
Qureshi et al. Parasites & Vectors          (2024) 17:282  
https://doi.org/10.1186/s13071-024-06356-9

METHODOLOGY Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Parasites & Vectors

Double vision: 2D and 3D mosquito 
trajectories can be as valuable for behaviour 
analysis via machine learning
Yasser Mehmood Qureshi1*  , Vitaly Voloshin1,2  , Catherine Elizabeth Towers1  , 
James Anthony Covington1   and David Peter Towers1   

Abstract 

Background Mosquitoes are carriers of tropical diseases, thus demanding a comprehensive understanding of their 
behaviour to devise effective disease control strategies. In this article we show that machine learning can provide 
a performance assessment of 2D and 3D machine vision techniques and thereby guide entomologists towards appro-
priate experimental approaches for behaviour assessment. Behaviours are best characterised via tracking—giving 
a full time series of information. However, tracking systems vary in complexity. Single-camera imaging yields two-
component position data which generally are a function of all three orthogonal components due to perspective; 
however, a telecentric imaging setup gives constant magnification with respect to depth and thereby measures two 
orthogonal position components. Multi-camera or holographic techniques quantify all three components.

Methods In this study a 3D mosquito mating swarm dataset was used to generate equivalent 2D data via telecentric 
imaging and a single camera at various imaging distances. The performance of the tracking systems was assessed 
through an established machine learning classifier that differentiates male and non-male mosquito tracks. SHAPs 
analysis has been used to explore the trajectory feature values for each model.

Results The results reveal that both telecentric and single-camera models, when placed at large distances 
from the flying mosquitoes, can produce equivalent accuracy from a classifier as well as preserve characteristic fea-
tures without resorting to more complex 3D tracking techniques.

Conclusions Caution should be exercised when employing a single camera at short distances as classifier balanced 
accuracy is reduced compared to that from 3D or telecentric imaging; the trajectory features also deviate compared 
to those from the other datasets. It is postulated that measurement of two orthogonal motion components is neces-
sary to optimise the accuracy of machine learning classifiers based on trajectory data. The study increases the evi-
dence base for using machine learning to determine behaviours from insect trajectory data.

Keywords Mosquito tracking, Imaging systems, Trajectories, Machine learning, Behaviour

Background
Mosquito-borne diseases present a significant risk to 
human health, with nearly 700 million cases and 750,000 
deaths reported globally each year [1]. To combat these 
diseases, it is crucial to understand the behaviour of 
mosquitoes. Tracking mosquitoes produces trajecto-
ries that can return valuable insights into their flight 
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behaviour and has already led to significant advances in 
disease prevention. For instance, early studies on mos-
quito trajectories led to the development of an improved 
insecticide-treated net (ITN) design that provides bet-
ter protection against disease transmission [2]. Further 
research on mosquito behaviour is likely to lead to other 
such improvements.

Previously, many tracking studies involved manual pro-
cessing to capture behaviours, with a number of examples 
concerning mosquitoes [3–5]. However, advancements in 
high-resolution cameras, computational power and com-
puter vision technology have enabled automated tracking 
of behaviour [6]. Typically, this involves using cameras to 
capture videos or images that are subsequently processed 
to identify the mosquitoes or objects of interest. To 
facilitate accurate tracking, experiments rely on a clear 
contrast between the insect and background, achieved 
by illumination control. Appropriate lighting can be 
achieved using front, back or side illumination with arti-
ficial sources where the wavelength is normally selected 
in an insect blind region of the spectrum; in some cases 
natural lighting from the sun can be used effectively [7, 
8]. Tracking individual insects entails analysing the con-
trast differences within the images. By applying appro-
priate thresholds, the objects of interest are accurately 
segmented from the background.

Insect behaviour can be quantified using two-dimen-
sional (2D) or three-dimensional (3D) tracking systems. 
Three-dimensional tracking provides full quantitative 
measurement of the three orthogonal components of 
an object’s position and movement in 3D space. This 
is at the expense of a more complex imaging setup and 
hence higher cost. The most widely used approach for 
3D tracking is stereo vision with a pair of rigidly coupled 
cameras (Fig. 1) [7]. The camera separation is one of the 
main factors that determines the resolution of the depth 

information with respect to the cameras, increased sepa-
ration giving improved resolution at the expense of less 
correspondence between the camera views, a larger setup 
and needing a more rigid mechanical coupling between 
the cameras. Camera calibration is crucial, particularly 
when attempting to construct 3D trajectories from stereo 
cameras. This process involves establishing a relationship 
between the 2D coordinates obtained from each camera 
and the 3D coordinates of markers in a known pattern 
from a set of calibration frames. Typically, stereo cam-
era calibration has to be performed in situ and also com-
pensates for lens distortion [6]. In contrast, 2D tracking 
recovers the motion of a body from the projection of its 
position onto the 2D image plane of a single camera and 
some information is lost (Fig.  2). The two-component 
information obtained, in general, is a combination of the 
three orthogonal position components due to perspective 
projection. The field of view has an angular limit, deter-
mined by the camera lens. Hence, a specific mosquito 
movement at the front and back of the measurement 
volume will give differing results in pixels on the camera. 
Fortunately, several software packages are available that 
facilitate automated tracking. These packages provide 
functionalities for image pre-processing, object identifi-
cation, and trajectory analysis, streamlining the tracking 
process and reducing the manual effort required [9–11].

