
Rauhöft et al. Parasites & Vectors          (2024) 17:273  
https://doi.org/10.1186/s13071-024-06338-x

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Parasites & Vectors

Large-scale performance assessment 
of the BG-Counter 2 used with two different 
mosquito traps
Leif Rauhöft1*, Tatiana Șuleșco1, Sara M. Martins Afonso1, Jonas Schmidt‑Chanasit1,2, Hanna Jöst1, 
Felix G. Sauer1 and Renke Lühken1 

Abstract 

Background Mosquitoes are important vectors of pathogens. They are usually collected with  CO2‑baited traps 
and subsequently identified by morphology. This procedure is very time‑consuming. Automatic counting traps could 
facilitate timely evaluation of the local risk for mosquito‑borne pathogen transmission or decision‑making on vector 
control measures, but the counting accuracy of such devices has rarely been validated in the field.

Methods The Biogents (BG)‑Counter 2 automatically counts mosquitoes by discriminating the size of captured 
objects directly in the field and transmits the data to a cloud server. To assess the accuracy of this counting device, 
27 traps were placed at 19 sampling sites across Germany and used in daily, weekly or bimonthly intervals from April 
until October 2021. The BG‑Counter 2 was attached to a  CO2‑trap (BG‑Pro trap =  CO2‑Pro) and the same trap was con‑
verted to also attract gravid mosquitoes (upside‑down BG‑Pro trap with a water container beneath =  CO2‑Pro‑gravid). 
All captured mosquitoes were identified by morphology. The number of females (unfed and gravid), mosquito 
diversity and the number of identified specimens in relation to the counting data of the BG‑Counter were compared 
between the two trapping devices to evaluate sampling success and counting accuracy.

Results In total 26,714 mosquitoes were collected during 854 trap days. The  CO2‑Pro‑gravid trap captured signifi‑
cantly more mosquitoes per trap day for all specimens, gravid females and non‑gravid females, while there was no dif‑
ference in the mosquito diversity. The linear model with the captured mosquitoes as a response and the counted 
specimens as a predictor explained only a small degree of the variation within the data (R2 = 0.16), but per individual 
trap the value could reach up to 0.62 (mean R2 = 0.23). The counting accuracy for the daily samples had a significant 
positive correlation with sample size, resulting in higher accuracy for the  CO2‑Pro‑gravid trap and higher accuracy 
for sites and sampling months with high mosquito abundance.

Conclusions While the accuracy of the BG‑Counter 2 is quite low, the device is able to depict mosquito phenology 
and provide information about local population dynamics.

Keywords Mosquito trap, Automatic counting, Accuracy, Culex, CO2‑trap, Gravid trap

Background
Mosquitoes are important vectors of pathogens, with 
malaria parasites and dengue virus having the highest 
relevance on a global scale. It is estimated that these two 
pathogens alone result in more than 500 million annual 
cases worldwide, especially in tropical and subtropi-
cal regions [1, 2]. However, due to climate warming in 

*Correspondence:
Leif Rauhöft
leif.rauhoeft@bnitm.de
1 Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
2 Faculty of Mathematics, Informatics and Natural Sciences, Universität 
Hamburg, 22609 Hamburg, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-024-06338-x&domain=pdf


Page 2 of 11Rauhöft et al. Parasites & Vectors          (2024) 17:273 

particular, there are also emerging mosquito-borne path-
ogens in Central Europe such as the West Nile virus and 
the Usutu virus [3, 4]. Since the first emergence of Usutu 
virus (2011/2012) and West Nile virus (2018) in Ger-
many, both viruses have been regularly detected in mos-
quitoes, horses, birds and humans [5, 6].

