15 [73] and LRP2 [85], to T. circumci-
ncta, such as RABEP1 [86], to the cestode Echinococcus 
granulosus, such as TNFSF13 [87], and to the proto-
zoan Toxoplasma gondii in mice, such as NLRP1 [88]. 
In addition, candidate genes are related to macrophage 
regulation during helminth infection, such as KDM6B 
[89], response to Ostertagia ostertagi vaccination in cat-
tle, such as DHRS9 [90], and lipoxygenases (ALOXE3, 
ALOX12, ALOX12B, and ALOX15) associated with the 
inflammatory response in mice [91]. There are also genes 
related to body size and feed efficiency in sheep, such as 
ALOX12 and TP53 [92], and in cattle, such as TP53 [93], 
WSCD1 [94], and TRNAC-GCA​ [95], to adaptability, such 
as SLC2A4 for hypoxia [96] and CHD3 for disease resist-
ance and climate adaptation in sheep [97], and DVL2 [98] 
for thermal adaptation in cattle. Among the candidate 
genes involved in microbiota regulation, ABCB11 (also 
known as BSEP) plays a role in the transport of bile salts, 
whose direct microbial activity shapes the gut microbiota 

Fig. 1  snpBLUP genome-wide association study for eggs per gram (EPG) in Morada Nova sheep. Dashed line: FDR < 0.05
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[99], and NLGN2 gene expression in horses is affected by 
anthelmintic treatment, likely through an effect on the 
microbiota [100].

eQTL analysis
For gene expression, 48,682 significant (FDR < 0.05) eQTL 
consisting of 426 cis-eQTL (Additional file  2: Table  S7) 
and 48,256 trans-eQTL (Additional file  2: Table  S8) 
were detected, whereas transcript expression resulted 
in 9,999,256 eQTL: 2540 cis-eQTL (Additional file  2: 
Table  S9) and 9,986,716 trans-eQTL (Additional file  2: 
Table  S10). Among the significant eQTL, no DEG was 
regulated by significant variants. The lack of cis-eQTL for 
the significant variants suggests the absence of regulation 
among genes closely located on the same chromosome; 
however, the small sample size of this study has limited 
the power to identify smaller effects; a larger sample size 
generally results in gains for cis-eQTL mapping [101].

Trans-eQTL were detected for DETs (Table 5), includ-
ing transcripts of functional candidate genes, such as 
FGF14 associated with response to H. contortus in sheep 
[102] and RORC in goats [103]; LRRC8B associated with 
growth, body conformation, and weight [104]; DTX3 
[105] and ZNF789 [97] associated with adaptation; and 
RAPGEF2 [106] associated with microbiota.

Unmapped read analysis (RNA‑seq from H. contortus)
Between 0.4% and 1.0% of the total abomasum RNA-
seq data reads were mapped to H. contortus, resulting in 
0.1–0.4 M. Most of the 19,776 annotated genes had zero 

counts, and only 40 genes (0.2%) were retained for fur-
ther analyses.

The most highly expressed gene detected in all the 
samples was HCON_00026760, a non-annotated pseu-
dogene. No DEG using DESeq2 (Additional file  1: 
Table S11), edgeR (Additional file 1: Table S12), or t-test, 
and no DET using DESeq2 (Additional file 1: Table S13) 
or ballgown (Additional file 1: Table S14) were detected 
between the reads of H. contortus retrieved from resist-
ant and susceptible Morada Nova sheep.

Of the 40 genes, nine were exclusively expressed (Addi-
tional file  1: Table  S15) in H. contortus collected from 
resistant Morada Nova sheep; however, only in one 
sample each, whereas 26 genes were expressed exclu-
sively in H. contortus recovered from susceptible sheep 
(Additional file 1: Table S15), but only four in at least two 
samples: HCON_00174250 (Epsin-1), HCON_00667215 
(Cytochrome c oxidase subunit 1), HCON_00667245 
(NADH:ubiquinone reductase [H( +)-translocating]), and 
HCON_00667255 (NADH dehydrogenase subunit 6). 
Epsin-1 is an ENTH-domain protein involved in endocy-
tosis and lysosomal protein trafficking, and its silencing 
in Heterodera avenae, a cereal cyst nematode, results in 
a 71% reduction in females and eggs [107]. Cytochrome c 
oxidase, NADH:ubiquinone reductase, and NADH dehy-
drogenase are mitochondrial genes, which are considered 
potential targets for anthelmintic treatments because of 
the unique energy-transducing and anaerobic systems 
developed by nematode parasites in their adaptation to 
the low oxygen concentration of the mammalian host 
gastrointestinal tract [108, 109]. Despite their expression 

