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Abstract 

Background Indoor residual spraying (IRS) was first implemented in the Atacora department, Benin from 2011 
to 2012 using bendiocarb (carbamate) followed by annual spraying with pirimiphos-methyl (organophosphate) 
from 2013 to 2018. Before and after IRS implementation in Atacora, standard pyrethroid insecticide-treated bed 
nets were the main method of vector control in the area. This study investigated the knockdown resistance (kdr) 
gene (L1014F) and the acetylcholinesterase (ace-1) gene (G119S), before and during IRS implementation, and 4-years 
after IRS withdrawal from Atacora. This was done to assess how changes in insecticide pressure from indoor residual 
spraying may have altered the genotypic resistance profile of Anopheles gambiae s.l.

Method Identification of sibling species of An. gambiae s.l. and detection of the L1014F mutation in the kdr gene 
and G119S mutation in ace-1 genes was done using molecular analysis. Allelic and genotypic frequencies were cal-
culated and compared with each other before and during IRS implementation and 4 years after IRS withdrawal. The 
Hardy–Weinberg equilibrium and genetic differentiation within and between populations were assessed.

Results Prevalence of the L1014F mutation in all geographic An. gambiae s.l. (An. gambiae s.s., Anopheles. coluzzii, 
Anopheles. arabiensis, and hybrids of “An. gambiae s.s. and An. coluzzii”) populations increased from 69% before IRS 
to 87% and 90% during and after IRS. The G119S allele frequency during IRS (20%) was significantly higher 
than before IRS implementation (2%). Four years after IRS withdrawal, allele frequencies returned to similar levels 
as before IRS (3%). Four years after IRS withdrawal, the populations showed excess heterozygosity at the ace-1 gene 
and deficit heterozygosity at the kdr gene, whereas both genes had excess heterozygosity before and during IRS 
(FIS < 0). No genetic differentiation was observed within the populations.
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Background
The massive use of insecticide-based vector control 
interventions such as indoor residual spraying (IRS) con-
tributes to the insecticide resistance of target vectors 
[1, 2]. In Africa, and particularly in Benin, high insecti-
cide resistance has been documented in various vector 
populations in the different intervention areas [3–6]. 
Various insecticide detoxification mechanisms have 
been described, and some are likely mediated through 
the modification of the genetic structure [2, 7–10]. For 
example, mutations in sodium channel modulators/
knockdown resistance gene of mosquitoes are thought to 
induce insecticide resistance to pyrethroids, while muta-
tions in the acetylcholinesterase gene (ace-1) can induce 
resistance to carbamates or organophosphates [11].

In Benin, large-scale (blanket spray: geographic-wide) 
IRS with Ficam  M® (bendiocarb 800  g/kg; carbamate) 
occurred from 2008 to 2010 in the southern Benin dis-
tricts of Adjohoun, Akpro-Misserete, Dangbo, and 
Semé-Podji located in the Ouémé department [12, 13]. 
Benin shifted the IRS program to the Atacora district in 
the northern of the country, where Ficam  M® was used 
in 2011 and in 2012 [12, 14, 15]. The organophosphate, 
pirimiphos-methyl 50 EC was used in 2013, and pirimi-
phos-methyl 300 CS was used from 2014 to 2018 [14, 
15]. As a result of the implementation of IRS in Atacora, 
there have been several insecticide resistance studies in 
the department that have used bioassays, biochemical 
tests, and molecular tests to characterize resistance lev-
els in Anopheles gambiae s.l. populations [4, 7, 14, 16, 
17]. These studies revealed suspected resistance, as well 
as resistance of mosquito vectors to bendiocarb and 
pyrethroids.

From 2017, IRS was gradually withdrawn from Ata-
cora and transferred to other departments; In 2019, IRS 
was completely withdrawn, although one focal round of 
IRS did occur in 2020 in Kouandé commune [18]. How-
ever, only communes withdrawn in 2017 are involved 
in the present study. IRS withdrawal from Atacora was 
done to (1) reduce the pressure of insecticides from the 
multiple cycles of IRS, (2) assess if malaria transmission 

was adequately suppressed to allow for routine malaria 
services such as case management and insecticide 
treated bednets (ITNs) through continuous distribu-
tion to sustain malaria reduction, and (3) allow other 
districts to benefit from transmission reduction efficacy 
of IRS [14].

To determine if the withdrawal of IRS led to a 
decrease in resistance allele frequencies in populations 
of An. gambiae s.l., this study explores the changes in 
kdr (L1014F) and ace-1 (G119S) frequencies in An. 
gambiae s.l. populations at distinct benchmarks of IRS 
implementation: before IRS implementation (2010), 
during IRS implementation (2016), and 4  years after 
IRS withdrawal (2020).