Telecentric imaging was introduced for single-camera, 
2D measurement applications as an object appears at the 
same size irrespective of its position along the optical axis 

Fig. 1 Schematic of stereo camera setup for 3D mosquito tracking 
illustrating the boundaries of the space imaged by both cameras 
and where 3D measurements are possible

Fig. 2 Schematic of single-camera setup for 2D mosquito tracking. 
The imaged volume is determined by the angular field of view, θ, 
and hence increases with distance from the camera
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(Fig. 3) [12]. It employs a lens with aperture matching the 
field of view, and Fresnel lenses enable large, metre-scale 
applications (see inset in Fig. 3). The telecentric arrange-
ment is achieved by spacing the two lenses on the camera 
side by a distance equal to the sum of their focal lengths. 
This geometry removes the perception of depth and 
eliminates perspective distortion [12, 13]. Wide-angle 
LED sources with a large aperture Fresnel lens for illumi-
nation makes telecentric imaging well suited for indoor 
recordings.

In recent studies, researchers have explored 2D and 3D 
trajectories, shedding light on their respective merits and 
limitations. A notable investigation focused on zebrafish 
behaviour, where a comparison was made between 3D 
and 2D tracking [14]. To capture the zebrafish move-
ments, two cameras were positioned to view orthogonal 
planes within a large water tank. Videos were processed 
into frames and analysed with a 3D multi-target tracking 
algorithm [15] resulting in the quantification of a range 
of essential behavioural characteristics. Intriguingly, the 
analysis revealed consistent underestimation of these 
behavioural features when relying solely on 2D views. 
This discrepancy can be attributed to the lack of the extra 
dimension provided by 3D tracking, which offers a more 
comprehensive understanding of the zebrafish’s rich 

behavioural repertoire. Consequently, it was concluded 
that collecting and analysing 3D trajectories was a nec-
essary overhead, despite the use of multiple cameras and 
an increased computational load. Furthermore, an addi-
tional finding emerged, indicating that a 3D approach 
requires fewer subjects compared to a 2D approach to 
obtain comparable statistical results. More recently, ste-
reo-based 3D tracking has been instrumental in under-
standing moth behaviour in attraction to artificial light 
revealing that dorsal tilting is responsible for the seem-
ingly erratic flight of the moth around a light source [16].

Tracking techniques have greatly advanced our 
understanding of mosquito behaviours. Butail et al. [8] 
(2012) used a stereo camera system to construct and 
validate 3D trajectories of wild Anopheles gambiae. This 
research revealed insights into male mosquito motion 
[17]. Building upon these findings, a more recent study 
[18] focused on classifying the disparities in mosquito 
behaviour between male and non-male (females and 
mating couples). By utilising explainable artificial intel-
ligence (XAI), the study explored the dissimilarities 
among these classes, reinforcing existing knowledge 
about the behaviour of male mosquitoes within mat-
ing swarms. XAI showed that females and mating cou-
ples (non-males) tend to exhibit extreme, high and low, 

Fig. 3 Schematic of a single-camera telecentric setup for measuring two orthogonal components of mosquito movement. The mosquitoes are 
back-lit from the LED on the left hand side and are observed as shadows on the camera
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values for velocity and acceleration features (kinematic 
characteristics) perhaps reflecting the increased energy 
availability in females through blood feeding and the 
more chaotic movement of mating couples. The paper 
shows the utility of machine learning, and XAI tech-
niques in particular, to extract behaviour insights from 
3D trajectory information. Parker et al. [19], examined 
mosquito behaviours around human baited bednets in 
the field using 2D imaging of Anopheles gambiae mos-
quitoes. Here, a pair of identical recording systems 
were used ‘side by side’ to expand the field of view and 
telecentric imaging was utilised (as shown in Fig. 3) to 
produce an accurate projection of two orthogonal com-
ponents of motion onto the image plane. This research 
identified four distinct behavioural modes—swooping, 
visiting, bouncing, and resting—using bespoke algo-
rithms based on entomologist expertise. Furthermore, 
it was observed that mosquitoes possess the ability to 
detect nets, including unbaited untreated ones. These 
findings contributed to the understanding of mosquito 
interaction with ITNs.

Tracking in combination with AI techniques has 
also been used to examine behaviours of other insects. 
Machraoui et al. [20] used 2D imaging, tracking and fea-
ture extraction with supervised learning models to dif-
ferentiate sandflies from other insects with accuracies of 
circa 88% for support vector machine and artificial neural 
network models on an optimised feature set.

In this article, we explore the relative merits of 2D and 
3D mosquito tracking when classifying and interpret-
ing behaviours via machine learning. We present a com-
parative analysis among 3D trajectories, 2D telecentric 
(removing one orthogonal component) and 2D single-
camera data with perspective distortion, all derived from 
the same dataset, to assess the advantages and limita-
tions of these tracking approaches. Analogous features 
are determined for each of these datasets, and the accu-
racy of the machine learning classifier provides a use-
ful quantitative metric to assess the outcomes and XAI 
enables interpretation of behaviours. We hypothesise 
that 3D tracking and 2D telecentric tracking will return 
similar results, despite the loss of the additional informa-
tion in the third dimension. We further hypothesise that 
a single-camera tracking system will return lower perfor-
mance due to perspective effects and lens distortion. A 
deeper understanding of the strengths and weaknesses of 
2D and 3D mosquito tracking will enable researchers to 
make informed decisions regarding experiment design. 
Overall, our research endeavours to advance the field of 
mosquito tracking and behaviour analysis via XAI, ulti-
mately aiding in the development of more efficient and 
targeted mosquito control measures, leading to signifi-
cant public health benefits.

