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Abstract 

Background Along the southern shoreline of Lake Malawi, the incidence of schistosomiasis is increasing with snails 
of the genera Bulinus and Biomphalaria transmitting urogenital and intestinal schistosomiasis, respectively. Since 
the underlying distribution of snails is partially known, often being focal, developing pragmatic spatial models 
that interpolate snail information across under‑sampled regions is required to understand and assess current 
and future risk of schistosomiasis.

Methods A secondary geospatial analysis of recently collected malacological and environmental survey data 
was undertaken. Using a Bayesian Poisson latent Gaussian process model, abundance data were fitted for Buli-
nus and Biomphalaria. Interpolating the abundance of snails along the shoreline (given their relative distance 
along the shoreline) was achieved by smoothing, using extracted environmental rainfall, land surface temperature 
(LST), evapotranspiration, normalised difference vegetation index (NDVI) and soil type covariate data for all predicted 
locations. Our adopted model used a combination of two‑dimensional (2D) and one dimensional (1D) mapping.

Results A significant association between normalised difference vegetation index (NDVI) and abundance of Buli-
nus spp. was detected (log risk ratio − 0.83, 95% CrI − 1.57, − 0.09). A qualitatively similar association was found 
between NDVI and Biomphalaria sp. but was not statistically significant (log risk ratio − 1.42, 95% CrI − 3.09, 0.10). 
Analyses of all other environmental data were considered non‑significant.

Conclusions The spatial range in which interpolation of snail distributions is possible appears < 10km owing to fine‑
scale biotic and abiotic heterogeneities. The forthcoming challenge is to refine geospatial sampling frameworks 
with future opportunities to map schistosomiasis within actual or predicted snail distributions. In so doing, this would 
better reveal local environmental transmission possibilities.
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Background
Schistosomiasis is a freshwater snail-borne neglected 
tropical disease (NTD) common across much of sub-
Saharan Africa. Two forms of schistosomiasis occur, uro-
genital and intestinal schistosomiasis. Their respective 
transmission can only occur if permissive intermediate 
snail hosts of the genus Bulinus and Biomphalaria occur. 
While various species of Bulinus are present in Lake 
Malawi, with Bulinus globosus and B. nyassanus respon-
sible for Schistosoma haematobium transmission, only 
in 2017 was Biomphalaria first formally noted along its 
southern shoreline. The expanding distribution of Biom-
phalaria pfeifferi in this area has facilitated transmission 
of Schistosoma mansoni, which causes intestinal schisto-
somiasis, which has now transitioned from emergence to 
outbreak [1–3].

Owing to the singular importance of this newly inva-
sive Bi. pfeifferi, subsequent malacological surveys were 
undertaken to track its presence alongside concurrent 
parasitological surveys in local children in attempt to 
define the extent of schistosomiasis, particularly intesti-
nal schistosomiasis (IS). These surveys demonstrated the 
need for further surveillance of freshwater snails, along-
side emphasis upon updated and tailored interventions 
and policies for control of schistosomiasis in this lacus-
trine setting [1–3]. However, as snail distributions can 
be patchy or focal, owing to their dependency on local 
habitats, many gaps in current cartography and predic-
tive mapping are exposed [4]. Indeed, variation in such 
local characteristics creates difficulties in outlining either 
permissive or refractory areas where snails may or may 
not be found, thereby confounding control strategies.

A combination of climate change and human behaviour 
is thought to be the primary reason for Biomphalaria 
invasion and colonisation into new areas [5]. Charac-
teristics such as vegetation, temperature, rainfall (pre-
cipitation), evapotranspiration and soil type have been 
reported as possible effects on determining snails’ pres-
ence and abundance, increasing potential heterogene-
ity in snail populations over a wide area [5–7]. Changes 
in climate and seasonal patterns are therefore likely to 
alter transmission of schistosomiasis over both space 
and time, increasing the need for identification of snail 
habitats to target appropriate control interventions [1]. 
However, although snail distribution within a geographi-
cal area can be measured through malacological surveil-
lance, physically collecting freshwater snails is expensive 
and time consuming, and it is therefore unfeasible to 
sample every possible location. Thus, effective sampling 
remains incomplete.