Methods
Study area
Figure 1 provides a map of the study sites in the Atacora 
department. The Atacora department has a total area of 
20,499   km2 and a population of 772,262 people [19]. It 
is subdivided into nine districts, with Natitingou as the 
head town. The department of Atacora is a mountainous 
area with an average altitude of 700  m and the highest 
peak of 835  m is in Boukoumbé. It is the source of the 
major rivers of Benin and Togo [19]. The climate is tropi-
cal savanna with two seasons: the rainy season from June 
to October and the dry season from November to May. 
The soil is favorable to the cultivation of tubers and root 
crops (yam, cassava, and sweet potato), cereals (millet, 
maize, fonio, sorghum), and legumes [beans and voand-
zou (Bambara groundnut)], for which insecticides are 
used to control agricultural pests. The department’s pre-
dominant sectors of activity are “agriculture, fishing, and 
hunting” with a proportion of 77.2% [19]. Entomological 
and insecticide resistance monitoring of IRS has been 
conducted in the districts of Natitingou, Boukoumbé, 
Touncountouna, and Péhunco from 2010 to 2020. The 
data available in the district of Natitingou before and 
during the IRS were insufficient for comparison tests, so 
only the other three districts were included in this study.

Conclusions This study shows that the withdrawal of IRS with bendiocarb and pirimiphos-methyl may have slowed 
down the selection of individual mosquitoes with ace-1 resistance alleles in contrast to populations of An. gambiae s.l. 
with the L1014F resistance allele of the kdr gene. This may suggest that withdrawing the use of carbamates or organo-
phosphates from IRS or rotating alternative insecticides with different modes of action may slow the development 
of ace-1 insecticide-resistance mutations. The increase in the prevalence of the L1014F mutation of the kdr gene 
in the population, despite the cessation of IRS, could be explained by the growing use of pyrethroids and DDT in agri-
culture and for other domestic use. More observational studies in countries where carbamates or organophosphates 
are still being used as public health insecticides may provide additional insights into these associations.

Keywords Anopheles gambiae, IRS withdrawal, Genetic structure, Resistance, Benin
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Mosquito collections
Adult mosquitoes collected before the IRS implemen-
tation period (2010) originated from pyrethrum spray 
catches. Mosquitoes collected during the IRS imple-
mentation period (2016) and 4  years after IRS with-
drawal (2020) originated from human landing catches 
from the three study districts (Boukoumbé, Toucoun-
touna, and Péhunco).

Mosquito samples before IRS had been collected dur-
ing Benin’s rainy season (September/October). Samples 
used “during IRS implementation period” were col-
lected in the dry season (March) and in the rainy sea-
son (June and August). Mosquito samples used 4 years 
after IRS withdrawal” were collected in the dry season 
(February/March) and in the wet season (September).

In each district, two villages were selected—a central 
village and a village on the periphery. Adult mosquitoes 
were captured during the two consecutive nights from 
19.00 to 06.00 of each visit by local volunteers. Two 
houses were selected at random per villages. One col-
lector inside and one collector outside were stationed 
at a household for hourly collections of mosquitoes at 
the level of each household. A total of 8 local catchers 
were selected per village and 16 per district. No insec-
ticide-resistance bioassays were done on the collected 

mosquitoes as this activity was not initially considered 
at the time of the collection.

Identification of sibling species in Anopheles gambiae 
complex
Collected mosquitoes were identified and separated at 
species level based on morphological criteria according 
to established taxonomic keys [20, 21]

Molecular characterization of Anopheles gambiae s.l. 
populations were performed on 1092 collected mos-
quitoes. The head and thorax of the mosquitoes were 
separated for further studies, while the rest of the body 
(abdomen, wings, and legs) was used for genomic DNA 
extraction and molecular characterization. DNA was 
extracted following the protocol of Myriam and Cécile 
[22].

Identification of the different species
The extracted genomic DNA was used for molecular 
identification of the species of the An. gambiae s.l. com-
plex. All mosquitoes were subjected to polymerase chain 
reaction (PCR) using the protocol of Scott et  al. [23] to 
identify the different species of the An. gambiae complex.

The technique of Santolamazza et al. [24] was used to 
distinguish the twin species An. gambiae and Anopheles 

Fig. 1 Map of the study area in the Atacora department of Benin



Page 4 of 12Odjo et al. Parasites & Vectors          (2024) 17:115 

coluzzii. The PCR products are stored at a final temper-
ature of 4 ℃ before being migrated by 1.5% agarose gel 
electrophoresis with ethidium bromide as an intercalat-
ing agent.

Detection of the L1014F mutation on the kdr gene
The presence of the resistance allele (L1014F) of the 
kdr gene in samples collected from each study site was 
detected for each period by PCR following the protocol 
described by Martinez-Torres et al. [25].

The amplification program is composed of 40 cycles. 
Each cycle includes: initial denaturation at 94  ℃ for 
1 min, hybridization at 48 ℃ for 2 min, and elongation at 
72 ℃ for 2 min. Finally, this PCR ends with a final elonga-
tion at 72 ℃ for 10 min [23].