Mosquito monitoring and surveillance programs pro-
vide the foundation for identifying the spatial–tempo-
ral risk of mosquito-borne pathogen transmission. In 
these programs, mosquitoes are usually collected with 
 CO2-traps in the field and subsequently identified and 
screened in the laboratory. This process results in a sig-
nificant delay between the collection and the subsequent 
identification and pathogen screening of mosquitoes. 
Automatic traps for counting mosquitoes could signifi-
cantly reduce the time lag, at least providing mosquito 
data in near-real time directly from the field. These read-
ily available data could, for instance, enable the rapid 
evaluation of the success of vector control measures, i.e. 
measuring the abundance pre- and post-treatment, or 
inform us about the best time of the day for adulticide 
spraying. Furthermore, the data could be used to esti-
mate the local pathogen transmission risk.

There are a few promising automatic counting devices 
for mosquitoes. These include different prototypes 
developed by Chen et al. [7], Lai et al. [8] and Gonzales-
Perez et  al. [9]. Currently, the BG-Counter (Biogents, 
Regensburg, Germany) is the only commercially avail-
able automatic mosquito counting system. Besides the 
BG-Counter, the prototypes described Lai et  al. [8] and 
Gonzales-Perez et  al. [10] are the only ones with pub-
lished data from the field. For the prototype reported by 
Lai et al., mosquitoes were collected at two sites in China 
from May to August 2021. The average daily counting 
accuracy was 79.4% in an open field and 64.9% near a 
residence. For the prototype reported by Gonzales-Perez 
et al., mosquitoes were collected at two sampling sites in 
Spain—at site 1 from July to October 2021, with an aver-
age daily counting accuracy of 89.1%, and at site 2 from 
June until September 2022, with an average daily count-
ing accuracy of 88.1%. Additionally, this prototype is able 
to distinguish between the genera Aedes and Culex. The 
BG-Counter has been used for a wider range of applica-
tions. For instance, it was used to assess the efficacy of 
insecticide barrier treatments in remote areas as shown 
for an inhabited island in a marine bay in Australia [11] or 
in more urban settings as in Illinois, USA [12]. Another 
example is the evaluation of the impact of a hurricane on 
the mosquito populations of an inhabited island in the 
USA [13] or the assessment of the dispersal of mosqui-
toes from highly productive breeding sites on bay islands 
to the mainland of Australia [14]. The most comprehen-
sive evaluation of the BG-Counter took place in North 

Carolina, USA [15]. Five BG-Counters were placed in five 
different counties, where the mean daily accuracy ranged 
from 9.4 to 80.1%. Linear regressions between the BG-
Counter and actual mosquito counts resulted in correla-
tion coefficients ranging from 0.0085 to 0.95 depending 
on the sampling site. However, so far, there are no evalua-
tions of the performance of BG-Counters for Europe.

The study presented herein is the first large-scale sys-
tematic evaluation of the BG-Counter, using 27 BG-
Counters deployed over 19 sampling sites in Germany 
over one complete field season. We aimed to analyse 
the counting accuracy of the BG-Counter 2 when using 
it as a standard version with a  CO2-lured BG-Pro or a 
 CO2-lured BG-Pro combined with a gravid trap. We 
compared the trapping efficiency of the two trap versions 
for the total number of mosquitoes, blood-fed and gravid 
specimens, and species diversity. In addition, we analysed 
the counting accuracy of both trap versions depending 
on the sampling site, time period and sample size.

Methods
Similar to the other automatic counting devices, the BG-
Counter uses infrared light-emitting diodes and light 
detectors to measure the obstruction of light caused by a 
passing insect and thereby discriminate mosquitoes from 
other objects [16]. The signal detected by the light sen-
sors is dependent on the size and wingbeat frequency of 
the insects. Additionally, the BG-Counter is fitted with 
sensors for temperature, relative humidity and ambient 
light. By using a 4G cellular communication module and 
a SIM card, it can transmit all data to an online server 
every 15  min. The BG-Counter can also be controlled 
remotely, i.e. the fan can be switched on or off and the 
 CO2 outlet can be opened or closed.