Lake Malawi dominates the eastern side of Malawi, 
being 600km long and 75km wide. It is known as the 
second deepest lake in Africa [8] and is vital for those 

using it for irrigation, agriculture, water supply, fishing 
industries and tourism [9]. Due to the lack of adequate 
sanitation in Malawi, human urine and faecal materials 
continuously contaminate the shoreline facilitating the 
transmission of schistosomiasis, amongst other water-
borne pathogens [10]. In Mangochi District, representing 
the southern part of Lake Malawi, the eastern side of the 
lake is mountainous with high elevation (1000–1500m), 
whereas the western side is flat and with lower elevation 
(< 500m) [11, 12]. Lower temperatures and higher winds 
are reported on the eastern side [13], with low-lying 
areas such as the upper Shire River margins vulnerable to 
flooding [14]. More broadly, the climate of this southern 
part of the shoreline is affected by the migration of the 
Inter-Tropical Converge Zone (ITCZ). This leads to the 
dry season with cooler temperatures occurring between 
May and August, hotter temperatures between Septem-
ber to November and wet season between December 
and April [15, 16]. Rainfall is dependent on altitude and 
time of the year [17]. Lake water levels vary over time and 
are at their highest during wet season, which also affects 
evapotranspiration and outflows to the Shire River [2, 
14]. Most important perhaps is an increasing human and 
livestock population which is leading to more frequent 
water contact, enhancing opportunities for transmission 
of schistosomiasis [2, 4].

The World Health Organisation (WHO) has supplied 
new guidelines to target elimination of schistosomiasis by 
reducing freshwater snail abundance, thus interrupting 
transmission [18]. Identifying locations where freshwater 
snails are most abundant therefore aids targeted control 
methods, preventing initial infection and re-infection and 
hence helping eliminate or reduce transmission [19–21].

Here, we undertook a secondary analysis of primary 
malacological data first reported by Al-Harbi et  al. [1] 
and Kayuni et al. [2]. Our study models the snail distri-
butions as a function of environmental and climate data 
measured along the shoreline aiming to (i) interpolate 
and predict the distribution of the snails along the shore-
line of Lake Malawi where the snails had not been sam-
pled and (ii) assess the association between environment 
data and snail distributions. In turn, we hoped to clarify 
the extent of environmental heterogeneities for schisto-
somiasis transmission along the shoreline of Lake Malawi 
and inform the targeting of control programmes to the 
most appropriate snail breeding sites.

Methods
The data used in this study consist of observations of snail 
abundance at a small number of discrete locations on the 
Lake Malawi shoreline together with remote-sensing data 
used to describe snail habitat. These are described sepa-
rately below.
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Snail abundance
The primary dataset reported in Al-Harbi et  al. [1] and 
Kayuni et  al. [2], which this secondary analysis is based 
on, originally collected malacological surveys between 
2017 and 2019 as shown in Fig. 1 and available at Addi-
tional file 1: Dataset. Pilot surveillance data from Novem-
ber 2017 identified Biomphalaria sp. and Bulinus spp. 
along the shoreline. May/June 2018 and 2019 malacologi-
cal surveys resampled some of the original locations and 
added new sites based on satellite imagery or randomly 
based on their surrounding environment suitable for 
breeding sites to confirm the emergence and outbreak 
of IS. The Danish Bilharziasis Laboratory key was used 
to identify Bulinus and Biomphalaria according to shell 
morphology. Figure  1b shows a map of sampling sites, 
together with their relationship to primary schools in the 
region, demonstrating the importance of human proxim-
ity to the lake shore and hence potential for exposure to 
infected snails. The snail abundance counts taken from 
the primary dataset snail counts were numerical counts 

or in some cases reported as approximate values, e.g. 
300 +. In our study we took these approximate values 
and assumed these values to be the closest lowest value, 
e.g. 300. The recorded sites considered in our study are 
shown in Fig. 1c and d.