Methods
A machine learning classifier has been established to 
classify male to non-male mosquitoes using 3D trajecto-
ries from mating swarms [18]. From this 3D dataset, cor-
responding 2D telecentric and 2D angular field of view 
information is derived to simulate the data obtained from 
these tracking systems. The sections below detail how 
the single-camera 2D telecentric and 2D angular field-of-
view trajectories are determined and the corresponding 
features derived for the 2D data.

Dataset description
The trajectories of the mosquitoes utilised in this investi-
gation were produced by Butail et al. and were provided 
as 3D tracks following the processing steps outlined in 
[8]. The data were collected in Doneguebogou, Mali, for 
the years 2009–2011, during which wild Anopheles gam-
biae mosquito swarms were observed.

The dataset contained 191 male mosquito tracks over 
12 experiments as well as 743 mating couple tracks 
(where male and female mosquitoes mate in flight and 
are tracked together) over 10 experiments (Table 1). The 
male mosquito tracks were captured in swarms where no 
females were present, whereas couple tracks were gener-
ated from swarms that contained mating events. Prior to 
analysis, tracks were filtered based on duration, exclud-
ing those < 3  s. This decreased the size of the dataset 
but effectively eliminated tracks with low information 
content.

The experiments used to track the mosquitoes utilised 
a stereo-camera set up using phase-locked Hitachi KP-
F120CL cameras at 25 frames per second. Each camera 
captured 10-bit images with a resolution of 1392 × 1040 
pixels. On-site calibration of the cameras was performed 
using a checkerboard and the MATLAB Calibration 
Toolbox [21]. The relative orientation and position of the 
cameras were established through extrinsic calibration, 
which involved capturing images of a stationary check-
erboard in multiple orientations and positions. The cam-
era’s height, azimuth, and inclination were recorded to 
establish a reference frame fixed to the ground.

Table 1 Numbers of experiments and tracks for each class of 
mosquito

Mosquito class Number of 
experiments

Number of 
tracks

Number of 
tracks after 
filtering

Male 12 191 158

Mating couple 10 743 102

Female 1 6 4

Focal-male 1 6 6
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Two‑dimensional projection of 3D trajectory data
To conduct a comparative analysis between 3D and 2D 
trajectories, two methods were employed to convert the 
3D dataset to a 2D one.

1. The first involves the omission of depth information, 
resulting in the plane of view parallel to the camera 
(YZ for this dataset). This method emulates a well-
calibrated 2D setup that uses telecentric imaging 
[19], i.e. the separation of the two lenses on the imag-
ing side generates the telecentric condition and any 
lens distortion effects have been removed by appro-
priate calibration.

2. The second transformation method utilises a single 
lens camera model placed a distance away from the 
swarm to project the trajectories onto a 2D plane 
(the camera detector plane), simulating the trans-
formation that occurs through a single-camera setup 
including perspective and lens distortion.

To perform the second transformation, the camera 
was modelled using OpenCV [22] requiring focal length, 
principal points, distortion coefficients, and the camera 
location and rotation. The 3D trajectories were projected 
onto the image plane using a perspective transformation, 
utilising the projectPoints function (https:// docs. opencv. 
org/4. x/ d9/ d0c/ group__ calib 3d. html), represented by the 
distortion-free projection equation (Eq. 1):

where Pw is a four-element column vector in 3D homoge-
neous coordinates representing a point in the world coor-
dinate system, p =

[

u v 1
]T is a three-element column 

vector in 2D homogeneous coordinates defining the cor-
responding position (u, v) of a pixel in the image plane, 
R and t refer to the rotation and translation transforma-
tions between the world and camera coordinate systems, 
s is a scaling factor independent of the camera model, 
and A is the camera intrinsic matrix given by (Eq. 2).

with fx and fy the focal lengths expressed in pixel units, 
and cx and cy are the principal points on the detector 
in pixel units. Under these definitions the coordinates 
of the imaged point on the camera (u, v) are in pixels. 
Radial, tangential, and prism distortions are included 
by modifying the 3D point in camera coordinates, given 
by [R|t]Pw [22]. The camera intrinsic matrix values and 
distortion coefficients were based on the specifications 
provided by one of the camera models employed during 

(1)sp = A[R|t]Pw

(2)A =





fx 0 cx
0 fy cy
0 0 1





the dataset generation process. These include the focal 
lengths ( fx = 1993.208 and fy = 1986.203 ), princi-
pal points ( cx = 705.234 and cy = 515.751 ) and distor-
tion coefficients ( k1 = −0.088547 , k2 = 0.292341 , and 
p1 = p2 = 0 ) [8]. To ensure accurate representation of 
the swarm, the translation vector was adjusted such that 
the optical axis aligns with the centre of a cuboid enclos-
ing the swarm, while the camera model was positioned 
at a predetermined distance from the swarm centre. As 
detailed by Butail et  al. [8], the camera was positioned 
between 1.5 m and 2.5 m away from the swarm. There-
fore, in our simulated experiment, the camera model was 
positioned at 2  m from the swarm centre. Simulations 
were conducted with and without the lens distortion 
terms which showed that the vast majority (> 98%) of the 
distortion observed in the image was due to perspective 
at this range (for the camera intrinsic matrix values given 
above and a cuboid object extending 1  m in each axis). 
For the single-lens 2D camera model, the coordinates of 
the image points in pixels (from Eq. 1, corresponding to 
the 3D trajectory coordinates) were used directly for fea-
ture calculation and classification.

