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Abstract 

Background  Chagas disease (CD), a neglected parasitic disease caused by Trypanosoma cruzi, poses a significant 
health threat in Latin America and has emerged globally because of human migration. Trypanosoma cruzi infects 
humans and over 100 other mammalian species, including dogs, which are important sentinels for assessing the risk 
of human infection. Nonetheless, the serodiagnosis of T. cruzi in dogs is still impaired by the absence of commercial 
tests. In this study, we investigated the diagnostic accuracy of four chimeric recombinant T. cruzi IBMP antigens (IBMP-
8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) for detecting anti-T. cruzi antibodies in dogs, using latent class analysis (LCA).

Methods   We examined 663 canine serum samples, employing indirect ELISA with the chimeric antigens. LCA 
was utilized to establish a latent variable as a gold standard for T. cruzi infection, revealing distinct response patterns 
for each antigen.

Results   The IBMP (Portuguese acronym for the Molecular Biology Institute of Paraná) antigens achieved area 
under the ROC curve (AUC) values ranging from 90.9% to 97.3%. The highest sensitivity was attributed to IBMP-8.2 
(89.8%), while IBMP-8.1, IBMP-8.3, and IBMP-8.4 achieved 73.5%, 79.6%, and 85.7%, respectively. The highest specificity 
was observed for IBMP-8.4 (98.6%), followed by IBMP-8.2, IBMP-8.3, and IBMP-8.1 with specificities of 98.3%, 94.4%, 
and 92.7%, respectively. Predictive values varied according to prevalence, indicating higher effectiveness in endemic 
settings.

Conclusions   Our findings underscore the remarkable diagnostic performance of IBMP-8.2 and IBMP-8.4 
for the serodiagnosis of Trypanosoma cruzi in dogs, representing a promising tool for the diagnosis of CD in dogs. 
These chimeric recombinant antigens may not only enhance CD surveillance strategies but also hold broader 
implications for public health, contributing to the global fight against this neglected tropical disease.
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Background
Chagas disease (CD), caused by the hemoflagellate 
protozoan Trypanosoma cruzi, is a significant neglected 
parasitic disease affecting humans, especially in Latin 
American countries. An estimated 5.7–6 million 
individuals are affected, leading to roughly 10,000 annual 
fatalities [1]. The primary mode of transmission occurs 
through the feces of blood-sucking triatomine bugs, 
placing around 70 million people at risk [1]. Additionally, 
transmission can happen through blood transfusion, 
ingestion of contaminated food and beverages, vertical 
transmission, and accidental laboratory exposure [2]. In 
recent years, CD has transcended the Americas because 
of increasing migration, emerging as a global public 
health concern in various regions worldwide [3, 4].

Clinically, the course of CD can be divided into two 
phases. The acute phase typically initiates 1–2  weeks 
post-infection and persists for 2–3  months. It is 
characterized by high parasitemia and nonspecific clinical 
signs and symptoms, including pyrexia, tachycardia, 
and lymphadenopathy [5]. The lifelong chronic 
phase encompasses two forms: indeterminate and 
symptomatic. The indeterminate form represents a latent 
period during which individuals display no clinical signs 
or symptoms but test positive for the disease through 
serological testing. Roughly 30–40% of chronically 
infected individuals progress to the symptomatic form, 
which can further be categorized as cardiac, digestive, 
or mixed forms [5]. The diagnosis of CD infection in the 
chronic phase is complex. Due to intermittent or low 
parasitemia combined with high anti-T. cruzi antibody 
levels, diagnosis necessitates the use of antigen-antibody 
detection techniques through laboratory-based methods. 
Additionally, given the absence of an accurate reference 
test, the Pan American Health Organization and the 
World Health Organization conventionally recommend 
the use of two serological assays based on different 
antigens and/or methodologies concomitantly to achieve 
an accurate diagnosis [6].