Remote sensing data
Publicly available continuously collected satellite sen-
sory systems were used to extract environmental and cli-
matic data measured adjacent to the shoreline as shown 
in Fig.  2. Rainfall (millimetres, mm) estimates were 
extracted between 1 November 2017 and 30 June 2019 
from Tropical Applications of Meteorology using SAT-
ellite data and ground-based observations (TAMSAT) 
with a monthly frequency at 4-km resolution [22–24]. 
Land surface temperature (LST) (°C), evapotranspira-
tion and Normalised Difference Vegetation Index (NDVI) 
raster data were obtained from Land Processes Distri-
bution Active Archive Center (LPDAAC) [25–28]. LST 
data between 1 November 2017 to 30 June 2019 were 

Fig. 1 Primary dataset collected data. a Map of Malawi in dark blue. Red crossed: study area; black line: prediction points. Parasitological surveys: b 
Primary school locations along the shoreline. Malacological surveys: c observed Biomphalaria sp. snails; d observed Bulinus spp. snails
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extracted from Moderate Resolution Imaging Spectro-
radiometer (MODIS)/Terra LST/Emissivity 8-Day L3 
Global 1 km SIN Grid raster (MOD11A2v061) [25]. Evap-
otranspiration data were extracted between 1 January 
2014 to 1 January 2019 (5-year time frame) from Modis/
Terra Evapotranspiration Gap-Filled Yearly L4 Global 
500  m SIN Grid raster (MOD16A3GFv061) [26]. NDVI 
data between 1 November 2017 to 30 June 2019 were 
extracted from Modis/Terra vegetation indices 16-Day 
L3 Global 1 km SIN Grid raster (MOD13A2v0061) [27]. 
Soil type polygon data were taken from the International 
Soil Reference and Information Centre (ISRIC) World 
Soil Information and were derived from the Soil Terrain 
Database for Malawi (SOTER) at a scale of 1:1  m [29]. 
After extracting the values, the temporal covariates were 
aggregated by taking the mean of the values over the time 
frame.

Construction of 200 prediction points along the shoreline
Snail abundance was predicted in 1D representation to 
allow us to interpolate the values along the whole line-
string. We made this assumption on the basis that snails 
live along the shoreline, in habitats that are associated 
with human water contact and entry, so correlations 
between snail locations are affected by distance along the 

shoreline and not, for example, by stretches of deep, open 
water, e.g. mouth of a bay.

The 1D shoreline was represented by computing the 
distances between a sequence of 200 vertices obtained 
from the 2D linestring representation. To achieve this, we 
used the following method: (i) a 2D linestring was drawn 
by hand following the shoreline as shown by Google Sat-
ellite imagery (Fig.  1); (ii) the linestring was re-sampled 
to 4000 equally spaced vertices; (iii) each observed sam-
pling site location was snapped to its nearest vertex; (iv) 
the distance along the line from the origin (northwest-
most vertex) to each of the snapper observed sampling 
site locations was computed (Additional file 2 Fig. S1 and 
Fig. S2). Additionally, we sub-sampled the 4000 vertices 
at equal intervals to a set of 200 prediction points.

Extraction of remote sensing data to linestring vertices
The covariate data were created by extracting the val-
ues of each remotely sensed covariate layer data variable 
surface at each of 200 linestring vertices. To do this, the 
mean of raster pixels within a 1-km buffer around each 
vertex was computed. Where missing values were found 
for a vertex, the buffer took the calculated mean value for 
the previous corresponding vertex working away from 
the origin. In cases where missing values were present 

Fig. 2 Raster plot of extracted covariate data. a Rainfall (mm), b daytime land surface temperature (LST) (C), c evapotranspiration, d normalized 
difference vegetation index (NDVI). e Soil types for southern part of Lake Malawi shoreline, adapted from Dijkshoorn et al. [29]. Black line shows 
the shoreline template from which covariate values were extracted
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as the first sampling point, the next collected value was 
taken.

