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Abstract 

Background Lyme disease continues to expand in Canada and the USA and no single intervention is likely to curb 
the epidemic.

Methods We propose a platform to quantitatively assess the effectiveness of a subset of Ixodes scapularis tick 
management approaches. The platform allows us to assess the impact of different control treatments, conducted 
either individually (single interventions) or in combination (combined efforts), with varying timings and durations. 
Interventions include three low environmental toxicity measures in differing combinations, namely reductions 
in white‑tailed deer (Odocoileus virginianus) populations, broadcast area‑application of the entomopathogenic fungus 
Metarhizium anisopliae, and fipronil‑based rodent‑targeted bait boxes. To assess the impact of these control efforts, 
we calibrated a process‑based mathematical model to data collected from residential properties in the town of Red‑
ding, southwestern Connecticut, where an integrated tick management program to reduce I.xodes scapularis nymphs 
was conducted from 2013 through 2016. We estimated parameters mechanistically for each of the three treatments, 
simulated multiple combinations and timings of interventions, and computed the resulting percent reduction 
of the nymphal peak and of the area under the phenology curve.

Results Simulation outputs suggest that the three‑treatment combination and the bait boxes–deer reduction com‑
bination had the overall highest impacts on suppressing I. scapularis nymphs. All (single or combined) interventions 
were more efficacious when implemented for a higher number of years. When implemented for at least 4 years, most 
interventions (except the single application of the entomopathogenic fungus) were predicted to strongly reduce 
the nymphal peak compared with the no intervention scenario. Finally, we determined the optimal period to apply 
the entomopathogenic fungus in residential yards, depending on the number of applications.

Conclusions Computer simulation is a powerful tool to identify the optimal deployment of individual and combined 
tick management approaches, which can synergistically contribute to short‑to‑long‑term, costeffective, and sustain‑
able control of tick‑borne diseases in integrated tick management (ITM) interventions.
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Background
Tick-borne diseases are expanding globally [1–3]. In 
Canada and the USA, the number of cases of one of 
these zoonotic diseases, Lyme disease, is on a steady 
rise [4–8]. This long-term trend has been attributed to 
the range expansion of the primary vector to humans, 
the blacklegged tick, Ixodes scapularis Say [9–11]. Com-
plementary approaches have been developed to reduce 
human exposure to the causative agent of Lyme disease, 
Borrelia burgdorferi. One group of interventions targets 
reduction in density of ticks in the environment by envi-
ronmental and host-targeted acaricides [12–18], another 
aims to decrease infection prevalence of hosts and ticks 
[15, 18, 19], and the other aims to reduce human-tick 
encounters [17, 20]. Here we focus on methods suppress-
ing I. scapularis abundance in the environment, which 
include area-wide application of natural and synthetic 
acaricidal compounds, landscape and vegetative cover 
modifications and management [14], host-targeted syn-
thetic acaricides such as fipronil-based rodent-targeted 
bait boxes [15, 16], biological control [17, 18, 20, 21] by 
entomopathogenic fungal agents [18, 20, 21], and reduc-
tions of white-tailed deer, Odocoileus virginianus, popu-
lations [22, 23].

Integrated tick management (ITM) has been pro-
posed to be more effective than single measures [24, 
25]. However, there is limited empirical support [12, 
13, 26–28] and knowledge gaps on the effectiveness of 
such integrated tick control methods remain [20, 29]. 
A significant barrier in evaluation and optimization of 
ITM approaches is that intervention outcomes are often 
assessed as the reduction in density of nymphs/infected 
nymphs, but there is a lack of mechanistic understand-
ing about what component of the enzootic cycle was 
impacted. For example, when assessing the effect of 
white-tailed deer management, the direct effect of deer 
reduction is often not assessed. Rather, the focus tends 
to be on deer reduction impacts to the entomological 
inoculation rate (measured as the density of questing   I. 
scapularis nymphs infected with the target pathogen), 
which is usually the metric of human health risk. While 
useful in assessing effectiveness of the intervention in 
reducing human risk in the particular context assessed, 
this black-box evaluation limits our ability to expand the 
application to other settings or optimizing different arms 
of an ITM approach.