Two different traps were used with the BG-Counter 
(Fig.  1): the standard version, as suggested in the BG-
Counter user manual, consisting of the BG-Pro, BG-
Counter 2 and BG-Trap Station  (CO2-Pro), and a second 
version converting the standard version into a combina-
tion of a  CO2 and gravid trap  (CO2-Pro-gravid). For the 
gravid version, the entire trap was turned 180°. Beneath 
the gravid trap, a water container (2.6  l) is placed with 
approximately 60  g of hay pellets and a tablet contain-
ing toxins of Bacillus thuringiensis israelensis (Culinex 
Tab plus, Becker GmbH, Ludwigshafen am Rhein, Ger-
many), preventing the development of mosquitoes. 
For the  CO2-Pro-gravid version, the fabric trap body 
is not attached since the catch bag otherwise would be 
squashed by its weight (Fig.  1). Both the standard and 
 CO2-Pro-gravid version were used with the adjustable 
pressure regulator set to 1.5 kg/day. As a technical note, 
the BG-Counter cannot simply be turned around, since 
the sensor openings would be exposed to rain, allowing 
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the entry of moisture (Additional file  1: Fig. S1). The 
entering funnel has to be replaced by a thread adapter 
enabling the connection of the BG-Counter to the BG-
Pro trap in an upside-down position. For this purpose, 
new holes were drilled into the thread adapter and coun-
tersunk, since the screw heads would prevent the mount-
ing to the trap.

In 2021, mosquitoes were collected at 19 different 
sampling sites in Germany (Fig.  2). A total of 27 traps 
were deployed, comprising 10  CO2-Pro traps and 17 
 CO2-Pro-gravid traps. In order to compare the efficacy 
and accuracy of the two trap versions, we equipped eight 
sampling sites with both traps. Nine sites were exclu-
sively equipped with the  CO2-Pro-gravid version and two 
sites were equipped with the  CO2-Pro trap version only. 
During each sampling event, the traps were running for 

Fig. 1 Trap versions:  CO2‑Pro‑gravid (left) and  CO2‑Pro (right), each 
equipped with a BG‑Counter 2 in combination with the BG‑Pro 
and BG‑Trap‑Station

Fig. 2 Map of sampling sites in Germany
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approximately 24 h. A unique label was placed in the cap-
turing net and preserved at −20 °C until further analysis. 
The sampling took place from April until October and 
was mainly conducted in private gardens in cooperation 
with volunteers. Six sampling sites were sampled as often 
as possible (nearly daily), five sampling sites were sam-
pled weekly and eight on a biweekly basis. The distance 
between the two trap versions was not standardized but 
was chosen considering the available space, access to 
electrical sockets and the convenience of the voluntary 
helpers. It ranged between 5 and 20 m. At one site, the 
distance was shorter but the traps were separated by a 
garden shed. Thus, an interaction between the traps at the 
sampling sites for the trap comparison cannot be com-
pletely excluded. A 12 V portable freezer (Dometic CFX3 
55, Dometic, Solna, Sweden) was used to maintain the 
cold chain during transport to the laboratory. All female 
mosquitoes were identified by morphological analysis, 
using a taxonomic key [17]. Additionally, the blood-fed 
status of the caught mosquitoes was assessed using the 
Sella score [18], categorizing mosquitoes as unfed (Sella 
score 1) or as blood-fed from freshly engorged to gravid 
(Sella score 2–7).

The BG-Counter data were downloaded as a CSV file 
and the same unique ID was generated as used for the 
capturing nets. The unique ID was then used to align 
the identification data with the BG-Counter data. All 
counted and identified mosquitoes were summarized per 
sampling event. Additionally, the counting accuracy was 
calculated using the formulas published by Day et al. [15]. 
In the case that the counter undercounted the mosqui-
toes, the formula was the automatic count divided by the 
manual count times 100. In case the BG-Counter over-
counted the actual number of mosquitoes, the formula 
was the manual count divided by the automatic count 
times 100. In order to assess whether the BG-Counters 
transmitted data successfully, we compared the number 
of morphologically identified trap days with the trap days 
delivered by the BG-Counter. To analyse the differences 
in the trapping efficiency and counting accuracy between 
 CO2-Pro and  CO2-gravid traps, only the nine sampling 
sites equipped with both trap versions were considered, 
and only the trap days with corresponding data of both 
trap versions. Additionally, the mean accuracy, the mean 
number of caught mosquitoes and the mean number of 
mosquitoes caught with a Sella score above 1 was calcu-
lated and compared between the two trap versions. For 
each sampling event, the Shannon diversity index was 
calculated and statistically compared between the two 
trap versions using a Kruskal–Wallis test. This statistical 
analysis only considered specimens that were identified 
to the lowest taxonomic level possible by morphological 
means [17], i.e. specimens which were only identified to 