One‑dimensional Poisson latent Gaussian process 
regression
Bayesian multilevel model
A Bayesian Poisson multilevel model (BMLM) with a 
Gaussian latent process (GP) was developed using STAN 
programming language, which uses a Markov Chain 
Monte Carlo (MCMC) algorithm to regress snail abun-
dance data onto the remotely sensed covariate data, 
accounting for (1D) spatial correlation along the shore-
line. We assumed that the number of snails observed at a 
sampling location was Poisson distributed, with log-mean 
given by a coefficient-weighted sum of the covariates plus 
a spatially correlated error term. Covariance between the 
error terms was represented at the sum of spatially corre-
lated variance (using quadratic, exponential, or Matérn) 
κ uncorrelated (or nugget) variance [30]. Suitably weakly 
informative priors were applied to the model coefficients 
and variance terms, with MCMC run for 10,000 itera-
tions. Posterior summaries (mean and 95% credibility 
intervals  (Crl)) were computed for the fitted model as 
well as predictive distributions for each of the linestring 
vertices conditional on the data. All data processing and 

analysis were performed in R version 4.1.1. See supple-
mentary information (Additional file 3: Model Formula-
tion) for a mathematical explanation of the model.

Results
Observed data
After cross-checking the observation data, as shown in 
Fig. 3, we obtained 33 locations where Biomphalaria sp. 
and 63 locations where Bulinus spp. were present. The 
mean number of snails for Biomphalaria sp. was 6.03, 
ranging from 0 to 50 snails, with the most snails found at 
46.17km along the shoreline from the origin. The mean 
number of snails for Bulinus spp. was 28.20, ranging from 
0 to 300 snails, with the most snails found at 14.66km 
along the shoreline from the origin. For observed Biom-
phalaria sp. data, the extracted environmental data 
ranges were rainfall with mean 78.8 (63.01–89.51)mm 
and LST with mean 29.68 (24.97–32.44) °C. For Bulinus 
spp. data, the extracted environmental data ranges were 
rainfall with mean 80.62 (63.01–89.5) mm and LST with 
mean 30.28 (24.97–32.44) °C). Additional file  3 shows 
the observed data for 1D (Additional file 4: Fig. S1) and 
2D (Additional file 4: Fig. S2 and Fig. S3). A histogram of 
the centred and scaled covariates is shown in Additional 
file 5: Fig. S1.
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Fig. 3 Scatter plot of absolute snail numbers observed at sampling points versus distance along the shoreline in km. a Biomphalaria sp.; b Bulinus 
spp
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Environmental data prediction points
The extracted environmental data prediction point ranges 
were: rainfall (59.82–90.37mm), LST [24.68–32.46 (°C)], 
NDVI (0.29–0.61) and evapotranspiration (0.10–0.66) 
along the prediction points of the shoreline. Evapotran-
spiration was lowest and NDVI highest along the River 
Shire, with the eastern shoreline having the most rainfall 
and lowest LST (°C) compared to the western shoreline. 
Luvisolic (LV) soil type was absent around the River Shire 
compared to Gleysolic (GL) soil type; Planosolic (PL) soil 
type was present at the entrance to the River Shire and 
south of the River Shire compared to GL soil type. The 
distributions of the values of the environmental covari-
ates in Fig. 4 can be viewed in Additional file 5: Fig. S2.

Covariance function comparison
As shown in Additional file  6: Fig. S1, the exponential 
quadratic covariance function was found to over-fit the 
model (smooth out the snail abundance excessively), and 
the Matérn (κ = 1.5) smoothed the results, whereas expo-
nential covariance function was the roughest fit of the 
model. Furthermore, there seemed to be no difference 
in predicted log(µ̂i) against distance along the shoreline 
for either Biomphalaria sp. or Bulinus spp. as shown in 
Additional file 6: Fig. S2. This suggests that the effect of 

the covariates (environmental data) is more prominent 
than in the Gaussian process.

Model fit
The Bayesian log-linear Gaussian process model con-
verged well according to the trace plots of the estimated 
parameters, and the priors were appropriately selected as 
shown in Additional file 7: Fig. S1 and Additional file 8: 
Fig. S1.