Here we present a robust, empirically calibrated mod-
eling platform that can simulate and compare single and 
combined interventions, including differences in timing 
of delivery. Mathematical modeling approaches provide 
a mechanistic understanding of the tick–host system. 
They also represent the system’s continuous (i.e., not 
restricted to specific periods) dynamics in simulations, 

and thus capture the temporal complexity of intervention 
implementation. Using an adaptation of an extensively 
validated climate-driven model [30, 31], we propose a 
modeling platform to evaluate the impact of individual 
and multiple tick management approaches on the den-
sity of questing I. scapularis nymphs (DON), a key com-
ponent of Lyme disease risk [32]. Hereafter we refer to I. 
scapularis as ‘tick’ and specific I. scapularis stages as ‘lar-
vae’, ‘nymphs’ and ‘adults.’

Methods
General approach
The platform integrates a process-based mechanis-
tic model with local weather forcing and a set of three 
tick-reduction interventions (Fig.  1). We calibrated the 
mechanistic model using data from previously published 
studies by our group [13, 28] involving residential yards 
that underwent single or combined tick-reduction inter-
ventions, or were included as reference (no interven-
tion) properties (see Supplementary Table S1). First, we 
calibrated the model parameters related to tick  phenol-
ogy (in absence of intervention) to the data from refer-
ence properties. Second, using the data from properties 
where interventions were implemented, we calibrated 
more specifically three parameters quantifying the effects 
of the three tick-reduction interventions on biological 
mechanisms. Depending on the duration and intensity 
of the interventions, we modeled them either as “pulse” 
(instantaneous perturbation of the system, followed by 
a gradual return to previous state) or “press” interven-
tions (sustained perturbation of the system at constant 
intensity) [33]. Third, we ran the fully calibrated model 
multiple times to represent various tick-reduction inter-
vention scenarios and timings. Finally, we analyzed the 
outcomes of these data-informed model predictions to 
quantitatively compare the efficacy of these different ITM 
approaches for the reduction in the DON.

Process‑based model
To represent tick population dynamics, we built an R-ver-
sion of the Ogden et al. [30] process-based, mechanistic 
model. The model is based on a system of 12 coupled, 
nonlinear ordinary differential equations, each represent-
ing a given life stage or activity level of the tick popula-
tion: eggs; hardening, questing, feeding, and engorged 
larvae; questing, feeding, and engorged nymphs; quest-
ing adults; and feeding, engorged, and egg-laying adult 
females (see Supplementary Tables  S2–S5). The math-
ematical tool was modified to include the weather influ-
ence on the mortality (or survival) rate of questing 
nymphs and the host finding probability, which were 
both assumed to be constant in the Ogden et al. [30] ver-
sion of the model.
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Integrated vector control data used for calibration
Data used to calibrate the model were derived from 
an intervention study previously implemented on resi-
dential properties in the town of Redding (41.3044°N, 
73.3928°W), Fairfield County, in southwestern Con-
necticut. Specifically, an ITM program to reduce 
questing  nymphs was conducted from January 2013 
through September 2016 [13, 28]. During that period, 
a total of 41 properties were selected to run the pro-
gram, including 12 reference (no intervention) proper-
ties and 29 properties with implemented interventions. 
Interventions included single treatments and two- and 
three-way combinations of three measures, namely 
white-tailed deer population reduction (Deer), broad-
cast area-application of the entomopathogenic fungus 
Metarhizium anisopliae (Met52), and fipronil-based 
small rodent bait boxes (FipBox). Bait boxes were 
deployed twice at each property during the summer 
season (May–August) ahead of peak nymphal and lar-
val questing activity, respectively. Sample sizes for each 
intervention and combination thereof are described in 
the Supplementary material (Table S1).

Weather data
To characterize weather conditions, we used three data 
sources: satellite-gauge combined climatic records (spe-
cifically, gridded near-surface air temperature datasets), 
weather observations, and reanalysis data (specifically, 
gridded near-surface humidity data). A full description 
of weather datasets used in simulations is provided in the 
Supplementary Note 1 and Fig. S1. The model was forced 
with temperature, humidity, and day length data; the 
first two variables were corrected to reflect environmen-
tal conditions under the leaf litter on the basis of linear 
transformations from near-surface air temperature and 
relative humidity to leaf litter temperature and moisture. 
The linear transformations were determined using data 
collected at 1 m above ground surface (HOBO U23-001 
Pro v2 dataloggers) and in the leaf litter (iButtons) in a 
previous study (Supplementary Note 1). The conver-
sion aimed to account for ticks spending the majority of 
their life cycle under leaf litter in forested habitats, where 
temperature and relative humidity are more moderate 
than for  surrounding air [34, 35]. The adapted Ogden 
et al. [30] mechanistic model implemented here includes: 