Detection of the G119S mutation on the ace‑1 gene
The G119S mutation was detected for each period using 
mosquitoes collected according to the protocol of Weill 
et al. [26]. For this PCR, the following primers were used: 
Moustdir1 5′-CCGGGNGCSACY ATG TGGAA-3′ and 
Moustrev1 5′-ACGATMACG TTC TCY TCC GA-3′, 
and the amplification program was as follows: 30 cycles 
and each cycle included denaturation at 94 ℃ for 30  s, 
hybridization at 52 ℃ for 30 s, and elongation at 72 ℃ for 
1 min. The PCR products were digested with AluI restric-
tion enzyme according to the manufacturer’s instructions 
before migration onto a 2% agarose gel.

Statistical analysis
To calculate the allelic and genotypic frequencies of the 
kdr and ace-1 genes in each district and by species, strati-
fied 3 × 3 × 3 and 2 × 3 × 3 contingency tables were done 
in IBM-SPSS Statistics  Subscription® (Build 1.0.01406). 
Pearson’s chi-square (χ2) test was done for the compari-
son of proportions. Pairwise comparisons of column 
proportions were done using the z-test for proportions 
and the P values adjusted with the Bonferroni method 
to account for multiple comparisons. Frequencies of the 
mutant allele kdr L1014F and ace-1R G119S were calcu-
lated using the formula:

 where  F® is the frequency of resistance, n is the num-
ber of mosquitoes of a given genotype, RR is the homozy-
gous resistant genotype, RS is the heterozygous resistant 
genotype, and SS is the susceptible genotype [27]. A mul-
tivariable logistic regression was done in RStudio ver-
sion 1.3.959 and R statistical software version 4.21 to 
determine the association (odds ratio) between the inde-
pendent parameters: (1) IRS periods (before, during, and 
4 years after IRS withdrawal), (2) location (Boukoumbé, 

F(R) =
2nRR+ nRS

2(nRR+ nRS + nSS)
,

Péhunco, and Toucountouna), and (3) mosquito species 
(An. gambiae s.s. versus non-An. gambiae s.s. sibling spe-
cies); and the explanatory variables:

• the kdr logit—the homozygous resistant kdr geno-
type (1014F/1014F) versus the combined heterozy-
gous resistant and homozygous susceptible kdr geno-
types (1014L/1014F and 1014L/1014L), and

• the ace-1 logit—the combined homozygous and 
heterozygous resistant genotypes (119S/119S 
and 119G/119S) versus the susceptible genotype 
(homozygous 119G).

Genetic differentiation of the population
Hardy–Weinberg equilibrium was checked for each pop-
ulation with Genetics software version 4.7.5. The Weir 
and Cockerham [28] fixation index (FIS) was calculated 
using Genepop software.

All the mosquitoes from the Department of Atacora 
are considered here as the sample population. Thus, the 
different districts involved are considered as subpopula-
tions, and the genetic differentiation of the population 
(FST) was assessed before, during, and 4  years after the 
IRS.

The indices of genetic differentiation within popula-
tions (FST) were calculated using the Genepop version 
4.7.5 software and the criteria of Daniel Harlt [29] were 
used to assess them.

Results
Molecular identification of Anopheles gambiae s.l.
A total of 1092 mosquitoes were analyzed during the 
study. The different species obtained during the mosquito 
identification are displayed on the bar graph in Fig. 2. The 
bar graph presents the proportions and number of indi-
viduals of An. gambiae s.l. species collected in different 
districts and during different periods.

A Pearson’s chi-square analysis comparing An. gam-
biae s.s. and the other grouped An. gambiae s.l. sibling 
species by period and location showed that there was no 
statistically significant difference in the proportion of An. 
gambiae s.l. observed before, during, and 4  years after 
IRS (χ2 = 5.838, degree of freedom (df) = 2, P = 0.540), and 
there was no statistically significant difference in the pro-
portion of mosquito species by location (χ2 = 0.656, df = 2, 
P = 0.720).

Before IRS, An. gambiae s.s. was nearly the exclusive 
Anopheles species collected in all districts; An. coluzzii 
was only found at 3.6% in Péhunco. During IRS, the 
percentage of An. gambiae s.s. ranged from 83.3% in 
Toucountouna to 96.8% in Boukoumbé, while the pro-
portion of An. coluzzii was 3.2% in Boukoumbé, 9.1% in 
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Péhunco, and 16.7% in Toucountouna. Four years after 
IRS, An. gambiae s.s. remained the dominant Anoph-
eles species in all districts with proportions of 90.6% 
in Boukoumbé, 92.1% in Péhunco, and 90.0% in Tou-
countouna; the percentage of An. coluzzii was 9.4% in 

Boukoumbé, 6.7% in Péhunco, and 10.0% in Toucoun-
touna. An. arabiensis and a hybrid form of An. gambiae 
s.s. and An. coluzzii were also found in Péhunco dur-
ing this period, albeit at very low percentages (1.1% and 
0.2%, respectively).