Covariate effects
Figure  5 shows the posterior distributions for the envi-
ronmental covariate effects (on the log scale) for each 
species of snail, with mean snail abundance at location 
i on the x axis, with 95% CrI filled. As shown in Fig.  5 
and Table 1, a significant result was reported for NDVI, 
where 1-SD increase in NDVI had a −  0.83 (CI −  1.57, 
−  0.09) reduction in the log µi, mean Bulinus spp. snail 
abundance at location i.

All other covariates were not significant; however, 
the following were still found of interest: For a 1-SD 
increase in the NDVI, the log µi mean Biomphalaria sp. 
abundance changes by − 1.42 (CrI − 3.09, 0.10) (reduc-
tion). For a 1-SD increase in rainfall, the log µi mean 
Bulinus spp. abundance changes by − 0.88 (CrI − 2.15, 
0.33) (reduction). For a 1-SD increase in LST, the log 

Fig. 4 Environmental data values extracted for each prediction point. a Daytime land surface temperature (LST) (°C), b rainfall (mm), c 
evapotranspiration, d Normalized Difference Vegetation Index (NDVI), e Luvisolic (LV) soil type, f Planosolic (PL) soil type. e and f are compared 
with Gleysolic (GL) soil type. Gap in shoreline is due to the removal of CM soil type
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µi mean Biomphalaria sp. abundance changes by 1.30 
(CrI −  0.56, 3.4) (increased). For a 1-SD increase in 
evapotranspiration, the log µi mean Biomphalaria sp. 
abundance changes by 1.61 (CrI − 0.04, 3.56); similarly, 
the log µi mean Bulinus spp. abundance changes by 0.46 
(CrI − 0.34, 1.28) (increased). For an increase of PL soil 
type compared to the baseline GL soil type, the log µi 
mean Biomphalaria sp. abundance changes by −  3.48 
(CrI − 7.13, 0.52) (reduction); similarly, the log µi mean 
Bulinus spp. abundance changes by − 1.29 (CrI − 3.29, 
0.71) (reduction). No association could be found for LV 
soil compared to GL soil type.

Model predictions
For Biomphalaria sp., we predicted the greatest num-
ber of snails present to be close to Moet and Koche 
schools. For Bulinus spp., a higher number of snails 
was predicted over a wider area, close to Moet, Koche, 
Mtengeza, Chipeleka and Sungusya schools. However, 
for both Biomphalaria sp. and Bulinus spp., there was 
great uncertainty around all locations (2D version, 
Fig. 6; 1D version, Additional file 9: Fig. S1).

Fig. 5 Posterior plot for each species a Biomphalaria sp.; b Bulinus spp. Red shaded area represents the 80% credible intervals (CrI) and the extent 
of the curve is the 95% CrI

Table 1 Estimated parameter values, mean and CrI

CrI credible interval, LST land surface temperature, NDVI Normalized Difference Vegetation Index, LV Luvisols, PL Planosols, GL Gleysols

Parameter Biomphalaria Bulinus

Mean 95% CrI Mean 95% CrI

α 0.46 [− 3.98,4.40] 2.32 [3.69 e−03,4.56]

Rainfall − 0.05 [− 2.74,2.75] − 0.88 [− 2.15,0.33]

LST 1.30 [− 0.56,3.40] 0.04 [− 0.72,0.81]

NDVI − 1.42 [− 3.09,0.10] − 0.83 [− 1.57,− 0.09]

Evapotranspiration 1.61 [− 0.04,3.56] 0.46 [− 0.34,1.28]

Soil type LV − 1.51 [− 7.13,4.08] − 0.04 [− 3.07,3.11]

Soil type PL − 3.48 [− 7.56,0.52] − 1.29 [− 3.29,0.71]