In addition to humans, T. cruzi infects over 100 species 
of domestic and wild mammals [7]. Domestic animals like 
chickens, pigs, dogs, and cats heighten the risk of human 
infection by attracting triatomine bugs [8, 9]. Animals 
can also acquire infection through blood transfusion, 
vertical transmission, and orally, via the transmammary 
route or ingestion of infected insects [10, 11]. Among 
domestic animals, dogs play a pivotal role in sustaining 
the domestic and peridomestic cycle of T. cruzi. They can 
be infected through various modes of transmission [12] 
and may serve as primary host, sentinel, and reservoir 
of T. cruzi in this epidemiological context [10, 13–15]. 
There is a correlation between seropositivity in humans 
and dogs in proximity [16]. For instance, adults and 

children residing in households with seropositive dogs 
are at a higher risk of infection [16]. Additionally, certain 
dogs exhibit high parasitemia, attracting vectors and 
demonstrating high susceptibility to infection [17–19]. 
Consequently, these animals are recognized as sentinels, 
as their infection precedes human infection, signaling 
an active parasite transmission cycle and a potential 
risk of human infection [20]. Dogs may also develop 
clinical signs and clinicopathological abnormalities 
similar to those in humans, rendering them valuable as 
an experimental model for CD. In severe cases, dogs may 
experience morphofunctional changes in the cardiac and 
digestive systems, potentially leading to sudden death 
[21–24].

Despite the significant role of dogs in the context 
of CD, there are currently no commercially available 
tests for detecting the infection in these animals. 
Previous studies on canine CD have utilized in-house 
serological assays incorporating native and/or full-length 
recombinant antigens, resulting in variable diagnostic 
performance [25]. Recent advances, such as the use of 
recombinant antigens like the chimeric IBMP proteins 
(IBMP-8.1, IBMP-8.2, IBMP-8.3, and IBMP-8.4) have 
shown promising results for the diagnosis of chronic 
CD in humans [26–35], also exhibiting encouraging 
performance in dogs [33, 36–38]. A phase I study in dogs 
demonstrated that all antigens effectively differentiate 
between positive and negative samples, regardless of 
whether the infection was experimental or natural. 
Specifically, IBMP-8.3 and IBMP-8.4 antigens exhibited 
sensitivity and specificity values exceeding 97.5% [36]. 
Due to the absence of a reference test for diagnosing 
CD in humans, we previously adopted a latent class 
analysis (LCA) approach to mitigate biases arising from 
the inaccuracies of commercial tests [28]. This approach 
resulted in high-performance metrics for each IBMP 
antigen, as validated in several studies [31, 39–41]. The 
limitations are even greater for dogs because of the lack 
of commercial tests. Therefore, in this phase II study, we 
investigated the diagnostic performance of four chimeric 
recombinant T. cruzi IBMP antigens (IBMP-8.1, IBMP-
8.2, IBMP-8.3, and IBMP-8.4) for detecting anti-T. cruzi 
antibodies in dogs by in-house ELISA, using latent class 
analysis (LCA).

Methods
Synthesis of chimeric antigens
The chimeric antigens (IBMP-8.1, IBMP-8.2, IBMP-
8.3, and IBMP-8.4) employed in this investigation were 
synthesized following the procedure outlined by Santos 
et  al. [26]. Initially, nucleotide sequences were cloned 
into the pET28a vector and expressed in Escherichia coli 
BL21-Star DE3. These cells were cultured in lysogeny 
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broth (LB) supplemented with 0.5  M isopropyl-β-d-1-
thiogalactopyranoside (IPTG). Subsequently, bacterial 
cell lysis was achieved using microfluidification, and the 
antigens were purified through affinity and ion exchange 
chromatography. The quantification of chimeric antigens 
was carried out using fluorimetry with the Qubit 2.0 
instrument (Invitrogen Technologies, Carlsbad, CA, 
USA).

Sample collection
To determine the appropriate sample size, this study 
employed the statistical program OpenEpi [42], 
considering a sensitivity of 99%, specificity of 99%, 
absolute error of 1.5%, and confidence level of 95%. 
Consequently, a minimum of 169 sera from T. cruzi-
positive dogs and 169 sera from T. cruzi-negative 
dogs were required. In total, 663 serum samples from 
dogs were included in the sample panel to assess the 
diagnostic performance of all four chimeric antigens 
using ELISA (Fig.  1). These samples were sourced from 
previous investigations and were collected in various T. 
cruzi endemic settings in Brazil, including Bahia (BA; 
n = 181), Pernambuco (PE; n = 402), and Rio Grande do 
Norte (RN; n = 80). All serum samples underwent testing 
through indirect ELISA, utilizing the four chimeric 
antigens (IBMP-ELISA). The samples were preassigned 
unique codes to guarantee a blinded analysis conducted 
by the operator.