To investigate the impact of different distances 
between the camera and the swarm on classifier perfor-
mance from a single-lens 2D measurement, adjustments 
in the focal length of the camera model were accounted 
for such that the swarm occupied the same extent in the 
image. The thin lens equation (Eq. 3) was used to approx-
imate the distance from the lens to the image plane as the 
object distance is varied. This equation relates the focal 
length, f  , to the distance of the object to the camera lens, 
u , and the distance of the camera lens to the image plane, 
v . Subsequently, by applying the magnification equation 
(Eq.  4), the magnification factor, M , was determined 
[23]. Based on the new distance between the object and 
the lens, the corresponding focal length was calculated 
and utilised in the camera intrinsic matrix (Eq. 2).

Thereby, datasets for 3D, 2D telecentric, and 2D sin-
gle camera at varying object distances were derived; an 
example is provided (Fig. 4).

Machine learning framework
This study employs an anomaly detection framework, as 
detailed in [18], to classify male and non-male mosquito 
tracks. Track durations are unified by splitting them 
into segments of equal duration, and flight features are 
extracted per segment. In [18], tracks shorter than dou-
ble the segment length were removed. However, this 

(3)1
f
= 1

u + 1
v

(4)M = v
u

https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
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restriction is removed as filtering was unified to remove 
tracks < 3  s in duration. This unifies the datasets and 
makes downstream comparison like-for-like. Features are 
selected using the Mann-Whitney U test and highly cor-
related features are removed. Classification is performed 
using a one-class support vector machine (SVM) model 
trained on a subset of the male class. The model forms 
predictions on track segments, and then a voting method 

is employed to return the final class prediction of whole 
tracks (Fig. 5).

The 3D trajectory feature set is detailed in [18]. 
For 2D trajectory data, an equivalent feature set was 
employed resulting in 136 features of flight, with most 
feature calculations remaining consistent, albeit with 
the exclusion of the third axis. For instance, straight-
ness (also referred to as tortuosity) is computed as 

Fig. 4 Plots displaying the effect of the transformation methods on a single mosquito trajectory. a Original 3D track. b Two transformation methods 
applied to the trajectory: the 2D telecentric transformation with depth information ignored (blue) and the 2D camera model developed in OpenCV 
at 2 m (orange) and 15 m (green), respectively, whilst utilising the distortion coefficients from Butail et al. [8]

Fig. 5 Diagram outlining the machine learning pipeline used to classify male and non-male mosquito tracks
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the ratio between the actual distance travelled and the 
shortest path between the start and end positions. For 
3D trajectories, this was calculated as:

However, in the 2D trajectory case, this was now cal-
culated as:

The calculations for the remaining features were orig-
inally devised for 2D trajectories. However, in the con-
text of 3D trajectories, projections onto the X–Y, Y–Z, 
and X–Z planes were computed, resulting in the deriva-
tion of a single value. An example of this is the calcula-
tion of curvature, which requires a single plane:

The study employed K-fold cross-validation. Two 
male trials were reserved for testing, while the remain-
ing trials were used in training. All remaining classes 
(couples, females, and focal males) were used in testing. 
In the K-fold cross-validation process, different combi-
nations of male trials were systematically rotated into 
the training set in each iteration, which is referred to as 
a ‘fold’. Performance metrics such as balanced accuracy, 
ROC AUC (area under the receiver operator curve), 
precision, recall, and F1 score were calculated with 
males and non-males considered as the positive class 
for metric computation.

The framework had various parameters that can be 
tuned including the machine learning model hyper-
parameters and the window size used to split tracks 
into segments. These were tuned together in a cross-
validated grid search attempting to maximise balanced 
accuracy. An independent tuning set containing three 
male trials and two couple trials, distinct from the 
dataset used to report the classification performance 
and named the modelling set, was used to obtain the 
best parameters. The grid search utilised in this study 
encompassed a more refined range of values with a 
smaller step size compared to [18], which is detailed 
in the supplementary material. The hyperparameter, ν, 
described as “an upper bound on the fraction of train-
ing errors and a lower bound of the fraction of support 
vectors”, was set to 0.2. This value was chosen to make 
strong regularisation of the model to allow large errors 
on the male class (the only class that is seen during 
training) to reduce overfitting.

(5)S =

∑N
i=0

√

(xi+1−xi)
2
+(yi+1−yi)

2
+(zi+1−zi)

2

√

(xN−x0)
2+(yN−y0)

2
+(zN−z0)

2

(6)S =

∑N
i=0

√

(xi+1−xi)
2
+(yi+1−yi)

2

√

(xN−x0)
2+(yN−y0)

2

(7)ki =
ẋi ÿi−ẏi ẍi

(

ẋi
2+ẏi

2
)
3
2

Evaluation of transformed data
Various methods were used to assess the different data-
sets. The machine learning pipeline provides quantita-
tive metrics for evaluating performance on the 3D and 
2D trajectory feature sets. Analysing feature correlations 
between 3D/2D datasets can reveal insights into the pres-
ervation of flight features within 2D trajectories. Correla-
tions were computed by calculating the average absolute 
Pearson’s correlation coefficient across features between 
two datasets. Even though each dataset has specific win-
dow parameters that are identified during hyperparam-
eter tuning, a fixed segment size and overlap were used 
to determine the correlation matrix to generate paired 
samples.

An alternative technique for analysing and compar-
ing features is to visualise them through an embedding. 
Here, an embedding is a lower dimensional space that 
condenses the information content from a higher dimen-
sional space. Uniform manifold approximation and pro-
jection (UMAP) [24] creates a visualisation that shows 
how the 2D/3D datasets cluster within the embedded 
feature space. Notably, UMAP is a dimensionality reduc-
tion technique that preserves the local relationships and 
global structure of the data, making it particularly suit-
able for this purpose.