Soil type GL
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Discussion
Our secondary spatial analysis has made a seminal 
attempt to analyse, interpolate and then predict Biom-
phalaria and Bulinus snail distribution in unsampled 
locations in the southern part of Lake Malawi, Mangochi 
District. Our study found a significant negative associa-
tion between NDVI and snail abundance for Bulinus spp. 
Analysis of our results are also indicative of a similar 
association between NDVI and Biomphalaria sp. abun-
dance, although this was not significant given our cur-
rently available data. Other covariates considered in the 
model were all non-significant, as reported in Table  1; 
despite their uncertainty, we reported an increase in rain-
fall along the shoreline, which causes a reduction in the 
mean snail abundance found along the shoreline for Buli-
nus spp. However, an increase in evapotranspiration and 
in LST along the shoreline may each cause an increase in 
the mean snail abundance found along the shoreline for 
both Bulinus spp. and Biomphalaria sp. For soil type, we 
found that an increase in PL or LV caused a reduction in 
the mean abundance found along the shoreline compared 
with GM. The characteristics of the shoreline of the 
southern part of Lake Malawi are known to vary consid-
erably over focal areas (Fig. 7) and in turn can increase or 
decrease snail abundance. We discuss our findings below 
upon consideration of other studies and establish how 

this could help to identify risk of schistosomiasis trans-
mission risk locally.

In most previous studies, increasing vegetation (higher 
NDVI) was shown to have a positive association with 
snails found due to vegetation providing more suitable 
breeding sites, whereas our study suggests a negative 
association [31–33]. This difference in result is likely 
due to our focus on Lake Malawi, where molluscivorous 
fish may be present, as opposed to a more general area 
including smaller bodies of stagnant water, which typi-
cally lack such predatory fish.

The presence of land vegetation around the shoreline 
may well be descriptive of the land topology and hence 
the depth of the water in the immediate vicinity—deeper 
water is likely less conducive to snail habitats because 
of the absence of aquatic flora. Furthermore, the type of 
vegetation and whether it is submerged or nonemergent 
floating vegetation are known to be important as the 
freshwater snails need protection from wave action and 
food resources, aiding egg-laying, and this was not con-
sidered in our model [34, 35].

There is an indication that an increase in rainfall 
decreases snail abundance in our model despite its 
uncertainty. First, this result could be due to the water 
flow increasing and spreading to new locations, disrupt-
ing freshwater snail habitats [32]. Second, an increase in 

Fig. 6 Two‑dimensional mean Gaussian process (GP) prediction of number of snails log(ûi) along the shoreline (km). a Biomphalaria sp. b Bulinus 
spp. Legend: Blue to red stands for exponential of mean GP—number of snails. Dot size represents the standard deviation of the posterior 
predictive distribution at each vertex
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rainfall has been reported to increase turbidity of water 
and in turn decrease the presence of snails (through dis-
rupting their habitat) [32, 33]. Lastly, increases in rain-
fall and water flow have also been reported to cause 
rapid changes in temperature causing thermal shock and 
reduced egg-laying of the freshwater snails, causing an 
overall reduction in snail abundance [35].

In contrast to our result, some cases studies have found 
increase in snail abundance during increase in rainfall. 
For instance, when excess rainfall, known as flooding, 
occurs, new areas of snail habitat can occur where previ-
ously snails were not present or eliminated. Runoff water 
can create new pools adjacent to the shoreline or inland, 
allowing more breeding sites to be colonized by the 
intermediate snail host and thus increasing freshwater 
snail abundance [5]. Consequently, flooding can change 
the human-snail contact interplay, through an indirect 
effect on human behaviour, and thus the associated risk 
of schistosomiasis transmission [36, 37]. However, other 
studies have suggested that during flooding these newly 
established pools of water can lead to humans visit-
ing these new sites instead of the Lake Malawi with a 
possible decreased likelihood of snails being present 
already in these new sites, which could lead to a reduc-
tion in schistosomiasis transmission [31, 36]. Adding to 

the complexity, rainfall and water levels are known to 
oscillate over time, with a general decrease in lake levels 
reported more recently, with ongoing localised peaks of 
lake levels occurring through time [2]. This could impact 
the snail abundance and its presence spatially and tempo-
rally and indirectly affect human behaviour as mentioned 
before [2, 36, 37], for example, if the lake levels are regu-
lated by needs for hydroelectricity or because many indi-
viduals prefer to make contact with shallower and more 
safe areas of the lake [38, 39].