Table 5  Significant eQTL between SNP variants and differentially expressed transcripts (DET) upregulated in H. contortus-resistant or 
H. contortus-susceptible Morada Nova sheep

SNP (gene—chromosome) DET (gene—chromosome) Upregulated

OAR11_27473453.1 and s08310.1 (MED11 and intergenic—Chr11) XM_042241996.1 (TMEM187—ChrX) Susceptible

NC_056071.1:46893094_C/A (TRAPPC6B—Chr18) XM_042256817.1 (RORC—Chr1), XM_042243310.1 
(LOC121818624—Chr2), XM_027967527.2 (DTX3—Chr3), 
XM_042249264.1 (AGAP3—Chr4), XM_027970457.2 (THG1L—
Chr5), XM_042252750.1 (PTGR2—Chr7), XM_042255599.1 
(CHRNE—Chr11), XM_042230308.1 (CDC123—Chr13), 
XR_006056188.1 (LOC101122718—Chr14), XM_042234867.1 
(C17H22orf15—Chr17), XM_042237011.1 (BRD2—Chr20), 
XR_003586743.2 (KDSR—Chr23), XM_042240704.1 
and XM_042240703.1 (TECPR1—Chr24)

Resistant

XM_015092088.3 (LRRC8B—Chr1), XM_042251691.1 (HGFAC—
Chr6), XM_015097958.3 (FGF14—Chr10), XM_027977036.2 
(FAM110A—Chr13), XM_042234479.1 and XM_042234478.1 
(EP400—Chr17), XM_004021043.5 (ZNF789—Chr24), 
XR_003587432.2 (LOC114111361—ChrX), XR_006058459.1 
(LOC121818463—unknown)

Susceptible

NC_056077.1:4352395_C/A and NC_056077.1:4352403_C/T 
(MGRN1—Chr24)

XM_042234385.1 (RAPGEF2—Chr17) Resistant

NC_056079.1:6981437_A/G (SPCS3—Chr26) XM_015097958.3 (FGF14—Chr10) Susceptible
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in only one sample each, three genes related to collagen 
and cuticle composition were expressed exclusively in H. 
contortus recovered from susceptible sheep (Additional 
file  1: Table  S15). The nematode cuticle interacts with 
the host immune system and its major protein is collagen 
[110]. Genes associated with collagen and cuticle devel-
opment are upregulated in the transition from L3 to L4 in 
H. contortus [111].

The potential roles of epsin-1, mitochondrial, collagen-, 
and cuticle-related genes in the establishment and main-
tenance of infection and parasite fitness in sheep hosts 
should be further investigated in future studies and con-
sidered as potential targets for the development of new 
therapeutics against H. contortus.

Gene co‑expression network analysis
Early establishment of the gut microbiome is crucial 
for immune system development and maintenance of 
a healthy gut, including barrier function and mucosal 
immunity [112]. Moreover, the nematodes modulate 
their microbiome to provide an adequate environment 

for their survival [113]. The results obtained here from 
the microbiome may reflect the identification of taxa 
consistently associated with infection and resistance 
to H. contortus and must be interpreted carefully, as 
significant variations in bacterial populations were 
detected between trials in 2  years, consecutively, after 
immunization against and infection by T. circumcincta 
[114].

Co-expression network analysis detected four func-
tional modules based on the sheep RNA-seq gene data 
and ASVs (Fig.  2). Among these, three modules (Fig.  2 
and Table  6) exhibited a significant association with 
resistance to H. contortus, whereas one module was not 
associated with the trait. Notably, the most active mod-
ule, referred to as M1, encompassed 302 correlated fea-
tures (77 ASVs) and displayed a positive normalized 
enrichment score (NES) of 4.87 in the resistant group. 
In contrast, M2, consisting of 284 features (117 ASVs), 
exhibited a negative NES of − 3.75 in the resistant group, 
and M3, containing 240 features (36 ASVs), also exhib-
ited a negative NES of − 2.32 in the resistant group.