Most importantly, it is necessary to deduce whether the 
machine learning models are utilising features correctly 
and behavioural insights gathered are consistent with 
those from 3D trajectories. By using SHapley Additive 
exPlanations (SHAP) values [25], it was possible to visu-
alise and explain how the model made its predictions.

From [18], classification of male and non-male trajec-
tories based on 3D trajectory features was demonstrated, 
alongside XAI to interpret the machine learning model. 
The SHAP plots have increased noise due to using field 
data and may exhibit a slight skew in the colour scale. To 
ensure robust interpretations, SHAP scatter plots were 
also used to visualise the SHAP value distribution as a 
function of feature value.

Results
The 3D dataset was transformed into 2D telecentric and 
single-camera datasets at various distances from the 
swarm. Evaluating the machine learning framework’s 
performance at these distances (Fig. 6), the single-camera 
model closely matches the telecentric dataset as the cam-
era moves farther from the object. For each distance, the 
tuned pipeline returns differing segment sizes and over-
laps, which are also displayed.

Comprehensive results for the performance when using 
tuned pipeline parameters of the 3D dataset, 2D tele-
centric dataset, and 2D single-camera datasets with the 
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camera placed at 2  m and 15  m are provided (Table  2). 
Across all datasets, the best performance obtained was 
from the 3D tracks with a balanced accuracy and ROC 
AUC score of 0.656 and 0.701. This performance may 
seem low, but the classifier is attempting to distinguish 
small differences in features of flight over segments of 
a few seconds and the data were captured in the field 
under various conditions; hence, such performance in 
this application is notable. Generally, the single-camera 
model performs worse than the telecentric and 3D meth-
ods in both cases. At 2 m, the single-camera model fares 
6.8% and 6.9% worse in balanced accuracy and ROC 

AUC compared to the 3D dataset, primarily because of 
perspective distortion. The telecentric and 3D meth-
ods exhibit similar performance with absolute percent-
age differences of 2.1% and 1.0% in balanced accuracy 
and ROC AUC, respectively. This indicates preserved 
tracking accuracy with a 2D telecentric dataset, i.e. two 
orthogonal displacement components quantified, despite 
a loss of depth information. Similarly, when the single-
camera model is placed farther away, its performance 
closely mirrors that of the 2D telecentric dataset with 
absolute percentage differences of 0.7% and 1.3% for bal-
anced accuracy and ROC AUC respectively. Note that 

Fig. 6 Classification performance of the 2D single-camera model as the distance varies. Solid lines: 2D single-camera model; dashed lines: data 
from 2D telecentric model. a Balanced accuracy as distance varies. b ROC AUC score as distance varies. Both graphs also display the optimised 
segment size and overlap from hyperparameter tuning at each distance

Table 2 Performance metrics of each 3D/2D dataset when passed into the machine learning pipeline with the 95% confidence 
interval provided in brackets

3D data 2D telecentric 2D single camera (at 2 m) 2D single camera (at 15 m)

Training set accuracy (male) 0.776 (0.733–0.821) 0.820 (0.750–0.896) 0.891 (0.837–0.950) 0.825 (0.761–0.875)

Testing set accuracy (male) 0.636 (0.270–0.937) 0.708 (0.279–0.983) 0.704 (0.277–0.971) 0.713 (0.279–0.970)

Testing set accuracy (couple) 0.627 (0.594–0.674) 0.518 (0.406–0.594) 0.441 (0.348–0.565) 0.533 (0.442–0.630)

Testing set accuracy (female) 1.000 (1.000–1.000) 1.000 (1.000–1.000) 0.750 (0.750–0.750) 0.929 (0.750–1.000)

Testing set accuracy (focal male) 0.778 (0.583–0.833) 0.786 (0.667–0.833) 0.786 (0.667–0.833) 0.786 (0.667–0.833)

Balanced accuracy 0.656 (0.506–0.776) 0.635 (0.484–0.709) 0.588 (0.428–0.690) 0.642 (0.495–0.725)

ROC AUC 0.701 (0.618–0.763) 0.688 (0.543–0.805) 0.632 (0.452–0.774) 0.701 (0.550–0.808)

F1 (average) 0.635 (0.501–0.734) 0.597 (0.475–0.654) 0.537 (0.426–0.640) 0.604 (0.485–0.687)

F1 (male as positive class) 0.555 (0.334–0.718) 0.546 (0.317–0.672) 0.505 (0.313–0.641) 0.552 (0.323–0.695)

F1 (nonmale as positive class) 0.715 (0.662–0.756) 0.647 (0.601–0.677) 0.569 (0.525–0.642) 0.656 (0.607–0.699)

Recall (average) 0.656 (0.506–0.776) 0.635 (0.484–0.709) 0.588 (0.428–0.690) 0.642 (0.495–0.725)

Recall (male as positive class) 0.664 (0.381–0.921) 0.725 (0.386–0.961) 0.718 (0.363–0.939) 0.730 (0.386–0.95)

Recall (nonmale as positive class) 0.648 (0.616–0.692) 0.545 (0.438–0.616) 0.458 (0.370–0.575) 0.554 (0.459–0.651)

Precision (average) 0.642 (0.504–0.759) 0.629 (0.483–0.722) 0.587 (0.435–0.691) 0.635 (0.492–0.738)

Precision (male as positive class) 0.481 (0.299–0.606) 0.442 (0.271–0.538) 0.397 (0.275–0.514) 0.449 (0.281–0.568)

Precision (nonmale as positive class) 0.803 (0.665–0.931) 0.816 (0.676–0.956) 0.778 (0.595–0.937) 0.821 (0.677–0.944)
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the performance metrics for the female and focal male 
classes are not conclusive as these results are based on a 
limited number of tracks.