Analysis of our results suggest that an increase in LST 
increases Biomphalaria sp. and Bulinus spp. snail abun-
dance. Many laboratory studies have been carried out 
to determine the optimal temperature for snail survival. 
For Biomphalaria sp. snails the optimum temperature 
has been found to between 15 and 30 °C, where there is 
a decrease in snail abundance above 30 and  35◦C, and 
no snails survive above 35 °C [37, 38].For our prediction 
points along the shoreline, the LST ranged between 25 
and 32  °C, which suggests Biomphalaria sp. snail abun-
dance still increases above 30  °C. This difference could 
be due to it being in a natural environment where snails 
are able to adapt to climate change [40]. It has also been 
reported that freshwater snails move further into the lake 
when temperatures increase, which we did not consider 

Fig. 7 A collection of location photographs representative of the variation of the Southern part of Lake Malawi. Pictures taken during field work 
studies carried out during August 2022 showing the east side of the southern part of the Lake Malawi shoreline (unpublished). Pictures taken 
by Alexandra Juhasz
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in our model because it was constrained to the shoreline 
and buffer area [41].

Similarly, there is an indication that increased evapo-
transpiration increased the Biomphalaria sp. and Bulinus 
spp. snail abundance in our study. The increase in evapo-
transpiration, also known as the increase in evaporation 
of water, is known to have an impact on pH, salinity (salt 
concentration), conductivity and temperature of water 
through unpublished field studies; these finer physi-
cal characteristics need to be further investigated. This 
suggests an increase in evapotranspiration causes these 
unexplored covariates to become more habitable for 
intermediate snail hosts, causing an increase in local snail 
abundance. How these unexplored covariates interact 
and their effect on snail abundance are not considered in 
our study but have been investigated in other studies [5].

Our study found PL soil type decreases snail abun-
dance compared to GL soil type. PL soil types are clay-
based, plinthic soils with high concentrations of iron. GL 
soils are mineral soils, which are a mixture of sand, silt 
and clay. Both are muddy when rainfall occurs (become 
water-logged) [42]. A previous study by Koch et  al. 
[7] found the opposite results with muddy soil being 
reported to improve the survivability of Biomphalaria sp. 
by preventing them from losing moisture in the hot and 
dry seasons compared with sandy ones and stony and 
decomposing material [7]. The difference between PL 
and GL soils is that GL is known for its iron reduction 
[43]. Kulina et al. [44] reported an increase in transmis-
sion of snail risk in groundwater with higher iron concen-
tration [44]. We found a different result, which suggested 
another chemical within the soil type could be interacting 
with the snail abundance and affecting transmission. Fur-
thermore, there was uncertainty in our results. The soil 
types from SOTER database are for wide scales; lower 
level data are needed to improve the information on 
more localised soil types [29]. Other resources have been 
created, for example SoilGrids for Africa, which, if time 
permitted and it provided lower level data for southern 
Malawi, could be applied to our study in the future [45].

Our secondary analysis study shows substantive heter-
ogeneities in snail distributions along the lake’s shoreline, 
with certain schools being close to areas of increased 
abundance of snails. Hence, SAC attending these schools 
may be more likely to be exposed to schistosomiasis. 
Moet and Koche schools were predicted to be nearest to 
the highest number of Biomphalaria sp. present along 
the shoreline, suggesting that more S. mansoni infections 
probably occur at these schools compared to the 10 other 
schools. Whereas, Moet, Koche, Mtengeza, Chipeleka 
and Sungusya were all predicted to be nearest to the 
highest number of Bulinus spp. However, for both Biom-
phalaria sp. and Bulinus spp., predicted presence along 

all the shoreline had large uncertainty. Furthermore, we 
cannot be certain about the exposure risk for the SAC 
as this secondary analysis does not consider their water 
contact patterns, including where they visit (how far they 
travel to) the shoreline, frequency,  type of contact and 
how long they remain at the shoreline. This needs to be 
further investigated as previous studies have reported 
increased snail abundance in localised areas where more 
water contact is occurring [41, 46]. In addition, the abil-
ity to measure exposure risk for SAC from our second-
ary analysis is dependent on presence of snails in an area 
being indicative that freshwater snails present are shred-
ding cercariae, but it is difficult to be certain of this [35].