Fig. 2  Co-expression network analysis of sheep RNA-seq genes and amplicon sequence variants (ASV). The figure displays the normalized 
enrichment score (NES) of modules (red represents higher activity and blue represents lower activity), with circle size and color intensity 
proportional to the NES values

Table 6  Significant functional co-expression modules of sheep RNA-seq genes and amplicon sequence variants (ASV)

Module Number of features Hubs

M1 Genes = 225; archaea feces = 3; archaea rumen = 5; bacteria feces = 27; bacteria rumen = 42 LOC114116187 (CALHM6), CD8B, 
LOC114109611 (UBD), CD8A, 
LOC101122689 (TRGC1)

M2 Genes = 167; archaea rumen = 9; bacteria feces = 54; bacteria rumen = 54 ASV_Bac_1273_R, ASV_Bac_422_S, 
CCDC150, ASV_Bac_396_R, HKDC1

M3 Genes = 204; archaea feces = 1; archaea rumen = 4; bacteria feces = 16; bacteria rumen = 15 SLC26A7, HRH2, TNNI3, KCNJ16, PPP1R1A
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Hub genes/genera representative of each of the three 
modules associated with H. contortus resistance were 
also identified (Table 6 and Additional file 1: Tables S16 
and S17). In the case of M1, the hub features were genes 
associated with the immune system, such as CALHM6, 
CD8A, CD8B, and TRGC1. CD8A and CD8B encode 
subunits of the CD8 protein that occurs on the surface of 
cytotoxic T cells. A DNA vaccine conferring partial pro-
tection against H. contortus infection in goats resulted in 
increased CD8 + T lymphocyte production and reduced 
EPG and worm burden in the abomasum [115]. TRGC1 
encodes the gamma-constant region of the T cell recep-
tor surface, which recognizes and binds to specific anti-
gens and plays a multifaceted role in tissue homeostasis, 
autoimmunity, pro- and antitumor activity, and innate 
and adaptive immune responses [116, 117]. However, no 
relationship between TRGC1 and nematode infections 
has been previously described.

The M2 module had three ASVs as hub features: ASV_
Bac_1273_R, classified as belonging to the Christensenel-
laceae R-7 group genus; ASV_Bac_396_R, classified as 
the Kiritimatiellae class (both found in the rumen); and 
ASV_Bac_422_S, classified as the Bacteroides genus, 
from the fecal samples. In addition, the HKDC1 hub gene 
from M2, which exhibited reduced activity in resistant 
animals, is associated with glucose use and homeostasis 
[118].

SLC26A7 and KCNJ16 are hub genes in the M3 mod-
ule that exhibited lower activity in resistant animals. 
These genes are related to homeostasis and pH balance 
[119] and, in addition to HRH2, they impair gastric acid 
secretion [120, 121]. Previous studies have hypothesized 
that gastric acid protects against nematode infections, as 
shown by reduced gastric acid secretion and predispo-
sition to infection by a variety of nematodes, including 

Ostertagia spp. and T. colubriformis in sheep [122, 123]. 
H. contortus infection causes a significant increase in the 
abomasal pH during the early and late stages of infec-
tion in goats [124]. Our findings present a correlation 
between gastric acid secretion and susceptibility to H. 
contortus. Therefore, compared to resistant animals, sus-
ceptible animals are less able to respond to H. contortus 
infection through gastric acid secretion, which, in turn, 
results in higher infection rates.

The annotated genes were subjected to pathway anal-
ysis to capture biological information using enriched 
terms (Fig.  3 and Additional file  1: Table  S18). For 
genes in M1, the top pathways and processes included 
responses to bacteria and positive regulation of immune 
and inflammatory responses, which are traits intrinsically 
related to parasite resistance. Nematodes have evolved 
immunomodulatory mechanisms to suppress host 
immune responses and promote infection [125]. Knowl-
edge of the mechanisms and target molecules involved 
in the inflammatory response may provide an effective 
means of nematode parasite control [126]. For genes in 
M2, the enriched terms were related to the regulation of 
insulin-like growth factor transport and uptake by insu-
lin-like growth factor binding proteins, post-translational 
protein phosphorylation, and degradation of the extra-
cellular matrix. In addition, for genes in M3, gastric acid 
secretion was highlighted.