A closer analysis of individual fold performance 
across the datasets revealed additional understand-
ing. As reported in [18], poorly performing folds were 
those that were tested on abnormal trials where mos-
quito type was different (Mopti form instead of Savan-
nah form) and swarm location differed (over bundles 
of wood rather than bare ground). These conditions 
could alter mosquito trajectory features, potentially 
causing them to fall outside the decision boundary 
of the single-class model. Conversely, folds includ-
ing abnormal trials in training consistently performed 
best. This indicates potential overfitting to the vari-
ability within their features, leading to accurate classi-
fications for male mosquitoes but reduced accuracy for 

non-male. This trend held for both the 2D telecentric 
and single-camera models at 15  m. However, the 2 m 
single-camera model displays the opposite behaviour, 
with the best performance on folds containing abnor-
mal trials in testing. This implies that the perspective 
distortion introduced by the camera at this distance is 
affecting the feature values and their variability, result-
ing in unexpected performance variations across differ-
ent trials.

The performance of these models can be visualised 
through confusion matrices (Fig.  7) and receiver-oper-
ator characteristic (ROC) curves (Fig.  8). The confu-
sion matrices display the predictions of all folds with 
the percentage of predictions labelled in each section of 
the matrix. The ROC curves depict the performance of 
a binary classifier by plotting the trade-off between true- 
and false-positive rate.

Fig. 7 Confusion matrices of each dataset: a original 3D dataset, b 2D telecentric dataset, c 2D single-camera model at 2 m, and d 2D 
single-camera model at 15 m
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Analysing the correlation between features from dif-
ferent datasets can reveal insights into the preservation 
of flight features in 2D trajectories. Datasets were gener-
ated at various distances using the same segment size and 
overlap, such that correlation can be computed between 
paired samples. To compute the correlation, each of the 
datasets was pairwise correlated to produce the matrix 
(Fig. 9). Overall, utilising a 2D telecentric setup preserves 

more features compared to the 3D dataset, with an aver-
age correlation of 0.83. Shape descriptors show the low-
est correlation because of depth loss, which is expected. 
Conversely, a single-camera setup compromises track-
ing accuracy, resulting in lower feature correlation 
compared to a 3D stereoscopic system. The average cor-
relation between the 2D single camera at 2 m with the 3D 
dataset and the 2D telecentric system is 0.72 and 0.87, 

Fig. 8 Receiver-operator characteristic (ROC) curves of each dataset. The dark blue line displays the average ROC curve across all folds, the light 
blue lines show the ROC curve at each fold and the grey shadow depicts the standard deviation. Within the figure, (a) displays the original 3D 
dataset, (b) the 2D telecentric dataset, (c) the 2D single-camera model at 2 m, and (d) 2D single-camera model at 15 m
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respectively. However, positioning the single camera at 
9  m significantly improves correlation. Average correla-
tion values increase to 0.80 and 0.96 compared to 3D and 
2D telecentric datasets, respectively. These results are 
expected as increasing camera-swarm distance reduces 
the perspective distortion effect, thereby resembling tel-
ecentric setup data and enhances feature preservation.

The UMAP representation (Fig.  10) provides a clear 
visualisation of the disparities between the datasets. The 
SHAP plots of the best performing folds for each model 

were generated and are provided in the supplementary 
material. This includes SHAP summary plots for the best 
performing folds for the 3D, 2D telecentric, and 2D sin-
gle-camera model at 2 m and 2D single camera model at 
15 m datasets, respectively (Additional file 1: Figs. S1-S4). 
The supplementary material also includes SHAP sum-
mary plots where only the common features across each 
model are selected and sorted alphabetically (Additional 
file 1: Figs. S5–S8). SHAP scatter plots for the third quar-
tile of angle of flight feature are provided for each dataset 
(Fig. 11). This feature was chosen as an example to illus-
trate the impact that each camera system has on SHAP 
and feature values. In this figure, each point represents a 
segment, with its corresponding normalised feature value 
on the x-axis and its SHAP value on the y-axis. A histo-
gram of the segment feature values is provided as a grey 
shadow.

The feature selection process for each dataset selects 
slightly different types of features. Among the datasets, 
the numbers of selected features are as follows: 61 for 
the 3D dataset, 34 for the 2D telecentric dataset, 42 for 
the 2D single-camera dataset at 2 m, and 35 for the 2D 
single-camera dataset at 15  m. Notably, the 3D dataset 
contains more features as it includes some feature calcu-
lations projected in the X–Y, Y–Z,, and X–Z planes which 
are not present with 2D data. Despite these differences, 
a significant portion of features is shared between them. 
Specifically, 85% of the features are common between 
the 2D telecentric and 2D single-camera datasets at 2 m, 
while 97% of the features are common between the 2D 
telecentric and 2D single-camera datasets at 15 m. These 
observations further reaffirm that the 2D single-camera 
dataset at 15  m can effectively emulate a 2D telecentric 
system. It is important to note that across all datasets, 
only a few shape descriptors are selected, consistent with 
the findings from [18].