Fig. 1 Sketch diagram of the modeling platform. Blue underlines highlight the endogenous variables of the Ogden et al. [31] process‑based model 
that are affected by weather conditions: time delay for the pre‑eclosion period of eggs (q); host‑finding probability for questing larvae, questing 
nymphs, and questing adults (λQL, λQN, and λQA, respectively); temperature‑variable factors for questing activity of immature ticks and adult ticks 
(Θi and Θa, respectively); time delay for engorged larva to nymph development, or premolt period of engorged larvae (s); time delay for engorged 
nymph to adult development, or premolt period of engorged nymphs (v); and time delay for the pre‑oviposition period (x). The orange, red, 
and green arrows point to the exogenous and endogenous variables that are affected by the three single interventions (see main text): white‑tailed 
deer population reduction (Deer), broadcast area‑application of the entomopathogenic fungus Metarhizium anisopliae (Met52), and fipronil‑based 
small rodent bait boxes (FipBox), respectively. A full description of all the parameters of the process‑based model is included in the Supplementary 
material (level variables in Table S2; parameters in Tables S3 and S4; and discrete equations in Table S5)
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temperature-dependent development rates for eggs and 
engorged larvae, nymphs, and females; temperature- and 
humidity-dependent survival rates of free-living  ticks ; 
temperature-, day length-, and host-density-dependent 
host-finding rates; and density-dependent survival of all 
tick stages during engorgement.

Host data
The 2013–2016 small mammal, live trapping campaign in 
Redding [13, 28] yielded a grand total of 1298 hosts  for 
immature tick stages captured from residential proper-
ties, including white-footed mouse (Peromyscus leucopus; 
86.4% of captures), eastern chipmunk (Tamias striatus; 
9.0%), eastern meadow vole (Microtus pennsylvanicus; 
2.2%), northern short-tailed shrew (Blarina brevicauda; 
1.9%), American red squirrel (Tamiasciurus hudsonicus; 
0.2%), and eastern gray squirrel (Sciurus carolinensis; 
0.1%). We restricted hosts for immature  ticks to white-
footed mice (as they were the dominant small mammal) 
and white-tailed deer as the only host for adults in the 
simulations; both host populations were assumed to be 
constant.

Simulating tick population dynamics
The process-based model was run for a time hori-
zon from 1 January 1950 to 31 December 2020 (25,933 
days). This long-term period considers an initial 10-year 
burn-in period for the model to reach equilibrium and 
additional 10  years to assess day-to-day fluctuations of 
the  tick population after the model had reached stable 
conditions. The remaining 50 years of the simulation run 
included the final 2013–2016 experimentation period, 
for which data are available on the observed densities 
of questing nymphs expressed per 100   m2, from a total 
of 1244 tick dragging collections conducted over the 
research period [13, 28].

Calibration of the model’s tick phenology parameters
Parameters related to tick phenology in the mathemati-
cal model were first calibrated to questing nymphal data 
collected at the reference properties (we averaged the 
observed questing nymphal data of the 12 properties) 
by simultaneously minimizing three statistical errors: 
the percent error (BE) [36], the root mean square error 
(RMSE) [37], and the general tendency (Pbias) [38] and 
maximizing the Nash–Sutcliffe efficiency (NSE) [39].

Efficacy of interventions
We then used data collected from the 29 properties 
where single or combinations of interventions were 
implemented (see Table  S1) to estimate their efficacy. 
For a given year at a given property, the Deer treatment 

was assumed to multiply the host-finding probabil-
ity for questing adults (λQA) between 1 January and 31 
December by a factor fD, where fD was calibrated to the 
data (press function).