Enrichment of the genera classified as Prevotella, 
Treponema, Christensenellaceae R-7 group, and Metha-
nobrevibacter was observed in the M1 and M2 modules. 
Four ASVs were observed in both the rumen and feces 
in M1: ASV_98 and ASV_23, classified as the p-251-o5 
and [Eubacterium] coprostanoligenes group bacterial 
families, and ASV_13 (Methanobrevibacter genus) and 
ASV_6 (Candidatus Methanomethylophilus), which are 

Fig. 3  Metascape enrichment analysis of statistically enriched ontology terms of hub genes/genera from three functional co-expression modules 
of sheep RNA-seq genes and amplicon sequence variants (ASV). Heatmap of enriched terms across input gene lists, colored by p-values
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two archaea. For M2, five archaeal ASVs, i.e., ASV_3, 
ASV_4, ASV_8, ASV_31, and ASV_57, which are classi-
fied as Methanobrevibacter, were enriched. Among the 
ASVs, the p-251-o5 family identified in M1 has been 
described in the fecal microbiota of pigs [127] and in 
the rumen of ewes and cows [128, 129]. In addition, 
the [Eubacterium] coprostanoligenes group, an anaero-
bic bacterium potentially impacting host lipid metabo-
lism [130], was less abundant in Tibetan sheep infected 
with gastrointestinal nematodes [131], supporting our 
results and suggesting that it may be a promising tar-
get for H. contortus resistance. Christensenellaceae R-7, 
a hub feature in M2, is associated with amino acid and 
lipid metabolism and human metabolic health in dif-
ferent disease contexts, including obesity and inflam-
matory bowel disease [132]. The relative abundance of 
Christensenellaceae decreases in goats infected with H. 
contortus [124]. The Bacteroides genus, an ASV from 
feces in the M2 module, is considered beneficial to 
hosts as it prevents potential pathogens from coloniz-
ing the gut and processes complex molecules into sim-
pler molecules [133].

The hub archaeal ASV, classified as Methanobrevi-
bacter genus in the M2 module, plays a notable role in 
the gut microbial ecosystem [134] by contributing to 
the efficient digestion of polysaccharides by consuming 
the end products of bacterial fermentation [135]. It is 
considered a potential therapeutic target for managing 
gastrointestinal disorders [136]. Anthelmintic treat-
ment of adult ewes significantly affects the archaeal 
community, resulting in increased relative abundance 
of different Methanobacteria [137]. An increase in 
Methanobrevibacter has been observed during chronic 
Trichuris trichiura infections in humans [138]. It was 
hypothesized that H. contortus infection could increase 
mucus secretion [139], which would provide energy for 
adapted microorganisms, including the mucus colo-
nizer Methanobrevibacter [138]. Thus, the potential 
role of Methanobacteria in controlling H. contortus 
infections is of interest.

Transcript co‑expression network analysis
Co-expression network analysis of RNA-seq tran-
script data identified 26 functional co-expression mod-
ules (Additional file  5: Figure S3 and Additional file  1: 
Table S19) and hub features (Additional file 1: Table S20). 
The top modules and hub features (Table  7) were M2 
(294 features with 55 ASVs, NES = − 3.85), M25 (123 fea-
tures with seven ASVs, NES = − 3.29), M6 (263 features 
with 31 ASVs, NES = 3.66), and M10 (231 features with 
eight ASVs, NES = 3.4).

The M2 and M25 modules of the transcript net-
works were less active in resistant animals. Regard-
ing M2, several ASVs were identified as hubs, including 
the same ASVs found in the gene level M2 module. 
ASV_Bac_250_R, classified as Verrucomicrobiota and 
identified as a hub for M2, is associated with mucin deg-
radation, glucose homeostasis, and immunity regulation 
[140]. Previous studies have described a symbiotic asso-
ciation between Verrucomicrobia and soil nematodes 
[141], and the abundance of the Verrucomicrobiota phy-
lum was decreased in the abomasum of lambs infected 
with H. contortus [142], suggesting potential mechanisms 
for therapeutic interventions.

For M6, five ASVs were identified as hubs: ASV_
Bac_1254_R (Prevotella), ASV_Bac_433_R (Rumi-
nococcus gauvreauii group genus), ASV_Bac_115_R 
(Prevotellaceae NK3B31 group genus), ASV_Bac_269_R 
(Prevotella), and ASV_Bac_218_S (Lachnospiraceae). 
In addition, previous studies have shown an increase in 
Prevotella abundance in the ruminal, fecal, and abomasal 
microbiota of sheep and goats infected with H. contortus 
[15, 143].  In the present study, a decrease in Prevotella 
abundance associated with H. contortus susceptibil-
ity was observed, which is consistent with more recent 
findings after H. contortus infection [124, 142] and other 
nematode infections in humans [144] and mice [145]. In 
addition, as the Prevotella genus specializes in complex 
polysaccharide degradation, such as starch and cellulose, 
and contributes to the metabolism of dietary fiber [146], 
its reduction may affect feed digestion, resulting in low 