Discussion
This study compares 3D and 2D trajectory datasets simu-
lating various imaging techniques. Performance metrics 
were obtained via a one-class machine learning classifier 
on field data of male and non-male mosquitoes in a mat-
ing swarm. Generally, the 3D and 2D telecentric data-
sets performed best, with the exception of some metrics 
from the 2D single-camera model at 15 m. Performance 
with a single camera at a great distance (with a suitable 
focal length lens) approached that of the telecentric data-
set. However, at a typical distance for insect tracking of 
around 2 m, performance showed an average decrease of 
about 0.05 across all metrics on the test datasets.

Earlier, we hypothesised that 2D telecentric imag-
ing data would perform similarly to stereoscopic 3D 
data despite the loss of one axis of information. We 

Fig. 9 Pairwise correlation matrix between each dataset. The Pearson 
correlation between the same features for each pair of datasets 
is computed, with the average of the correlations taken to return 
a final value for the dataset pairs

Fig. 10 UMAP representation of each of the datasets
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anticipated that a single-camera model would be less 
effective at short distances compared to larger dis-
tances, where trajectory data align more closely with 
telecentric imaging (with larger focal length imaging 
lenses). The machine learning classifier performance 
metrics confirm both hypotheses. The implication of 
the first hypothesis is that the necessary features to dif-
ferentiate the behaviour of male compared to non-male 
mosquitoes are present in two orthogonal components 
of motion as well as in a complete three-dimensional 
measurement. This is different from what we normally 
consider to be the accuracy of a measurement. In terms 
of metrology, accuracy is the difference between a 
measurement and the true value. The speed of a mos-
quito requires all three velocity components for accu-
rate determination. The findings demonstrate that 
features extracted from 2D orthogonal, i.e. independent 
axes, measurements can characterise behaviour compa-
rably to 3D measurements (Table 2).

Single-camera 2D data are typically obtained without 
calibrating for geometric distortions introduced by the 
imaging lens. Distortion increases linearly with radial 
distance from the optical axis and is a power law with 
respect to numerical aperture [26] and the angular field of 
view increases as the camera is moved closer to the scene 
of interest. Hence, close range imaging yields higher dis-
tortion compared to distant imaging for the same field of 
view. Perspective effects at close range mean that the two 
components of position measured at a detector are also 
a function of object position along the optical axis and 
the magnitude increases with radial distance (as for lens 
distortion). Hence, it appears that classifier performance 
is impacted by perspective and distortion aberrations, 
particularly noticeable at closer distances. Conversely, 
positioning the camera further away reduces perspective 
distortion, leading to more reliable interpretations akin 
to 2D telecentric data. However, by tuning the param-
eters for the machine learning pipeline at each distance, 

Fig. 11 SHAP scatter plots for the third quartile of angle of flight feature. Within the figure, (a) displays the original 3D dataset, (b) the 2D telecentric 
dataset, (c) the 2D single-camera model at 2 m, and (d) 2D single-camera model at 15 m
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the pipeline partially accommodates for the distortion 
effects introduced at smaller distances. The changing seg-
ment size for each distance, as determined by the tuning 
dataset, thus plays a strong role in the classification per-
formance leading to some of the variations in balanced 
accuracy and ROC AUC as distance increases. The fig-
ure (Fig. 6) captures these variations and also depicts the 
tuned segment size and overlap at each distance. Differ-
ing segment sizes capture different scales of behaviour 
and would lead to variations in feature values and thus 
differences in classification performance. Intriguingly, 
this study found that achieving comparable performance 
between a single-camera 2D measurement and the corre-
sponding 2D telecentric assessment occurs at a range of 
9–10 m. The pipeline parameters after 9 m remain con-
sistent and are equivalent to the telecentric system, dis-
playing its effectiveness at emulating a telecentric camera 
system.

The correlation analysis highlights differences between 
the camera systems. The single-camera model at 15  m 
correlates strongly with 2D telecentric data (0.96), while 
2D telecentric data correlate well with the 3D dataset 
(0.83). In the UMAP representation (Fig.  10), features 
from the 2D single camera at 2  m cluster towards the 
upper left corner, suggesting less reliable and inconsist-
ent object tracking at close range. SHAP scatter plots for 
the angle of flight, third quartile, feature (Fig.  11) cor-
responding to the four different imaging setups demon-
strate similarity among the 3D, telecentric, and single 
camera at 15  m, whereas the single camera at 2  m has 
increased noise and overlap between the classes across 
some feature values. This feature describes the upper 
quartile of the change in angle of flight distribution 
within a track segment, where high values indicate a large 
deviation. It can be argued that this feature for the 3D 
dataset shows the clearest separation between the male 
and non-male classes, while overlap occurs in other set-
ups. In the single camera at 2 m SHAP scatter plot, the 
histogram displays a distorted distribution of normalised 
feature values compared to the other histograms, further 
illustrating the impact the distortion that camera systems 
at close distance bring. SHAP summary plots in the sup-
plementary information confirm these trends indicating 
subtle differences in feature contributions and a slight 
skew towards male predictions with close-range single-
camera models. This phenomenon can be attributed to 
the perspective distortion introduced in trajectories that 
are constructed by a single-camera model, resulting in 
highly variable features across all classes. Consequently, 
the distinct separation between classes diminishes for 2D 
imaging at close range.