We considered that the Met52 treatment affected the 
per capita mortality rate of questing nymphs (μQN) and 
questing adults (μQA) of the process-based model as a 
pulse (instantaneous perturbation) function. Immedi-
ately after the treatment was applied, these two param-
eters were increased by a factor fM (calibrated to the 
data), followed by a gradual decay in mortality over the 
effective residual life of Met52, back toward their base-
line (without intervention) values at a rate given by:

where Δt depicts the number of days since the treatment 
application and where ε is a tuning parameter set to 0.1. 
ε is a tuning parameter that allows the effect of treatment 
on mortality to decrease over time, as shown in Supple-
mentary Fig. S2 (upper panel). From formula (1), ε affects 
both the strength of the effect at treatment application 
(that is, fM (1 − ε2) at Δt = 0) and the shape of the decrease 
or derivative (that is, fM ε(28− Δt)/14 log(ε)/14). Therefore, ε 
cannot exactly be set to 0 but needs to be close to 0 to 
obtain an effect value close to fM at Δt = 0. This is why we 
arbitrarily set it to 0.1. The effective residual life of Met52 
was assumed to be 4 weeks (or 28 days) [40]. The first and 
second application rounds took place in early June and 
early July respectively, leading to an impact of Met52 only 
treatment lasting for two consecutive months (early June 
to early August), consistent with the broadcast applica-
tions during the 2013–2016 control campaign.

Similarly, the FipBox treatment was assumed to 
impact the per  capita mortality rate of feeding larvae 
(μFL) and feeding nymphs (μFN) of the process-based 
model as a pulse function (see Fig.  S2). These two 
parameters were increased by a factor fF (calibrated to 
the data) after boxes were deployed, followed by a grad-
ual decay in mortality over the effective residual life 
of the compound, back toward their baseline (without 
intervention) values at a rate given by:

where Δt depicts the number of days since the treatment 
application and ε is a tuning parameter set to 0.1. The 
effective residual life of the compound was assumed to be 
8 weeks (or 56 days). To account for two deployments of 
bait boxes during the campaign, we simulated an increase 
in tick mortality in early May and again after 8 weeks (i.e., 
approximately 16 weeks in total), the period after which 
bait boxes were retrieved.

(1)1+ fM ·max

(

0; 1− ε
28−�t
14

)

(2)1+ fF ·max

(

0; 1− ε
56−�t
28

)
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Parameters fD, fM, and fF were simultaneously estimated 
by minimizing the RMSE for all 29 properties with inter-
ventions, which enabled assessment of the effect of each 
individual intervention despite the simultaneous imple-
mentation in some of the properties.

Simulation of the effectiveness of ITM approaches
Using the values of fD, fM, and fF estimated from the data, 
we simulated the implementation of all combinations 
of the three treatments: Deer only (D), Met52 only (M), 
FipBox only (F), Deer + Met52 (D + M), Deer + FipBox 
(D + F), Met52 + FipBox (M + F), and Deer + Met52 + Fip-
Box (D + M + F).

Simulation of alternative number and timing 
of interventions
The last set of simulations included the analysis of 
changes in the Met52 only treatment applications. Start-
ing from the baseline scenario with two applications of 
treatment in early June and early July, respectively, we 
assessed the effects of shifting the timing of application 
and reducing the number of applications. We simulated a 
change in the dates of both Met52 only applications: the 
first application taking place between late April and mid-
July, and the second application 29  days later. We also 
simulated these alternatives in a scenario where only the 
first application of Met52 only was performed.

Metrics for the percent reduction
In these different scenarios, we calculated the per-
cent reduction of the predicted (simulated) nymphal 
peak, i.e., the percent reduction in the number of feed-
ing nymphs per host at the peak of each nymphal sea-
son associated with each single treatment and ITM 
approaches. We also calculated the percentage change 
in the area under the phenology curve, which accounts 
for the seasonal variation in the densities of feeding 
nymphs compared with reference plots, for simulated 
single treatments and combined efforts.