IBMP‑ELISA
Immunoassays were conducted following the procedure 
outlined by Leony et  al. [36]. Flat-bottom 96-well 
polystyrene microtiter plates (Nunc Maxisorp®, USA) 
were coated with one of the chimeric IBMP antigens 
at concentrations of 25  ng per well in 100-µl coating 
buffer (0.05  M carbonate/bicarbonate buffer solution, 
pH 9.6). Sensitization, stabilization, and blocking were 
concurrently performed using a synthetic buffer (batch 
130,703; WellChampion; Kem-En-Tec Diagnostics A/S, 
Taastrup, Denmark) according to the manufacturer’s 
instructions. Serum samples, diluted 1:100 in 0.05  M 
phosphate-buffered saline (PBS; pH 7.4), were added to 
the coated wells, and the microtiter plates were incubated 
at 37 °C for 60 min. Following incubation, the wells were 
washed five times with 250  µl of wash solution (PBS-
Tween; 10  mM sodium phosphate, 150  mM sodium 
chloride, and 0.5% Tween-20, pH 7.4) to remove non-
adsorbed material. Subsequently, the plates were 
incubated again at 37  °C for 30  min with 100  µl HRP-
conjugated anti-dog globulin IgG (Bio-Manguinhos, 
Fiocruz, Rio de Janeiro-RJ, Brazil) diluted at 1:20,000 
(IBMP-8.3) and 1:40,000 (IBMP-8.1, IBMP-8.2, and 
IBMP-8.4) in PBS. After another wash cycle, 100  µl of 

chromogenic TBM substrate (Kem-En-Tec Diagnostics 
A/S, Taastrup, Denmark) was added to each well, and 
microtiter plates were incubated for 10  min in the dark 
at room temperature. The colorimetric reactions were 
interrupted by adding 50  μl of 0.3  M H2SO4 to each 
well. Optical density (OD) was measured in a microplate 
reader equiped with a 450-nm filter (SPECTRAmax 
340PC®; Molecular Devices, San Jose, CA, USA), with 
background values subtracted from the measurement 
experiments.