Table 7  Top significantly functional co-expression modules of sheep RNA-seq transcripts and amplicon sequence variants (ASV)

Module Number of features Hubs

M2 Isoforms = 239; archaea feces = 2; archaea rumen = 3; 
bacteria feces = 24; bacteria rumen = 26

ASV_Bac_396_R, ASV_Bac_250_R, XM_042238037.1 (SYTL2), ASV_Bac_1273_R, 
ASV_Bac_422_S

M6 Isoforms = 232; archaea feces = 3; archaea rumen = 4; 
bacteria feces = 11; bacteria rumen = 13

ASV_Bac_1254_R, ASV_Bac_433_R, ASV_Bac_115_R, ASV_Bac_269_R, ASV_Bac_218_S

M10 Isoforms = 223; archaea rumen = 1; bacteria rumen = 7 XM_027958292.2 (SFMBT1), XM_042256129.1 (MAPT), XM_042230866.1 (ZNF570), 
ASV_Bac_239_R, XM_027964183.2 (SEMA4D)

M25 Isoforms = 116; bacteria feces = 4; bacteria rumen = 3 XM_042250691.1 (PWWP2A), XM_027978299.2 (COQ8B), XM_012180311.3 (PTPN13), 
XM_042247173.1 (RIC8B), XM_042237043.1 (SSR1)
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weight gain in infected animals [145] and, consequently, 
lower resilience to parasites.

Regarding pathway-enriched terms (Fig.  4 and Addi-
tional file  1: Table  S21), the genes associated with each 
transcript were enriched in the MAPK, Wnt, and EGF/
EGFR signaling pathways, morphogenesis, and cellular 
processes, including the regulation of cell morphogen-
esis, chromatin organization, and actin cytoskeleton 
organization. Additionally, transcripts representing the 
same genes (i.e., ABO, ASAP2, ADGRF5, ARHGAP12, 
CAPN15, and FN1) were identified in various modules.

None of the H. contortus genes or transcripts was sig-
nificantly correlated with the identified modules.

Conclusions
Gene and transcript expression data and genomic mark-
ers from Morada Nova sheep were investigated and 
associated using eQTL to assess their roles in the phe-
notype of H. contortus resistance. Some candidate genes 
were related to immune response and parasite resistance 
(ALOX12, ALOX12B, ALOX15, CD68, CXCL16, DHRS9, 
DNAH2, FGF14, GAST, GNLY, GP1BA, IL13, KDM6B, 
LRP2, MGRN1, NLRP1, RABEP1, RORC, and TNFSF13), 
growth and weight (ENO3, TP53, LRRC8B, TRNAC-
GCA​, and WSCD1), environmental adaptation (CHD3, 
DTX3, DVL2, GNGT1, SLC2A4, TRNAG-CCC​, and 
ZNF789), and microbiota regulation (ABCB11, NLGN2, 
and RAPGEF2). Through eQTL mapping, SNP variants 
were predicted to regulate the differential expression of 
transcripts, including candidate genes (DTX3, FGF14, 
LRRC8B, RORC, and SNF789). These genes represent 
potential molecular markers for the detection and selec-
tion of H. contortus-resistant animals. Transcriptomic 
and genomic data from hosts, expression data from H. 

contortus, and ASVs from the microbiota of feces and 
rumen were integrated to detect the biological func-
tions and pathways resulting in resistance. The genes 
(mitochondrial, collagen-, and cuticle-related genes) 
expressed in H. contortus may modulate evasion from 
the host immune system, facilitating the establishment of 
infection. Furthermore, the sheep genes (CD8A, CD8B, 
HKDC1, KCNJ16, SLC26A7, and TRGC1) and biologi-
cal pathways (positive regulation of the immune system, 
response to bacteria, inflammatory response, gastric 
acid secretion, and mucus secretion) identified using 
this multi-omics approach are potential modulators of 
host immunity. Additionally, enriched microbiota (Bac-
teroides, Christensenellaceae R-7, [Eubacterium] copros-
tanoligenes group, Methanobrevibacter, Prevotellaceae, 
and Verrucomicrobiota) may regulate host metabolism 
(homeostasis, glucose use, amino acid and lipid metabo-
lism, and dietary fiber degradation), resulting in resist-
ance to parasite infection. The parasitic genes, biological 
pathways, and microbiomes identified in this study are 
potential targets for the development of new therapeutics 
aimed at increasing host resistance and parasitic control 
in sheep flocks.
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