Results
Model calibration
For all reference properties (ITM reference), simulation 
outputs of the process-based model yielded a BE value 
of 29.1%, a RMSE value of 1.12, a Pbias value of −64.9, 
and a NSE value of −0.98, when the model was forced 
with near-surface air temperature weather station data. 
Predictions of the calibrated model are shown in Figs. 2 
and S3. In the absence of interventions, the model pre-
dicted yearly feeding nymphal peaks at around three 
nymphs per mouse (Figs. 2 and S3).
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Efficacy of interventions on reduction of the peak 
in feeding nymphs
The point estimate for fM was 1.25, meaning that the 
Met52 only treatment was estimated to multiply the daily 
mortality of questing nymphs and adults by 2.25 on the 
first day of application, an effect then decreasing with 
time (Eq. 1). The point estimate for fF was 4.11, meaning 
that the FipBox treatment was estimated to multiply the 
daily mortality of feeding larvae and nymph by 5.11 on 
the first day, an effect then decreasing with time (Eq. 2) 
(Fig.  S2). The point estimate for fD was 0.985, meaning 
that the Deer only intervention was estimated to reduce 
the host-finding rate for adults in yards by 98.5%. In 
model simulations utilizing these parameters, the effi-
cacy of all interventions was higher and persisted for a 
longer time (Figs. 3, 4 and S4) when they were applied for 
a higher number of consecutive years. Combinations of 
multiple interventions were always more efficacious than 
single interventions (Fig. 3).

Among single interventions implemented for only 
1 year, FipBox only was the most efficacious as it 
decreased the feeding nymphal peak on that year by 
53.6% compared with the no intervention scenario (by 
killing the nymphs feeding on hosts), versus 6.4% and 
4.7% for the Deer only and Met52 only, respectively 
(Fig. 3). However, because the FipBox treatment affects 
both larvae and nymphs on host, it showed its peak effi-
cacy on the nymphal population the year following the 
first year of intervention (56.7% reduction of the nym-
phal peak) (Fig.  4). Similarly, because of its effects on 

adult ticks, the Deer only intervention reached its peak 
efficacy 2 years after the first year of intervention, with 
a 19.6% decrease in nymphal peak (Figs. 4 and S4).

When implemented for several years, Deer only 
reached a similar efficacy to FipBox only, i.e., a 97.0% 
versus 94.3% reduction, respectively, of the nymphal 
peak on the last year of 4 years of intervention, com-
pared with the no intervention scenario. The Met52 
only treatment was less efficacious even after 4 years of 
implementation (16.1% reduction) (Figs. 3, 4).

The combination of the three interventions 
(Deer + Met52 + FipBox) was always the most effica-
cious, leading to a decrease of the nymphal peak of 
59.6% (after 1  year of implementation) to 99.8% (after 
4 years of implementation), compared with the no 
intervention scenario. However, it was closely followed 
by the Deer + FipBox intervention, whose efficacy was 
never more than 1% lower than the Deer + Met52 + Fip-
Box scenario. Assuming four consecutive years of 
implementation, all interventions (single and com-
bined) reached a reduction in the nymphal peak of 
more than 94% compared with no intervention, except 
Met52 only (Figs. 3, 4).

Comparison of percent reduction metrics
The results described above were qualitatively similar 
when we considered the reduction in the area under the 
feeding nymphs phenology curve instead of the height 
of the feeding nymphal peak (Figs. S5 and S6).
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Changes in the timing of Met52 only interventions
From our model simulations, the application of the 
Met52 only treatment on 19 May followed by a second 
application 29 days later led to the highest reduction of 
the nymphal peak that year (− 5.85% compared with 
the no intervention scenario) (Fig.  5). However, apply-
ing the Met52 only treatment only once in mid-June led 
to almost similar results (−5.13% compared with the 
no intervention scenario) while reducing the amount of 
input needed (Fig. 5). The advantage of applying a second 
Met52 only treatment was different when measuring the 

area under the phenology curve (Fig.  S7), with a maxi-
mum effect size of −3.61% for two treatments, instead of 
−1.98% for one treatment, compared with the no inter-
vention scenario.

Discussion
We found that combined treatments were globally more 
efficacious than single treatments in reducing DON  in 
residential yards. Among single treatments, our results 
suggest that deer reduction (Deer) and fipronil-based 
small rodent bait boxes (FipBox) were more efficacious 
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than the broadcast area-application of the entomopath-
ogenic soil-borne fungus Metarhizium anisopliae 
(Met52). Because interventions targeted different tick 
life stages, they impacted the nymphal tick outcome at 
different time lags, with an immediate effect of Met52, 
an effect of FipBox reaching its maximum after a 1-year 
lag, and deer reduction 2 years after the intervention 
[17]. Globally, higher number of subsequent years of 
(single or combined) interventions led to better effi-
cacy. Most interventions (except Met52 only) reached 
a reduction in the feeding nymph peak of more than 
94% compared with the no intervention scenario when 
implemented for at least 4 years. Moreover, we found 
that the optimal date for a single application of Met52 
in Connecticut residential yards would be around mid-
June. Preceding this application by another applica-
tion 1 month earlier (in mid-May) would only slightly 
reduce the height of the feeding nymph peak (maxi-
mum exposure potential) but would reduce by around 
half the area under the phenology curve across the 
whole season. The area under the phenology curve is a 
cumulative   measure of human exposure risk because 
exposure to questing nymphs can occur throughout 
the period of nymphal activity  (results shown in the 
supplement).