There are many more physical, chemical and environ-
mental factors (abiotic and biotic) which could impact 
Schistosoma intermediate snail habitats and their relative 
snail abundance; these were not considered in our model 
because of time constraints or non-accessible data, e.g. 
pH, salinity, conductivity, flow velocity, turbidity, cal-
cium and bicarbonate concentration, dissolved oxygen, 
soil density and water capacity [35, 36, 47]. Furthermore, 
other factors such as food source, pollution (e.g. dis-
carded plastics), parasitism and even the competition for 
snail habit with other organisms within an area were not 
considered in our model [47]. Variation in human move-
ment patterns can make it difficult to locate the location 
of acquired infected. A land use and human influence 
index could have been included in our model if time had 
permitted [48].

One limitation of our study is the restricted study 
period (November 2017 to June 2019, except for the 
5-year evapotranspiration time frame) as well as taking 
the mean values for each prediction location. Rabone 
et al. [41] reported seasonality affecting snail abundance, 
with higher snail abundance during the dry season com-
pared to the wet season. For instance, seasonality can 
affect growth of vegetation and therefore the freshwater 
snail’s life due to the variation in sunlight, therefore lead-
ing to changes in snail abundance [47]. In the future, we 
would like to investigate how seasonality affects the snail 
distribution using our model. We reported on the sea-
sonal changes of the covariate data in Additional file  4: 
Fig. S1, Fig. S2 and Fig. S3; this allows observation on 
how covariate data change over time, although this was 
not considered in our model.

As mentioned before, another known limitation is that 
snails are not only found on the shoreline of Lake Malawi 
but also in pools adjacent to the lake or rivers, ponds and 
streams. This has been reported to affect snail abundance 
by affecting the microhabitat, for instance by changes 
temperatures [41, 49]. Unpublished field work studies 
in 2021 showed that on southern lake slopes in areas, 
the western side of the shoreline had longer shallower 
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areas. The area near the Upper Shire River is known to 
have more vegetation and swampy areas than the rest 
of the shoreline. Bathymetric data for water depth were 
originally considered in our secondary analysis, taken 
from the GLObal Bathymetric (GLOBathy) dataset, 
which relies on HydroLakes dataset [49]. However, it was 
excluded from the study because of missing River Shire 
values as shown in Additional file 10: Fig. S1, Fig S2 and 
Fig S3. Therefore, water depth needs to be further inves-
tigated. As mentioned before, water levels are known to 
vary over time, leading to changing water depth. Buli-
nus spp. and Biomphalaria sp. have different preferences 
regarding water depth and vegetation [1–3].

An important main limitation of our analysis is the 
resolution of the raster data we used as covariates. Many 
remotely sensed metrics are known to be inaccurate over 
water. Therefore, we positioned our shoreline linestring 
just inland of the water’s edge. Thus, any associations 
between land-based measurements and habitat condi-
tions in the water are likely to only indirectly affect snail 
abundance. A repeat study, using direct observations 
of shoreline habitat composition, perhaps using towed 
arrays of sensors behind a boat or done directed close to 
the water’s edge, may be able to provide a more accurate 
map of predicted snail abundance.

Conclusions
Our study provides a preliminary method of predict-
ing the abundance of Biomphalaria sp. and Bulinus spp. 
snails along the shoreline of Lake Malawi, given mala-
cological data collected at sparse locations and remotely 
sensed environmental data. Furthermore, our study 
shows substantive heterogeneities in snail distributions 
along the lake and abundance information which may 
be used to develop further statistically grounded study 
designs to improve the identification of likely snail habi-
tats posing a high risk for schistosomiasis transmission.
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