the genus or family level were not included in this analy-
sis. Only for sampling sites with more than 10 sampling 
events per season, Spearman correlation coefficients and 
linear models were calculated for each trap and sam-
pling site to statistically analyse the relationship between 
the manually identified and automatically counted mos-
quitoes. A categorical factor was generated, dividing 
all sample sizes into small (0–10 mosquitoes/24  h) and 
large (> 10 mosquitoes/24  h), since higher accuracy was 
observed during times of higher mosquito abundance. 
A linear model with all available data points was fitted 
with the identified mosquitoes as the response and BG-
Counter counts as the predictor to evaluate the general 
correlation between the two. To resolve the cause of dif-
ferences in accuracy, a binomial generalized linear mixed 
model (GLMM) was fitted with accuracy as the response 
and the number of identified mosquitoes and the trap 
version used as predictors. A second binomial GLMM 
was performed using the accuracy as a predictor and 
the month of capture as a response. Both mixed models 
included sampling sites as random factors. All compu-
tational analysis was performed in R (version 4.4) using 
the RStudio integrated development environment (IDE) 
(version 2024.4.0) [19]. Additionally, functions from the 
following packages were used for data preparation, visu-
alization and analysis: rstatix [20], dplyr [21], sp [22], 
ggplot2 [23], ggdist [24], ggpubr [25], lubridate [26], tidyr 
[27], vegan [28], lme4 [29], sf [30], geodata [31] and scales 
[32].

Results
In 2021, 26,714 mosquitoes were captured during a total 
of 854 trap days with both trap versions. The average suc-
cess rate of data transmission of the 27 BG-Counters was 
85.9% (Additional file: Table S1). While 17 had a 100.0% 
success rate, the success rate of the 10 remaining BG-
Counters ranged from 17.6 to 93.3%. The mosquitoes 
belonged to at least 20 species of five genera (Table  1). 
Culex pipiens sensu stricto (s.s.)/Culex torrentium was 
the most abundant mosquito taxon with a total of 5782 
specimens (54.9%) for the  CO2-Pro trap and 12,282 
specimens (75.9%) for the  CO2-Pro-gravid trap, fol-
lowed by Aedes vexans  (CO2-Pro: 2693 specimens, 25.6%; 
 CO2-Pro-gravid: 596 specimens, 3.7%). All other taxa 
were considerably less frequent (maximal 310 specimens, 
maximal 1.9%).

The dataset for the trap comparison contains 283 
trap days for each trap version. The BG-Counter gener-
ally overestimated the quantity of captured mosquitoes: 
90.8% of the trap days for the  CO2-Pro were overesti-
mated and 91.2% for the  CO2-Pro-gravid. For 8.1% of 
the trap days, the number of specimens was underesti-
mated for both traps and accurate for 1.1% of trap days 
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 (CO2-Pro) and 0.7%  (CO2-Pro-gravid). The  CO2-Pro 
trap captured significantly fewer mosquitoes per trap 
day (mean number of specimens = 14.0, 95% confidence 
interval (95% CI) = 10.8–17.3 vs. 32.1, 95% CI = 27.0–
37.2; Kruskal–Wallis, Chi-square = 68.7, df = 1, P < 0.0001; 
Fig.  3A), which was also true for mosquitoes with a 
Sella score of 1 (12.8, 95% CI = 9.6–16.0 vs. 21.7, 95% 
CI = 17.3–26.1 Kruskal–Wallis, Chi-square = 33.1, df = 1, 
P < 0.0001; Fig. 3B) or greater than 1 (1.7, 95% CI = 1.1–
2.2 vs. 14.2, 95% CI = 12.0–16.4; Kruskal–Wallis, Chi-
square = 210.9, df = 1, P < 0.0001; Fig. 3B). The difference 
in captured mosquito diversity per trap day was not sig-
nificant for the Shannon diversity index (Kruskal–Wallis, 
Chi-square = 3.2, df = 1, P = 0.0738, Fig. 3C).