Data analysis
LCA was conducted using a statistical model to establish 
a latent variable and to be subsequently utilized as the 
gold standard for the diagnosis of T.cruzi infection. 
LCA, a multivariate statistical approach, is based on the 
analysis of response patterns of categorical indicators 
(i.e., chimeric antigens) that express a latent categorical 
construct/variable [43]. Four binary indicators 
represented the responses (“negative” and “positive”) of 
the chimeric antigens IBMP-8.1, IBMP-8.2, IBMP-8.3, 
and IBMP-8.4. LCA model parameters were estimated 
using maximum likelihood. The set of conditional 
probabilities estimated by LCA is used to describe the 
likelihood of a specific response (negative/positive) for 
a chimeric antigen given the individual’s membership 
in the corresponding latent class. The interpretation 
of these estimates are used to label the latent class 
related to the T.cruzi diagnosis. Various criteria were 
employed to assess the LCA model, including Akaike 
information criteria (AIC), Bayesian information criteria 
(BIC), and entropy. Lower AIC and BIC values indicate 
a better fit, while an entropy value near one indicates 
high classification quality. Conditional independence 
was evaluated using bivariate residuals. All analyzes 
were conducted using Mplus v5.2 software (Muthén & 
Muthén, Los Angeles, CA, USA). Considering the entire 
sample panel, 326 out of 663 samples (89 from BA, 195 
from PE, and 42 from RN) were randomly selected to 
define the gold standard for determining the presence of 
anti-T. cruzi antibodies via LCA. The remaining samples 
were used to estimate diagnostic performance (n = 337) 
for each chimeric antigen based on the previously defined 
latent class response patterns, along with a corresponding 
95% confidence interval. Data were analyzed using 
GraphPad Prism v 9.5.1 software (GraphPad Software 
Inc., San Diego, CA, USA). Descriptive data were 
presented as medians along with interquartile range 
(IQR) intervals. To assess data normality of ELISA 
results, the Shapiro-Wilk test was applied. If data did 
not confirm to the assumption of homogeneity, the 
Wilcoxon’s signed rank test was utilized. All analyses 
employed a two-tailed approach, with statistical 
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Fig. 1  Study analysis design flowchart. This figure illustrates the study design in accordance with the Standards for Reporting of Diagnostic 
Accuracy Studies (STARD) guidelines. Key abbreviations include N/n (number of samples) and LCA (latent class analysis)
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significance defined as P < 0.05. Cutoff values for T. 
cruzi diagnosis were determined by calculating the area 
under the receiver-operating characteristic (ROC) curve 
(AUC). AUC values were categorized as low (0.51–
0.61), moderate (0.62–0.81), elevated (0.82–0.99), or 
outstanding (1.0) based on previously established criteria 
[44]. Results were expressed in index format, denoting 
the signal-to-cutoff ratio between samples’s OD and the 
cutoff OD for each microplate. This index is henceforth 
referred to as reactivity index (RI), with values < 1.00 
classified as negative. Samples with RI values within 
1.0 ± 10% were categorized as indeterminate, representing 
a gray zone and considered inconclusive. Various 
parameters, including sensitivity (Sen), specificity (Spe), 
accuracy (Acc), and predictive values, were estimated, 
including their 95% confidence intervals (95% CI). The 
strength of agreement between LCA and ELISA tests 
was assessed using Cohen’s kappa (κ) analysis, with 
interpretation as follows: poor (κ ≤ 0), slight (0 < κ ≤ 0.20), 
fair (0.21 < κ ≤ 0.40), moderate (0.41 < κ ≤ 0.60), 
substantial (0.61 < κ ≤ 0.80), and near perfect agreement 
(0.81 < κ ≤ 1.0) [45]. Trypanosoma cruzi positive 
predictive values (PPV) and negative predictive values 
(NPV) were estimated within a hypothetical prevalence 
range (from 0.05 to 0.60). In adherence to the Standards 
for Reporting of Diagnostic Accuracy Studies (STARD) 
guidelines [46], a flowchart (Fig. 1) and checklist    were 
prepared to ensure transparency and standardization in 
reporting methodology and results.

Results
Latent class analysis
In this study, a total of 663 samples were included. 
Approximately 50% of these samples (326 out of 663) 
were randomly selected to identify and characterize the 
latent class using LCA based on the response patterns 
of the four chimeric antigens. A two-class LCA model 
for CD diagnosis (positive/negative) was selected. 
The probabilities that each of the chimeric antigens 
predicted seropositivity in the samples were as follows: 
79.1% for IBMP-8.1, 88.1% for IBMP-8.2, 73.4% for 
IBMP-8.3, and 73.2% for IBMP-8.4. Conversely, the 
likelihood of misclassifying a negative sample as positive 
was relatively low, with estimated misclassification 
rates of 8.3% for IBMP-8.1, 0.6% for IBMP-8.2, 5.1% for 
IBMP-8.3, and 1.9% for IBMP-8.4. Notably, the overall 
accuracy of classification was demonstrated by a high 
entropy value of 0.949. Figure  2 illustrates the response 
patterns, according to the diagnostic results for positive 
and negative samples tested using the four chimeric 
antigens. These patterns were categorized according to 
the number of negative assays among the four antigens: 
P1 (no positive results), P2 (25% positive results), P3 (50% 

positive results), P4 (75% positive results), and P5 (100% 
positive results). While the number of samples in each 
pattern varied, the highest frequencies were observed in 
the P1 (n = 245), P2 (n = 40), and P5 (n = 26) categories. 
Samples were classified as positive when they tested 
positive for at least two chimeric antigens (P3-P5), with 
a posteriori probability (PP) of diagnosis surpassing 68%. 
However, cases where a sample tested positive for both 
IBMP-8.1 and IBMP-8.3 were deemed negative because 
of a PP < 50% (PP = 44.8%). Similarly, samples were 
classified as negative when they exhibited no positive 
results or only one positive result for IBMP antigens (P1 
and P2), with PP values falling below 31%.