Fig. 2 Percentage of Anopheles gambiae s.l. species collected by period and by district, before IRS (BIRS) in 2010, during IRS (DIRS) in 2016, and 4 
years after IRS withdrawal (WIRS) in 2020; Ag, An. gambiae s.s.; Ac, An. coluzzii; Aa, An. arabiensis; hy, hybrids are An. gambiae s.s. and An. coluzzii 

Table 1 Percentages of the genotypic (n) and the mutant [1014F] allelic (95% confidence interval) frequencies of the kdr gene in 
Anopheles gambiae s.l. populations by period and location using a layered 3 × 3 × 3 contingency table

Each superscript letter denotes a subset of genotype categories whose column proportions do not differ significantly from each other at the 0.05 level. BIRS, before 
IRS; DIRS (2010), during IRS (2016); WIRS, 4 years after IRS withdrawal (2020). †Frequency of the 1014F allele with the 95% confidence interval

Location Period Mos (n) RR
1014F/1014F

RS
1014L/1014F

SS
1014L/1014L

F†

[1014F allele]
P

Boukoumbé BIRS 27 37% (10)a 63% (17)a 0% (0) 69% (56–81%)  < 0.001

DIRS 31 74% (23)b 26% (8)b 0% (0) 87% (79–95%)

WIRS 277 87% (240)b 6% (17)c 7% (20) 90% (87–92%)

Péhunco BIRS 28 32% (9)a 68% (19)a 0% (0) 66% (54–78%)  < 0.001

DIRS 33 79% (26)b 21% (7)b 0% (0) 89% (82–97%)

WIRS 554 87% (481)b 7% (37)c 7% (36) 90% (88–92%)

Toucountouna BIRS 26 50% (13)a 42% (11)a 8% (2)a 71% (59–83%) 0.001

DIRS 36 69% (25)a,b 28% (10)a 3% (1)a 83% (75–92%)

WIRS 80 84% (67)b 8% (6)b 9% (7)a 88% (82–93%)

Total BIRS 81 40% (32)a 58% (47)a 3% (2)a 69% (61–76%)  < 0.001

DIRS 100 74% (74)b 25% (25)b 1% (1)a 87% (82–91%)

WIRS 911 87% (788)c 7% (60)c 7% (63)a 90% (88–91%)
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Prevalence of kdr mutations
Tables  1 and 2 and Fig.  3 illustrate frequencies of the 
kdr alleles at different periods (before IRS, during IRS, 
and 4  years after IRS withdrawal) stratified by location 
(Boukoumbé, Péhunco, and Toucountouna districts) 
and species (An. gambiaes.s. only and other grouped An. 
gambiae s.l. sibling species). Before IRS, during IRS and 
4  years after IRS withdrawal, the frequencies of the kdr 
gene for An. gambiae s.l. populations were 69%, 87%, and 
90%, respectively, for the district of Boukoumbé; 66%, 
89%, and 90% for the district of Péhunco; and 71%, 83%, 
and 88% for district the of Toucountouna. During the 

same periods, kdr gene frequencies for An. gambiae s.s. 
only populations were 69%, 88%, and 92% for all districts. 
The frequencies for non-An. gambiae s.s. were 50%, 75%, 
and 71% in the same districts. The period was signifi-
cantly associated with the frequency of the kdr genotypes 
irrespective of location (Table  1) and species (Table  2) 
stratification. Tables  1 and 2 and Fig.  3 show that the 
1014F kdr allele frequency significantly increased over 
time, where the aggregated frequency was 69% [95% con-
fidence interval (CI) 61–76%] before IRS, 87% (95% CI 
82–91%) during IRS, and 90% (95% CI 88–91%) 4 years 
after IRS withdrawal.

Table 2 Percentages of the genotypic (n) and the mutant [1014F] allelic (95% confidence interval) frequencies of the kdr gene in 
Anopheles gambiae s.l. populations by period and species using a layered 2 × 3 × 3 contingency table

Each superscript letter denotes a subset of genotype categories whose column proportions do not differ significantly from each other at the 0.05 level. BIRS, before 
IRS; DIRS (2010), during IRS (2016); WIRS, 4 years after IRS withdrawal (2020); Ag, An. gambaiae s.s. only; Non-Ag, all other An. gambiae s.l. sibling species. †Frequency of 
the 1014F allele with the 95% confidence interval

Species Period Mos (n) RR
1014F/1014F

RS
1014L/1014F

SS
1014L/1014L

F†

[1014F allele]
P

Ag BIRS 80 40% (32)a 58% (46)a 3% (2)a 69% (62–76%)  < 0.001

DIRS 90 77% (69)b 22% (20)b 1% (1)a 88% (83–93%)

WIRS 833 89% (739)c 6% (48)c 6% (46)a 92% (90–93%)