A linear model for all available data with the number of 
captured mosquitoes as a predictor variable and counted 
(BG-Counter) mosquitoes as response variables was sig-
nificant (R2 = 0.16, F (1, 860) = 165.0, P < 0.0001; Fig. 4). For 
all 18 trap sites with 10 or more trap days, 12 trap sites 

showed a significant, positive linear relationship between 
identified and counted mosquitoes, i.e. six trap sites 
equipped with the  CO2-Pro and six trap sites equipped 
with the  CO2-Pro-gravid (Table  2). There were no sig-
nificant differences in the R2 values between the two 
trap versions  (CO2-Pro: mean = 0.29, 95% CI = 0.1–0.5; 
 CO2-Pro-gravid: 0.17, 95% CI = 0.1–03; Kruskal–Wallis, 
Chi-square = 1.2, df = 1, P = 0.270; both traps: mean = 0.23 
95% CI = 0.14–0.32; Table 2).

The mean counting accuracy of the BG-Counter dif-
fered significantly between the  CO2-Pro trap (mean accu-
racy = 29.5, 95% CI = 26.2–32.7) and the  CO2-Pro-gravid 
trap (mean accuracy = 36.6, 95% CI = 33.4–39.7; Kruskal–
Wallis, Chi-square = 11.9, df = 1, P = 0.0006; Fig.  3D). 
The mosquito sample size has a significant effect on the 
accuracy of the BG-Counter (Fig. 5). While captures with 
a small sample size (0–10 mosquitoes/24  h) had mean 
accuracy of 7.1% (95% CI = 4.8–9.4%), captures with a 
large sample size (> 10 mosquitoes/24 h) had mean accu-
racy of 39.9% (95% CI = 37.9–42.0%) (Kruskal–Wallis, 
Chi-square = 335.9, df = 1, P < 0.0001). The effect of the 
sample size also at least partly explains the differences in 
the mean accuracy between the sampling months (Fig. 6). 
It starts low in April (1.2%) and constantly increases, 
reaching its peak in August (47.5%). The daily accuracy 
and the month of capture were significantly correlated 
(GLMM binomial, z = 6.98, P < 0.0001). A joint analysis 
of both variables indicated that the number of collected 
mosquito specimens had a significant impact on the 
accuracy (GLMM binomial, z = 4.03, P < 0.0001; Fig.  7), 
while the trap version had no significant impact (GLMM 
binomial, z = −0.21, P = 0.83; Fig. 7).

Discussion
With the invention of smart automatic traps for mos-
quitoes, a milestone in vector control and surveillance 
is met, which can revolutionize our ability to moni-
tor mosquito populations in near real-time and enable 
a more targeted risk assessment and effective control 
measurement. However, our study highlights different 
things, which have to be kept in mind when setting up 
automatic mosquito traps and interpreting the collected 
data. The linear model with the captured mosquitoes as 
response and the counted specimens as predictor only 
explained little of the variation within the data (R2 = 0.16), 
but per individual trap the value can reach up to 0.62 
(mean R2 = 0.23). As already emphasized by Day et  al. 
[15], this very low accuracy demonstrates that the BG-
Counter does not accurately count the absolute num-
ber of collected mosquitoes. However, the R2-value per 
individual trap shows that the information from the BG-
Counter informs us in a predictable manner about the 
local increase and decrease in mosquito abundance, such 