The study primarily focused on the Y–Z view directly 
imaged on the camera detector, but the other two 

orthogonal views were assessed (Additional file  1: Figs. 
S12-S13). Notably, the machine learning model perfor-
mance of these additional views were higher than that 
of the original view that has been discussed. Specifically, 
the overhead view X–Y, which captures the distinctive 
circular motions of swarming male mosquitoes and the 
more erratic behaviours of mating couples, likely contrib-
uted to its higher effectiveness. The X–Z plane, observing 
the swarm from the other side view, may perform bet-
ter because of the increased uncertainty of X-positional 
data in combination with perspective, which may amplify 
the depth information (e.g. through increased variability 
in certain features). Mating couple tracks move less in 
the depth plane and thus lead to bias towards one of the 
classes. Both these views utilise the depth axis that, while 
derived, introduces significant noise, rendering these 
findings less reliable. During the generation of the data-
set, the camera system is placed 1.5–2.5 m away from the 
swarm and the baseline is 20 cm [8], meaning the angle 
subtended by the cameras at the swarm in the stereo-
scopic setup varies between 4.6 and 7.6 degrees. Accord-
ing to [27] for a related stereoscopic imaging setup, with 
an angle of 5 degrees, the uncertainty in depth displace-
ments is > 11 times the uncertainty parallel to the detec-
tor plane. With an angle of 7.5 degrees, this uncertainty 
is > 7 times the uncertainty parallel to the detector plane. 
As a result, the accuracy of the depth component (X) is 
7–11 times worse than the other measurement compo-
nents, and thus these results from the other views are 
unreliable.

Overall, the 3D dataset demonstrates superior per-
formance, followed by the telecentric dataset. Both 
setups can be configured in a small experimental 
footprint compatible with experimental hut trials in 
sub-Saharan Africa. Stereo 3D setups require align-
ment of the two cameras on the same field of view 
and in  situ calibration. Two-dimensional telecentric 
setups require large aperture optics typically achieved 
with plastic Fresnel lenses [19], the same size as the 
required field of view, and careful alignment of the 
separation between the camera and large aperture 
lenses. Single-camera 2D imaging is experimentally 
simpler and can be done with lower camera to object 
distance within the size of a typical experimental hut 
but then generate the distortions described above and 
lower performance in machine learning classification 
and hence difficulties in behaviour interpretation. 
Two-dimensional imaging at longer range becomes 
problematic for practical reasons, the image path 
would extend outside a typical dwelling, and it is diffi-
cult to prevent occlusion by people and animals during 
recordings that can take several hours. Also, with large 
focal length lenses, outdoor implementation in low 
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light conditions can be particularly problematic as the 
optical efficiency reduces, an effect that has not been 
investigated here. It is also recognised that the calibra-
tion process for stereoscopic imaging naturally means 
that trajectories are obtained in physical distance 
units, e.g. mm; telecentric setups can also be relatively 
easily calibrated as position data parallel to the camera 
detector remains the same irrespective of an object’s 
position along the optical axis. The resulting machine 
learning models can therefore be applied to results of 
other, equally well calibrated experiments that attempt 
to elicit similar behaviours. Two-dimensional single-
camera measurements are obtained in pixels from the 
detector—whilst known artefacts could be placed in 
the field of view for calibration, manual assessment of 
whether trajectories are in the appropriate depth plane 
would need to be made. Hence, the machine learning 
models from 2D single-camera measurements are less 
useful than the calibrated data from stereoscopic 3D 
or telecentric 2D setups.

There are certain limitations with this study that 
should be acknowledged. First, the datasets used for 
comparing the performance of different tracking sys-
tems were all simulated, except for the 3D dataset. The 
3D data used for simulating the other tracking systems 
were gathered from mosquito swarms, where their 
movement revolves around a central point, result-
ing in generally symmetric trajectories (especially in 
both horizontal axes). As a result, these findings may 
not be applicable in studies that have unsymmetrical 
movements (e.g. mosquito flight around bednets [19]). 
The orientation of the 2D datasets is to primarily cap-
ture the vertical axis, with respect to the ground, and 
one horizontal axis. It is probably important for 2D 
datasets to include the effect of gravity and one other 
orthogonal axis. Were a trajectory to be along a linear 
axis not captured by a 2D imaging system, then clearly 
it would fail to provide useful information. However, 
the mating swarm data used here [8], data from field 
tests tracking mosquitoes around human baited insec-
ticide treated nets [28] or in odour stimulated wind 
tunnels tests [29], mosquitoes do not exhibit straight 
line flight behaviours. The 3D data itself were gath-
ered from wild mosquito swarms and as such the tra-
jectories may already contain noise that may reduce 
performance across all tracking simulations. To fur-
ther validate these findings, future trials of the various 
tracking systems should be tested by generating new 
experimental data from each system in diverse scenar-
ios and then comparing their trajectories to determine 
whether the same behaviours and trends between the 
3D and 2D datasets are observed.

Conclusions
Accurately tracking mosquitoes, or more generally 
insects, is a difficult task that requires care to be taken 
at many stages. This includes considering the experimen-
tal conditions, the video recording equipment, and the 
software used to identify insects from videos. Nonethe-
less, accurate tracking of mosquitoes could lead towards 
improved understanding of their behaviours that may 
influence disease transmission intervention mechanisms. 
The results of this study imply that 2D telecentric and 3D 
stereoscopic imaging should be the preferred imaging 
approaches to adequately capture mosquito behaviour 
for machine learning analysis. Both of these approaches 
are compatible with laboratory and field-based studies, 
but it should be recognised that 2D telecentric imaging 
is less complex and the data more straightforward to pro-
cess. Single-camera 2D imaging over large, metre-scale 
field of view, although experimentally easier and needing 
less expensive equipment, should be avoided because of 
the distortion in the results and subsequent difficulty in 
interpretation. Nonetheless, if a single camera is placed 
at a considerable distance from the object of interest, 
achieving accurate interpretations of behaviour may be 
feasible. However, this demands expensive long focus 
lenses and a strong light source to effectively record 
trackable mosquitoes.
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