Previous empirical studies investigated the effect of 
interventions on the DON, tick burden on hosts, or the 
prevalence of tick infection by various pathogens [13, 
17, 18, 22, 28, 41–43]. Some published models also theo-
retically simulated the implementation of interventions 
(vaccination) in a tick–host system [44, 45]. Our study 
combined both of these approaches by using data col-
lected from field experiments to estimate intervention 
effect parameters in a mechanistic model. This method 
is innovative for tick–host systems, while more common 
for other vector-borne disease systems [46–48], and has 
several advantages. First, it provides a mechanistic and 
dynamic understanding of interventions, in contrast with 
empirical-only studies, which only assess differences in 
global output (e.g., the density of questing nymphs at a 
single point in time). For example, we estimated that 
Met52 only in our study multiplied the daily mortality 
rate of questing nymphs and adults by 2.25 on the first 
day of application and could estimate the cumulative 
impact of the intervention during multiple years. Second, 
once mechanistic intervention effect parameters are cali-
brated to the data, it is possible to explore a wide range of 
simulated treatment scenarios in terms of timing or com-
binations of interventions. Simulations are hence easier 
than implementing a large number of treatment options 
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in the field, and can narrow down which combinations, 
intensity, and timing of interventions should be further 
tested in experimental studies.

The effect sizes identified in our model were consistent 
with some previous studies. On the year of intervention, 
we predicted similar reductions of the number of feeding 
nymphs per mouse (nymphal burden) than a previously 
published empirical study [49] for both FipBox (around 
50%) and Met52 (less than 15%, not significant in the 
empirical study). Our results were also consistent with 
Ostfeld et al. [42], who found a stronger effect of FipBox 
than Met52 on the nymphal burden on mice.

In our study, despite the fact that the deer population 
was not entirely removed [28], we predicted a strong 
effect of this intervention on the nymphal peak when it 
was implemented for several years. However, our mode-
ling framework did not include the infection process, and 
the effect of deer population reduction (rather than elimi-
nation) on nymph infection prevalence and the density of 
infected nymphs is still unclear [50, 51]. Immediately fol-
lowing deer reduction, in the absence of numerous large-
bodied hosts, sampling efforts for remaining  questing 
ticks often result in a perceived, temporary amplification 
in both abundance and pathogen infection prevalence 
as juveniles engaging in questing behavior and are then 
more likely to obtain a bloodmeal from a reservoir-com-
petent host [22, 50–52].

Our study has some limitations. First,  Gaff et  al. [53] 
found that assuming constant instead of varying host 
population densities—as we did—can affect the den-
sity of nymphs predicted by a model, although it hardly 
changes the predicted number of feeding ticks per host, 
which was the output we considered here. Second, we did 
not incorporate host movements in our model as in  Li 
et  al. [54], Wang et  al. [55] and Wang et  al. [56]. In the 
future, adding host behavioral components to the model 
would more directly describe human exposure to tick-
borne disease hazard. Moreover, expanding the model 
to include infection dynamics and other sets of interven-
tions, including vaccines and reductions in tick habitat 
suitability through landscape and vegetation manage-
ment, will allow for estimates of efficacy in reducing the 
density of infected nymphs. Integrating the costs of inter-
ventions would allow for a more thorough cost-effective-
ness analysis of  tick- and host-targeted interventions in 
residential yards [57].

Conclusions
Computer simulations allow us to identify optimal 
control targets to minimize exposure to tick bites and 
the risk for tick-borne diseases. Our long-term goal is 
to provide information to stakeholders on the optimal 

deployment of individual and combined tick manage-
ment approaches that can synergistically contribute to 
short-to-long-term, cost-effective, and sustainable con-
trol of tick vectors using integrated vector management 
guidelines.
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