Individual IBMP‑ELISA performance using LCA
LCA classified 288 samples (85.5%) as negative, while 
49 samples (14.5%) were predicted to be positive for 
anti-T. cruzi antibodies. Among the samples classified 
as negative, 245 out of 288 (85.1%) were also negative 
for all four chimeric antigens by ELISA (Fig. 2). In turn, 
40 out of 288 samples (13.9%) exhibited positivity for 
only one antigen: 18 for IBMP-8.1, five for IBMP-8.2, 13 
for IBMP-8.3, and four for IBMP-8.4. The a posteriori 

Fig. 2  Response patterns for the four chimeric Trypanosoma cruzi 
antigens, a posteriori probabilities for Chagas disease diagnosis 
from the LCA, and classification of canine serum samples for Chagas 
disease diagnosis. The samples are denoted as P1–P5 based on their 
respective response patterns in the chimeric assay. Negative 
and positive outcomes for a specific chimeric antigen assay are 
represented by blue and red squares, respectively. Key abbreviations 
include LCA (latent class analysis), N (number of samples), Neg 
(negative), Pos (positive), PP (a posteriori probability associated 
with anti-T. cruzi antibody presence)
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probability of these samples being truly positive was < 
31%, confirming their correct classification as negative 
(Fig.  2). The remaining three samples classified as 
negative were positive for both IBMP-8.1 and IBMP-8.3, 
with a posteriori probability < 45%. Regarding samples 
predicted to be positive by LCA, 26 out of 49 (53.1%) 
were positive for all IBMP antigens, while 12 out of 49 
(24.5%) samples exhibited positivity for two antigens: 
two for IBMP-8.1 + IBMP-8.2, two for IBMP-8.2 + IBMP-
8.3, six for IBMP-8.2 + IBMP-8.4, and two for IBMP-
8.3 + IBMP-8.4. The probability of these samples being 
truly positive was > 68.7%, indicating a high likelihood 
of correct positive classification. The remaining 11 
samples classified as positive were positive for three 
antigens: three for IBMP-8.1 + IBMP-8.2 + IBMP-8.3, 
two for IBMP-8.1 + IBMP-8.2 + IBMP-8.4, and three for 
each set of IBMP-8.1 + IBMP-8.3 + IBMP-8.4 and IBMP-
8.2 + IBMP-8.3 + IBMP-8.4, with a posteriori probability 
of these samples being positive exceeding 99% (Fig. 2).

The results of the LCA were used as a gold standard 
to obtain a reliable estimate of the performance of each 
chimeric assay. AUC analysis yielded values ranging from 
90.9% for IBMP-8.1 and 93.8% for IBMP-8.3 to 97.1% 
for IBMP-8.2 and 97.3% for IBMP-8.4. These findings 
indicate a high overall capacity of all four IBMP chimeric 
antigens to accurately identify T. cruzi serological status 
in dogs.

Concerning positive sera, those positive for IBMP-8.2 
exhibited the highest IgG levels (RI = 1.41; IQR 1.19–
1.71), while the lowest levels were observed for IBMP-
8.1 (RI = 1.24; IQR 0.92–1.57), with no significant 
difference between them. Similarly, there were no 
significant differences in the RIs between IBMP-8.3 
(RI = 1.33; IQR 1.09–1.45) and IBMP-8.4 (RI = 1.33; 
IQR 1.11–1.64). Among the 49 positive samples, IBMP-
8.2 demonstrated a sensitivity of 89.8%, with five cases 
classified as false negative; of these samples, two were 
also classified as false negatives only for IBMP-8.1. 
More false-negative results were observed for IBMP-8.1 
(13 cases), IBMP-8.3 (10 cases), and IBMP-8.4 (7 cases), 
with corresponding sensitivity values of 73.5%, 79.6%, 
and 85.7%, respectively. No statistically significant 
differences were observed in the sensitivity values. In 
the negative samples, IBMP-8.2 and IBMP-8.4 showed 