Table 1 Number of caught mosquito species and 
corresponding percentages in brackets for both used trap 
versions: CO2‑Pro and CO2‑Pro‑gravid

Taxon CO2‑Pro CO2‑Pro‑gravid

Aedes albopictus 0 (0) 116 (0.7)

Ae. annulipes group 45 (0.4) 11 (0.1)

Ae. caspius 4 (0) 16 (0.1)

Ae. cinereus 7 (0.1) 2 (0)

Ae. communis 1 (0) 0 (0)

Ae. geniculatus 5 (0) 3 (0)

Ae. japonicus 31 (0.3) 45 (0.3)

Ae. punctor 1 (0) 2 (0)

Ae. rusticus 12 (0.1) 10 (0.1)

Ae. species 36 (0.3) 97 (0.6)

Ae. sticticus 7 (0.1) 310 (1.9)

Ae. vexans 2693 (25.6) 596 (3.7)

Anopheles claviger s.s./An. petragnani 52 (0.5) 27 (0.2)

An. maculipennis s.l. 36 (0.3) 17 (0.1)

An. plumbeus 7 (0.1) 2 (0)

An. species 20 (0.2) 18 (0.1)

Coquillettidia richiardii 56 (0.5) 43 (0.3)

Culiseta annulata 166 (1.6) 242 (1.5)

Cs. morsitans 3 (0) 2 (0)

Cs. species 0 (0) 1 (0)

Culicidae 832 (7.9) 740 (4.6)

Culex modestus 8 (0.1) 5 (0)

Cx. pipiens s.s./Cx. torrentium 5782 (54.9) 12,282 (75.9)

Cx. species 588 (5.6) 1408 (8.7)

Cx. territans/Cx. hortensis 1 (0) 0 (0)

Unidentified males 130 (1.2) 196 (1.2)

Total 10,523 16,191
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as for the analysis of phenological patterns. The accuracy 
of the traps (12–53%) was lower than that presented in 
previous studies: 9.4–80.1% [15] and 62.3–98.7% [33]. 
The lower number of collected mosquito specimens 
(mean = 23.5) in our study likely explains the lower accu-
racy relative to previous studies with much higher num-
bers: mean = 678.8 [15] and mean = 151.4 [33]. This effect 
is not so pronounced in the prototype by Gonzales-Perez 
et al. [10], since the daily average mosquitoes caught was 

61.2 and the overall average accuracy was 88.1. However, 
a slight trend can be observed for an increase in accu-
racy with mosquito abundance. For the BG-Counter, this 
relationship can also be observed for the mean number 
of mosquitoes caught and counting accuracy per month, 
where the accuracy was highest during the months of 
high mosquito abundance, i.e. July–September. In addi-
tion, another explanation for the low accuracy in the 
beginning of the season could be the high abundance of 

Fig. 3 Trap version comparison with boxplots and half‑density distributions: A number of caught mosquitoes, B captured mosquitoes with a Sella 
score of either 1 (unfed) or higher (blood‑fed), C Shannon diversity index, D BG‑Counter accuracy

Fig. 4 Linear regression between the BG‑Counter counts and actually captured mosquitoes. Shaded area indicates ±SE
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misclassified non-target organisms during springtime, 
which were not analysed in this study. However, this 
would also not explain the decreasing accuracy during 
autumn. The significant correlation of the BG-Counter 
accuracy with the sample size also results in site-specific 
dependence of the BG-Counter accuracy in our dataset. 
Large samples generally have higher counting accuracy, 
resulting in higher accuracy for sampling sites with an 
overall higher mosquito abundance. This was previously 

also observed in North Carolina, where the three sites 
with the highest mean accuracy were those with the 
highest numbers of daily mean captures [15].