Non-Ag BIRS 1 0% (0) 100% (1)a,b 0% (0) 50% (0–0%) 0.020

DIRS 10 50% (5)a 50% (5)b 0% (0) 75% (56–94%)

WIRS 78 63% (49)a 15% (12)a 22% (17) 71% (63–78%)

Total BIRS 81 40% (32)a 58% (47)a 3% (2)a 69% (61–76%)  < 0.001

DIRS 100 74% (74)b 25% (25)b 1% (1)a 87% (82–91%)

WIRS 911 87% (788)c 7% (60)c 7% (63)a 90% (88–91%)

Fig. 3 Bar chart showing the kdr allelle frequency (percentage with standard error bars in the first panel) in An. gambiae s.l. in the districts 
of the Atacora department of Benin by species and period
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While location and kdr genotypes were not signifi-
cantly associated (χ2 = 9.101; df = 4; P = 0.059), mos-
quito species were significantly associated with kdr 
genotypes (χ2 = 37.957; df = 2; P < 0.001). This association 
seems to be driven by the period 4 years after IRS with-
drawal, where An. gambiae s.s. only had high frequency 
of homozygous (1014F/1014F) kdr mutant genotypes 
(RR of 89%, RS of 6%, and SS of 6%) and non-An. gambiae 
s.s had a lower frequency of homozygous kdr-mutant 
genotypes (RR of 63%, RS of 15%, and SS of 22%).

Odds ratios of a multivariable logistic regression 
(Table  5) showed a significant increase an ~5 and ~12 
times the odds of mosquitoes being homozygous for 
the 1014F allele when comparing the periods, during 
IRS, and 4  years after IRS withdrawal with the before 

IRS period, respectively. There was no difference in the 
odds of mosquitoes being homozygous for 1014F by loca-
tion. Also, non-An. gambiae s.s. had a significant ~80% 
decrease in the odds of being homozygous for 1014F 
compared with An. gambiae s.s.

Prevalence of ace‑1 mutations
Tables  3 and 4 and Fig.  4 show frequencies of the ace-
1 alleles at different periods (before IRS, during IRS, 
and 4  years after IRS withdrawal) stratified by location 
(Boukoumbé, Péhunco, and Toucountouna districts), 
and species (An. gambiae s.s. only and other grouped An. 
gambiae s.l. sibling species). Before IRS, during IRS, and 
4 years after IRS withdrawal, the frequencies of the ace-1 
gene for An. gambiae s.l. populations were 0%, 21%, and 

Table 3 Percentages of the genotypic (n) and the mutant [119S] allelic (95% confidence interval) frequencies of the ace-1 gene in 
Anopheles gambiae s.l. populations by period and location using a layered 3 × 3 × 3 contingency table

Each superscript letter denotes a subset of genotype categories whose column proportions do not differ significantly from each other at the 0.05 level. BIRS, before 
IRS; DIRS (2010), during IRS (2016); WIRS, 4 years after IRS withdrawal (2020). †Frequency of the 119S allele with the 95% confidence interval

Location Period Mos (n) RR
119S/119S

RS
119G/119S

SS
119G/119G

F†

[119S allele]
P

Boukoumbé BIRS 27 0% (0) 0% (0) 100% (27)a 0% (0–0%)  < 0.001

DIRS 31 0% (0) 42% (13)b 58% (18)b 21% (11–31%)

WIRS 277 0% (0) 5% (15)a 95% (262)a 3% (1–4%)

Péhunco BIRS 28 0% (0) 7% (2)a,b 93% (26)a 4% (−1% to 8%)  < 0.001

DIRS 33 9% (3) 24% (8)b 67% (22)b 21% (11–31%)

WIRS 554 0% (0) 7% (40)a 93% (514)a 4% (3–5%)

Toucountouna BIRS 26 0% (0) 4% (1)a 96% (25)a 2% (−2% to 6%) 0.001

DIRS 36 3% (1) 31% (11)b 67% (24)b 18% (9–27%)

WIRS 80 0% (0) 6% (5)a 94% (75)a 3% (0–6%)

Total BIRS 81 0% (0) 4% (3)a 96% (78)a 2% (0–4%)  < 0.001

DIRS 100 4% (4) 32% (32)b 64% (64)b 20% (14–26%)

WIRS 911 0% (0) 7% (60)a 93% (851)a 3% (2–4%)

Table 4 Percentages of the genotypic (n) and the mutant [119S] allelic (95% confidence interval) frequencies of the ace-1 gene in 
Anopheles gambiae s.l. populations by period and species using a layered 2 × 3 × 3 contingency table

Each superscript letter denotes a subset of genotype categories whose column proportions do not differ significantly from each other at the 0.05 level. BIRS, before 
IRS; DIRS (2010), during IRS (2016); WIRS, 4 years after IRS withdrawal (2020); Ag, An. gambiae s.s. only; Non-Ag: All other An. gambiae s.l. sibling species. †Frequency of 
the 119S allele with the 95% confidence interval