specificity values ≥ 98%, whereas IBMP-8.1 and IBMP-
8.3 produced more false positives, with corresponding 
specificity values of 92.7% (21 false positives) and 
94.4% (16 false positives), respectively. Sera positive for 
IBMP-8.1 (RI = 0.41), IBMP-8.2 (RI = 0.36), and IBMP-
8.4 (RI = 0.39) exhibited the lowest IgG levels without 
significant differences among them. Conversely, IBMP-
8.3-positive sera produced the highest level (RI = 0.53) 
but with no significant difference compared to other 
antigens (Fig. 3).

Considering RI values within the range of 1.0 ± 0.10 
as the inconclusive gray zone interval for results, our 
observations revealed that only seven negative samples 
(2.4%; 7/288) fell into the inconclusive zone when tested 
with IBMP-8.2. In contrast, 10 samples (3.5%; 10/288) 
tested with IBMP-8.1, 15 samples (5.2%; 15/288) with 
IBMP-8.3, and 9 (3.1%; 9/288) with IBMP-8.4 were 
classified as inconclusive. Among positive samples, 
we observed the following number of samples in the 
gray zone: five (10.2%; 5/49) when tested with IBMP-
8.2, six (12.2%; 6/49) each when tested with IBMP-8.1 
or IBMP-8.4, and eight when tested with IBMP-8.3. 
Overall analysis showed that 3.6% (12/337) of samples 
tested with IBMP-8.2, 4.5% (15/337) of samples with 
IBMP-8.4, 4.7% (16/337) of samples with IBMP-8.1, and 
6.8% (23/337) of samples with IBMP-8.3 had RI values 
within the gray zone.

The assays employing IBMP antigens exhibited an 
accuracy of 97% for IBMP-8.2, 96.7% for IBMP-8.4, and 
94.4% for IBMP-8.3. However, due to the high number 
of both false-negative and -positive results in samples 
assayed with IBMP-8.1, the accuracy of this antigen was 
significantly lower, standing at 89.9%. Cohen’s kappa 
index indicated substantial agreement (κ = 0.62 for 
IBMP-8.1 and κ = 0.70 for IBMP-8.3) and almost perfect 
agreement (κ = 0.88 for IBMP-8.2 and κ = 0.87 for 
IBMP-8.4) with the results obtained from LCA. Among 
the chimeric antigens tested, IBMP-8.4 and IBMP-8.2 
demonstrated superior performance, as evidenced from 
the parameters derived from ROC analysis, accuracy, 
and Cohen’s kappa index. Conversely, IBMP-8.1 
displayed the lowest performance. Notably, IBMP-8.2 
exhibited the highest sensitivity, while IBMP-8.3 and 
IBMP-8.4 demonstrated superior specificity.

(See figure on next page.)
Fig. 3  Assessment of chimeric recombinant Trypanosoma cruzi antigen performance using ELISA. A Graphs illustrating the reactivity index for each 
antigen assessed against a panel comprising 49 positive and 288 negative samples. The cutoff value is set at 1.0, and the shaded area represents 
the gray zone. The horizontal lines for each result group denote the medians along interquartile range (IQR). B Receiver-operating characteristic 
curve (ROC) and calculated AUC for each IBMP antigen. C Performance parameters for antigens determined using the assays depicted in panel A. 
Acc: accuracy; AUC: area under the ROC curve; Sen: sensitivity; Spe: specificity; Tc-Neg: T. cruzi-negative samples; Tc-Pos: T. cruzi-positive samples
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Fig. 3  (See legend on previous page.)
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Analysis of positive and negative predictive values
This study also assessed the positive and negative 
predictive values (PPV and NPV) in the context of T. 
cruzi seropositivity in dogs. To address the varying 
prevalence of T. cruzi seropositivity in dogs across 
different regions, we applied a range of hypothetical 
prevalences (1–100%) to simulate a broad spectrum 
of epidemiological contexts. Figure  4 delineates the 
relationship between these predictive values and the 
hypothetical prevalence scenarios. A notable finding was 
that a decrease in prevalence corresponded with lower 
PPVs for all chimeric antigens. Nevertheless, the PPV 
remained comparatively stable for prevalences exceeding 
30%, particularly with antigens IBMP-8.2 and IBMP-8.4. 
These antigens demonstrated an increase in PPV from 
95.8% to 99.8% and from 96.3% to 99.8%, respectively, at a 
90% prevalence rate. Conversely, an increased prevalence 
adversely influenced the NPV, especially for IBMP-8.1 
and IBMP-8.2.