The modification of the  CO2-Pro trap to a combination 
of  CO2 and gravid trap was very effective. In line with 
previous studies comparing gravid traps with  CO2-baited 
traps, the capture rates of gravid Culex females with the 
 CO2-gravid traps were significantly higher than those for 
the standard  CO2-only version [34, 35]. Moreover, the 

Fig. 5 Boxplots comparing the BG‑Counter accuracy (%) for large sample sizes (> 10 captured mosquitoes per day) and small sample sizes (< 10 
captured mosquitoes per day) and half‑density distribution. The X indicates the mean accuracy

Fig. 6 Mean accuracy (%) and mean captured mosquitoes per month ±CI
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 CO2-Pro-gravid also attracted more non-gravid female 
mosquitoes. Downward suction of a trap as we have 
done for the  CO2-Pro-gravid has rather been shown to 
decrease the success in collecting mosquitoes [36]. How-
ever, greater sampling success was also observed when 
combining gravid traps with lures for host-seeking mos-
quitoes [37]. Therefore, although the exact reasons are 
unclear, the container with hay infusion is probably the 
reason for the increase in host-seeking mosquitoes for 
the gravid  CO2-Pro-gravid. We found no statistically sig-
nificant difference in the counting accuracy of the BG-
Counter between the two trap versions  CO2-Pro and 
 CO2-Pro-gravid. For epidemiological studies in particu-
lar, non-nulliparous females are of utmost importance, 
since these have a higher probability of being infected 
with pathogens, but are only rarely captured by stand-
ard  CO2-baited traps. Nevertheless, although not quan-
tified in this study, the collection of a larger proportion 
of non-target species might be a disadvantage of the 
BG-Pro-gravid trap, as it could make sorting costlier. 
Non-target insects searching for breeding sites or a water 
source are attracted by the container with hay infusion. 
Although the BG-Counter has shortcomings, it is able 
to depict the relative phenology of mosquitoes. If abso-
lute numbers are required, it is recommended that traps 
be placed at locations known for high mosquito abun-
dance during such periods of high abundance. The per-
formance of the BG-Counter might be further improved 
by increased  CO2 levels, additional attractants and a 
trap design capturing multiple mosquito life stages (e.g. 
 CO2-Pro-gravid). For use in settings with low mosquito 

abundance, the data should be interpreted only as relative 
abundance. Additionally, the possibility of increasing the 
counting accuracy post-capture should be explored, e.g. 
model-based seasonal or temperature-dependent error 
rates.

Finally, a few technical notes. The distance between 
the traps varied from sample site to sample site, but we 
placed the traps in similar surroundings, e.g. along a 
hedge. However, in general, strong differences can be 
expected for the number of captured mosquitoes and for 
traps in close proximity [38]. Unknown microclimatic 
differences such as wind speed, temperature and humid-
ity have been shown to have large impacts on the capture 
of mosquitoes in different life stages [39]. The BG-Pro 
trap has a relatively strong fan and is therefore perceived 
as louder than other mosquito traps. The same applies to 
the sound of the magnet valve of the BG-Counter, which 
was often recognized as a nuisance. For an average of 15% 
of all sampling events, the BG-Counter did not manage 
to establish an Internet connection, resulting in captured 
mosquitoes without corresponding counter data.

Conclusions
The  CO2-Pro-gravid trap represents a useful modification 
of the standard  CO2-Pro trap version, collecting a greater 
number of mosquitoes, particularly gravid Culex species. 
The accuracy of the BG-Counter was sufficient to cap-
ture the phenology of mosquitoes but varied considerably 
between the sampling sites and months. The counting 
accuracy seems to be strongly influenced by the number 
of mosquito specimens collected per sampling event and 

Fig. 7 Binomial generalized linear mixed model between the BG‑Counter accuracy (%) and captured mosquitoes separated by trap version (green: 
CO2‑Pro, yellow: CO2‑Pro‑gravid)
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probably other confounding factors such as weather con-
ditions or bycatch, which will require further research. 
This is the first large-scale performance assessment of an 
automatic mosquito counting device and can be used as 
a guideline, highlighting potential pitfalls for future study 
designs and interpretation of data. With the increasing 
development of Internet of Things (IoT) devices for the 
monitoring of mosquitoes, further independent research 
is needed in order to identify the advantages and disad-
vantages of such products.
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