Location Period Mos (n) RR
119S/119S

RS
119G/119S

SS
119G/119G

F†

[119S allele]
P

Ag BIRS 80 0% (0) 4% (3)a 96% (77)a 2% (0–4%)  < 0.001

DIRS 90 4% (4) 33% (30)b 62% (56)b 21% (15–27%)

WIRS 833 0% (0) 7% (57)a 93% (776)a 3% (3–4%)

Non-Ag BIRS 1 0% (0) 0% (0) 100% (1)a 0% (0–0%)

DIRS 10 0% (0) 20% (2)a 80% (8)a 10% (−3% to –23%) 0.110

WIRS 78 0% (0) 4% (3)a 96% (75)a 2% (0–4%)

Total BIRS 81 0% (0) 4% (3)a 96% (78)a 2% (0–4%)  < 0.001

DIRS 100 4% (4) 32% (32)b 64% (64)b 20% (14–26%)

WIRS 911 0% (0) 7% (60)a 93% (851)a 3% (2–4%)
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3%, respectively, for the district of Boukoumbé; 4%, 21%, 
and 4% for district of Péhunco; and 2%, 18%, and 3% for 
district of Toucountouna. These frequencies were 2%, 
21%, and 3% for An. gambiae s.s. only before IRS, during 
IRS and 4 years after IRS withdrawal versus 0%, 10%, and 
2% for non-An. gambiae s.s., in all the study districts.

The period was significantly associated with the fre-
quency of the ace-1genotypes irrespective of the location 
(Table 3) stratification. However, the association between 
period and the ace-1 genotypes varied by the species 

stratification; Table  4 presents that in the An. gambiae 
s.s. only strata the association was statistically significant 
(χ2 = 115.623; df = 4; P < 0.001) and in the non-An. gam-
biae s.s. strata the association was not statistically signifi-
cant (χ2 = 4.422; df = 2; P = 0.110).

Tables 3 and 4 and Fig. 4 show that the 119S ace-1 allele 
frequency significantly increased during IRS but was low 
before and after IRS; the aggregated frequency was 2% 
(95% CI 0–4%) before IRS, 20% (95% CI 14–26%) during 
IRS, and 3% (95% CI 2–4%) 4 years after IRS withdrawal.

Fig. 4 Bar chart showing the evolution ace-1 allele frequency (percentage with standard error bars in the first panel) in An. gambiae s.l. 
in the districts of the Atacora department of Benin by species and period

Table 5 Results of a multivariable logistic regression models indicating the association (odds ratio) between the independent 
variables of IRS-period, location, and species; dependent variables of the homozygous mutant genotypes of kdr (1014F/1014F); and the 
combined homozygous and heterozygous mutant genotypes of ace-1 (119S/119S and 119G/119S)

† The dependent variable was the logit of the homozygous mutant kdr genotype (1014F/1014F) and the heterozygous mutant and homozygous susceptible kdr 
genotypes (1014L/1014F and 1014L/1014L). ‡The dependent variable was the logit of the combined homozygous and heterozygous mutant genotypes (119S/119S and 
119G/119S) and the susceptible genotype (homozygous 119G). *Reference group

Parameters Variables Odd ratio (95% confidence interval)

kdr† ace-1‡

(Intercept) 0.66 (0.39–1.09) 0.04 (0.01–0.10)

Period During IRS (2010) 5.17 (2.75–9.99) 15.54 (5.27–66.65)

Withdrawal of IRS (2016) 11.75 (7.11–19.72) 1.83 (0.65–7.66)

Before IRS (2020) 1* 1*

Location Péhunco 1.02 (0.70–1.48) 1.21 (0.74–2.04)

Toucountouna 1.01 (0.60–1.72) 1.04 (0.51–2.05)

Boukoumbé 1* 1*

Sibling species Non-An. gambiae s.s 0.22 (0.14–0.36) 0.49 (0.16–1.18)

An. gambiae s.s. only 1* 1*
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Neither location (χ2 = 4.175; df = 4; P = 0.383) or species 
(χ2 = 1.59; df = 2; P = 0.463) was significantly associated 
with ace-1 genotypes.

For odds ratios from multivariate logistic regression 
(Table  5) for ace-1, there were an ~16× (significant) 
and ~2× (not significant) increase in the odds of mosqui-
toes carrying a 116S allele when comparing the periods, 
during IRS, and 4  years after IRS withdrawal with the 
before IRS period, respectively. There was no significant 
difference in the odds of mosquitoes carrying the 116S 
allele by location. There was also no significant difference 
in the odds of non-An. gambiae s.s. and An. gambiae s.s. 
carrying the 116S allele.

Hardy–Weinberg equilibrium
Some populations did not follow the Hardy–Wein-
berg equilibrium and for this reason, the fixation index 
(FIS) was calculated to assess the evolutionary forces in 
place. Table 6 shows the fixation indices of the two alleles 
L1014F and G119S. 