A thorough analysis of the ratio of false positives/
negatives to true positives/negatives across a range 
of hypothetical prevalence scenarios provided a 
comprehensive perspective on the performance of 
testing in different epidemiological settings. As depicted 
in Table  1, the analysis revealed that the probability 
of false-negative outcomes, relative to true negatives, 
was consistently low for all diagnostic tests and across 
various prevalence scenarios. In contrast, the occurrence 

of false-positive outcomes, compared to true positives, 
was significantly more frequent at lower prevalence rates 
(0.1% and 1%). However, this trend was reversed in areas 
with higher prevalence levels, where the probability of 
false positives notably decreased at prevalences of 5% and 
10%.

Discussion
Dogs are important sentinels of T. cruzi transmission 
in endemic areas and may exhibit clinical signs and 
clinicopathological abnormalities similar to those seen 

Fig. 4  Estimations of positive and negative predictive values across various prevalence scenarios for Trypanosoma cruzi seropositivity in dogs, 
providing insight into the diagnostic accuracy of tests under different epidemiological conditions. NPV: negative predictive value; PPV: positive 
predictive value

Table 1  Probability of false positives relative to true positives 
and false negatives relative to true negatives across various 
prevalence levels of Trypanosoma cruzi seropositivity in dogs

IBMP-8.1 IBMP-8.2 IBMP-8.3 IBMP-8.4

Prevalence False positives: true positives

 0.1% 99.2 18.9 70.3 16.3

 1% 9.8 1.87 7.0 1.6

 5% 1.9 0.4 1.3 0.3

 10% 0.9 0.2 0.6 0.15

Prevalence False negative: true negatives

 0.1% < 0.001 < 0.001 < 0.001 < 0.001

 1% 0.003 0.001 0.002 0.002

 5% 0.015 0.006 0.011 0.008

 10% 0.032 0.012 0.024 0.016
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in humans. The absence of specific anti-T. cruzi antibody 
detection tests for dogs represents a significant research 
gap. As a result, studies assessing the seroprevalence 
of anti-T. cruzi antibodies in dogs frequently rely on 
in-house or human-adapted tests, leading to potential 
inaccuracies [47–51]. In this study, we evaluated the 
diagnostic accuracy of four chimeric recombinant T. 
cruzi proteins for identifying anti-T. cruzi antibodies 
in canine serum samples from both endemic and non-
endemic regions of Brazil. Our results demonstrated that 
all IBMP antigens exhibit a high discriminatory ability 
for identifying positive and negative samples, with AUC 
values ranging from 90.9 to 97.3%, and the IBMP-8.4 
antigen displaying the highest performance. This aligns 
with our phase I study results, where IBMP-8.4 achieved 
an AUC value of 100% [36]. Additionally, AUC values for 
all four proteins exceeded 99% in human sample studies 
[27, 32–35, 52].

We observed enhanced diagnostic sensitivity with 
the IBMP-8.2 antigen compared to other antigens, with 
both IBMP-8.2 and IBMP-8.4 assays demonstrating 
sensitivities exceeding 80%. These findings contrast those 
reported in the phase I study, where IBMP-8.3 was more 
sensitive [36]. In our current analysis, however, both 
IBMP-8.3 and IBMP-8.1 exhibited the lowest sensitivity 
values [36]. This divergence in results could be attributed 
to potential sample misclassification in the phase I study, 
likely influenced by using in-house or adapted human 
tests. While two tests had been previously established 
as a reference standard, the diagnostic performance of 
the present chimeric antigens could still be influenced 
by limitations in the precision of these tests. Regarding 
negative samples, IBMP-8.2 and IBMP-8.4 showed high 
specificity (≥ 98%), consistent with our previous study 
[36].