Analysis of this table revealed that for the L1014F allele, 
the fixation index is negative showing an excess of het-
erozygosity (FIS < 0) before and during IRS, while 4 years 
after IRS withdrawal a deficit of heterozygosity (FIS > 0) 
was observed in all periods. On the other hand, concern-
ing the ace-1 gene, except for the Péhunco population, 
where a heterozygosity deficit was observed during IRS 
due to either consanguinity (mating between two related 
individuals with at least one verifiable common ances-
tor) of the reproductive regime within the population or 
genetic drift (the process of changing the frequency of 
an allele in a population over time). Excess heterozygo-
sity, which may be due to overall super dominance spread 
over many loci in the genome or to the presence of many 
recessive deleterious alleles, has been found in other pop-
ulations over various periods.

Genetic differentiation within different populations 
of Anopheles gambiae
Since An. gambiae s.l. populations from different periods 
were not subjected to the same pressures, and genetic 
differentiation within populations was calculated to bet-
ter assess the impact of these insecticides. Table  7 pre-
sents the genetic differentiation (FST) calculated in the 
populations.

From the analysis of this table, it appears that at 
the level of the two genes, no genetic differentiation 
(FST ≤ 0) was observed during the different periods in the 
populations.

Discussion
This study provides initial insights into how changes in 
insecticide pressure from IRS implementation and with-
drawal may have altered the genotypic profile of An. 
gambiae s.l. in Atacora in comparison with before IRS 
implementation. The two insecticide resistance markers 
investigated were the target site mutations in the knock-
down resistance (kdr) gene (L1014F) and the acetylcho-
linesterase (ace-1) resistance gene (G119S); these markers 
are commonly studied genes and were considered good 
candidates to understand how the change in IRS insecti-
cide pressure affects the genetic profile of malaria vectors 
in Atacora [3, 30].

Table 6 Variation in observed and expected heterozygosity and fixation index

BIRS, before IRS; DIRS (2010), during IRS (2016); WIRS, 4 years after IRS withdrawal; (2020); Ho, observed heterozygosity; He, expected heterozygosity; FIS, fixation index

Period Districts Number tested L 1014F mutation of kdr gene G 119S mutation of ace-1 gene

Ho He FIS (W&C) Ho He FIS (W&C)

BIRS Boukoumbé 27 0.630 0.440 −0.4444 0.000 0.000 NA

Péhunco 27 0.667 0.453 − 0.4857 0.074 0.073 − 0.0196

Toucountouna 26 0.423 0.419 − 0.0110 0.038 0.038 − 0.0000

DIRS Boukoumbé 30 0.267 0.235 − 0.1373 0.433 0.345 − 0.2609

Péhunco 30 0.200 0.183 − 0.0943 0.233 0.345 0.3278

Toucountouna 30 0.200 0.235 − 0.1512 0.333 0.325 − 0.0247

WIRS Boukoumbé 251 0.048 0.147 0.6751 0.060 0.058 − 0.0288

Péhunco 510 0.059 0.151 0.6114 0.073 0.070 − 0.0367

Toucountouna 72 0.083 0.199 0.5828 0.069 0.081 − 0.0294

Table 7 Genetic differentiation within populations before, 
during and after IRS withdrawal

Period FST (W&C) L1014F FST (W&C) G119S

Before IRS (2010) −0.010 0.000

During IRS (2016) −0.016 −0.013

Four years after IRS with-
drawal (2020)

−0.001 −0.001
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Because vector behavior and resistance levels can 
vary widely, it is crucial to compare vector densities and 
resistance levels. The three species of Anopheles gambiae 
s.l. complex found in the study area were An. gambiae 
s.s., An. coluzzii, and An. arabiensis, where An. gambiae 
s.s. was the most abundant vector collected; this suggests 
that resistance levels in this vector likely determined 
the impact of insecticide-based vector control for Ata-
cora. The low numbers of An. coluzzii and An. arabien-
sis are thought to be due to the ecology of these species 
in Benin, which prefers permanent, mostly artificial lar-
val sites, while semipermanent and temporary habitats 
are more favorable to An. gambiae s.s. [31]. The dispar-
ity observed between An. coluzzii populations before 
and during the IRS could be attributed to the sampling 
period. In fact, data collected before the launch of the IRS 
were limited to the rainy season, whereas data collected 
during the IRS covered both the dry and rainy seasons.

The frequencies of the kdr alleles in the Anopheles 
gambiae s.l. populations increased in the direction 
of homozygous resistance (L1014F/ L1014F) with an 
increased frequency of the L1014F mutation in individu-
als over time (before IRS, during IRS and, 4  years after 
IRS withdrawal). Before the introduction of IRS in Ata-
cora, standard LLINs were distributed, and ITN imple-
mentation continued throughout the study timeframe 
and beyond. A compilation of ITN indicators using data 
from Demographic and Health Survey (DHS) surveys 
and Malaria Indicator Cluster Surveys (MICS) from 2006 
to 2018 showed that ITN ownership ranged from 26% 
to 94%, ITN access ranged from 14% to 82%, ITN use 
ranged from 13 to 68%; the 2006 DHS survey serves as 
the baseline and was the lowest for all indicators [32]. 
Because mutations in the kdr gene are usually associated 
with pyrethroid insecticide pressure, one likely reason 
for the continued increase in resistant kdr alleles before 
IRS implementation and beyond is due to ITN distribu-
tion. ITN distribution continues in Atacora with PBO 
and/or pyrethroid-chlorfenapyr ITNs being planned for 
future distribution in 2023. It may be useful to determine 
if these ITNs will continue to impact kdr allele frequency 
in Atacora.

Several studies have shown that the mode of action 
for carbamates and organophosphates is to inhibit ace-
1 [33, 34]. The increase in the frequency of the G119S 
allele on the ace-1 gene observed during IRS imple-
mentation in the different districts showed that the 
carbamates and organophosphates did exert pressure 
on the mosquito population toward resistance. How-
ever, 4 years after IRS withdrawal, the mosquito popu-
lation seemed to have reverted to pre-IRS ace-1 allele 
frequency levels. This result generally favors the notion 
that reducing the pressure of insecticides from the 

environment would cause mosquitoes to regain suscep-
tibility to an insecticide; hence, the rotation of insecti-
cide classes may be a key strategy for the management 
of resistance.

This study had some limitations. While kdr and ace-
1 are common insecticide resistance markers included 
in resistance studies, bioassay results were not avail-
able in this study to determine the mortality rates of 
mosquitoes after exposure to pyrethroids, carbamates, 
and organophosphates at different periods. The avail-
ability of bioassay data would have been useful, as some 
studies suggested that there is not a perfect association 
between the mortality rates of mosquitoes in bioas-
say and molecular markers [7, 17]. However, target site 
mutations in key genes may still serve as useful markers 
for estimating the selective pressure of insecticides on 
mosquito genetics in the absence of phenotype data. In 
the study, mosquitoes were also sourced from PSCs and 
human landing catches rather than a larval mosquito 
leading to an un-uniform age structure of mosquitoes 
being assessed. This limitation is important for bioassays 
but may be less important for target site mutation stud-
ies, as it was assumed that these mutations would not 
drastically change during the life history of individual 
mosquitoes, whereas mosquito age may affect bioassay 
results [35]. In addition, the season when the mosquitoes 
were collected also may have affected the results, though, 
apart from before IRS implementation, both rainy sea-
son and dry season mosquito samples were included in 
the analysis. In this study, we did not have a comparison 
of non-IRS sites to be sure that the association between 
IRS implementation and withdrawal was not spurious 
and confounded by a coincidental factor such as a change 
in agriculture pesticide use. Furthermore, in this study, 
we did not have agricultural insecticide-use data, which 
may play some role in shaping the selective pressure and 
genotypic profile of the mosquito populations [36–38]. 
The lack of this information suggests that caution should 
be taken when interpreting the results. There was a low 
and variable sample size before and during IRS imple-
mentation, as well as 4  years after IRS withdrawal. In 
2010 and 2016, the objectives pursued by vector control 
programs were more on transmission, so few mosquitoes 
were analyzed by PCR. While the limited availability of 
mosquito samples prevented greater confidence in the 
results, the findings do seem to follow a logical trend, and 
statistical significance was found in most of the analyses. 
A final limitation is that this study solely focused on kdr 
and ace-1; the association of IRS with other insecticide 
resistance mechanisms (such as oxidase- or cuticular-
protein-mediated resistance) may lead to a more insight-
ful understanding of the impact of IRS implementation 
and withdrawal. Nevertheless, these results with kdr and 
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ace-1 in Atacora still contribute to the knowledge base of 
insecticide resistance.

Other studies have looked at the change in insecti-
cide resistance markers before and after vector control 
intervention and have shown that there are changes in 
molecular profiles that occur, which are associated with 
the intervention implementation [3, 30]. This study aligns 
with those findings.

Conclusions
The frequency of kdr (L1014F) and ace-1 (G119S) muta-
tions in Anopheles gambiae s.l. 4 years after the with-
drawal of IRS from the Atacora department found that 
the frequencies of the L1014F mutation continued 
increasing in the population even after the withdrawal 
of IRS, while the frequency of the G119S allele increased 
during IRS and decreased 4  years after the withdrawal 
of IRS in all populations. This study provides evidence 
of how insecticide pressure influences mosquito geno-
types at key loci. While Benin is currently not conducting 
IRS, this study highlights that to preserve susceptibility 
to the insecticides used for IRS; it may be preferable to 
withdraw the intervention after several years of imple-
mentation or to alternate with the use of other classes of 
insecticides targeting different resistance mechanisms.
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