The accuracy values were similar for IBMP-8.2, 
IBMP-8.3, and IBMP-8.4. Due to the high proportion 
of misdiagnosed samples detected with IBMP-8.1, its 
accuracy was lower compared with the other antigens. 
For human diagnosis, on the other hand, IBMP-
8.1 and IBMP-8.4 showed the highest performance 
[32–35, 52]; therefore, the new commercial lateral 
flow immunochromatographic assay TR Chagas 
(Bio-Manguinhos, Fiocruz-RJ, Brazil) uses these two 
antigens to detect anti-T. cruzi antibodies in humans 
with an accuracy of 91.1% [53]. Although TR Chagas 
has not yet been validated for diagnosing CD in dogs, 
its performance was recently evaluated, showing a 
sensitivity of 94% and a specificity of 91%, according to 
the ROC curve [54]. The lower performance of IBMP-
8.1 for dogs compared to humans might be due to the 
characteristics of the expressed immunoglobulin VH and 
VL repertoire in different breeds of dogs compared to 

those in humans [55]. As such, the use of IBMP-8.1 alone 
is not recommended for reliable diagnosis in dogs, unless 
it is used in the latent class model.

This study elucidates the dynamics of predictive 
values in relation to varying prevalence rates of T. cruzi 
seropositivity in dogs. Notably, there was a decline 
in PPVs at lower prevalence rates, while stability was 
observed at higher prevalences. This pattern aligns with 
the epidemiological characteristics of CD, indicating 
enhanced accuracy of the chimeric antigens in endemic 
settings. Conversely, we noted a reduction in NPVs 
in high-prevalence scenarios. The global escalation 
of CD, elevating it to a global health issue [4, 56, 57], 
underscores the urgency of developing an accurate 
diagnostic test, applicable across all prevalence rates 
for efficient CD surveillance. Our findings suggest that 
the IBMP-8.2 and IBMP-8.4 may be promising tools in 
various epidemiological contexts.

A key limitation of the study was the absence of a 
validated standard test for preclassifying sera that would 
be utilized to evaluate the performance of the antigens. 
To address this limitation, we used a reference array of 
chimeric T. cruzi antigens based on LCA as a surrogate 
in the absence of a gold standard. LCA provided precise 
results in the absence of a gold standard. The present 
study was also limited by testing samples from restricted 
geographic areas of Brazil, representing a limited number 
of circulating discrete typing units [58]. Indeed, the 
reliance on serum samples from dogs in Brazil means 
these findings might not be universally reproducible in 
all geographic locations, considering the heterogeneous 
distribution of different T. cruzi strains. It is important 
that this last limitation be addressed in future studies that 
consider comprehensive samples from other Brazilian 
states, especially from the northern region, and from 
different Latin American endemic countries, where 
uncommon DTUs can be found. Nevertheless, our 
analysis confirmed the remarkable performance of these 
chimeric antigens for detecting anti-T. cruzi antibodies 
in dogs, with IBMP-8.2 and IBMP-8.4 proteins showing 
higher accuracy. To further improve the performance 
metrics of the IBMP antigens, our group will conduct 
additional studies incorporating mixtures of IBMP 
antigens.

Conclusions
Our study represents a substantial step towards the 
development of a reliable serological test for detecting 
anti-T. cruzi antibodies in dogs. Such a test could 
have applications in both public health (animal health 
surveillance) and veterinary medicine (CD diagnosis in 
dogs). In fact, the four chimeric recombinant T. cruzi 
IBMP antigens (especially IBMP-8.2, IBMP-8.3, and 
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IBMP-8.4) displayed remarkable capability in accurately 
distinguishing positive from negative samples. This 
finding is particularly significant because of the current 
lack of specialized commercial tests for canine CD 
diagnosis. The use of a LCA approach in our analysis 
further underscores the reliability of these antigens as 
effective diagnostic tools. The promising results obtained 
with these chimeric IBMP antigens may improve 
surveillance and control strategies in areas where CD 
is endemic, thereby addressing a key challenge of this 
neglected tropical disease and ultimately to reducing its 
impact on affected communities.
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