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Abstract 

Background Antananarivo, the capital city of Madagascar, is experiencing a steady increase in population 
growth. Due to the abundance of mosquito vectors in this locality, the population exposed to mosquito-borne 
diseases is therefore also increasing, as is the risk of epidemic episodes. The aim of the present study was to assess, 
in a resource-limited setting, the information on mosquito population dynamics and disease transmission risk that can 
be provided through a longitudinal entomological study carried out in a multi-host single site.

Methods Mosquitoes were collected every 15 days over 16 months (from January 2017 to April 2018) using six CDC-
light traps in a peri-urban area of Antananarivo. Multivariable generalised linear models were developed using indoor 
and outdoor densities of the predominant mosquito species as response variables and moon illumination, environ-
mental data and climatic data as the explanatory variables.

Results Overall, 46,737 mosquitoes belonging to at least 20 species were collected, of which Culex antennatus 
(68.9%), Culex quinquefasciatus (19.8%), Culex poicilipes (3.7%) and Anopheles gambiae sensu lato (2.3%) were the most 
abundant species. Mosquito densities were observed to be driven by moon illumination and climatic factors interact-
ing at different lag periods. The outdoor models demonstrated biweekly and seasonal patterns of mosquito densities, 
while the indoor models demonstrated only a seasonal pattern.

Conclusions An important diversity of mosquitoes exists in the peri-urban area of Antananarivo. Some well-known 
vector species, such as Cx. antennatus, a major vector of West Nile virus (WNV) and Rift-Valley fever virus (RVFV), Cx. 
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quinquefasciatus, a major vector of WNV, Cx. poicilipes, a candidate vector of RVFV and An. gambiae sensu lato, a major 
vector of Plasmodium spp., are abundant. Importantly, these four mosquito species are present all year round, even 
though their abundance declines during the cold dry season, with the exception of Cx. quinquefasciatus. The main 
drivers of their abundance were found to be temperature, relative humidity and precipitation, as well as—for outdoor 
abundance only—moon illumination. Identifying these drivers is a first step towards the development of pathogen 
transmission models (R0 models), which are key to inform public health stakeholders on the periods of most risk 
for vector-borne diseases.

Keywords Mosquito vectors, Mosquito-borne diseases, Climatic and environmental drivers, Peri-urban area, Single-
site model, Madagascar

Background
In Madagascar, the pathogens that cause mosquito-borne 
diseases (MBDs) include haemosporidian parasites (Plas-
modium spp., Haemoproteus spp.), parasitic nematodes 
(Wuchereria bancrofti) and arboviruses [1–3]. These 
pathogens are transmitted by 37 mosquito species (Addi-
tional file 1: Table S1) [1, 2, 4, 5, 6, 7, 8]. Mosquitoes are 
considered to be major vectors of pathogens when the 
following three criteria are fulfilled: (i) natural infection 
is highlighted in the field;   (ii) vector competence is dem-
onstrated in the laboratory; and (iii) vector-host contact 
is present. Mosquitoes that fulfil two criteria of these cri-
teria are considered to be candidate vectors, and those 
that fulfil only one criterion are potential vectors [9]. The 
abundance and the behaviour of these vectors are key 
drivers of MBD transmission [10], and these characteris-
tics are influenced by environmental and climatic factors 
in urban, rural or forested areas [11, 12].

In Madagascar, MBDs are mostly confined to rural 
and forested areas [1, 13]. However, a number of effi-
cient mosquito vectors (Anopheles gambiae sensu lato 
[A. gambiae s.l.], Culex antennatus and Culex quinque-
fasciatus) [1, 14] and some of the pathogens they trans-
mit (Plasmodium spp., Rift Valley fever virus [RVFV] and 
West Nile virus [WNV]) [1, 15, 16] occur in the urban 
area of Antananarivo, the capital city of Madagascar.

 Antananarivo is experiencing a high population 
growth rate (5%) [17], making it important to assess the 
risk of MBDs in its environment. Given the presence of 
pathogens and competent vectors, the human popula-
tion growth in Antananarivo may increase the risk of city 
dwellers contracting MBDs [18, 19]. While a large num-
ber of studies have sought to detect the presence and to 
quantify the abundance of mosquito species known to 
be efficient vectors in Madagascar [1, 20], far fewer have 
investigated the drivers of their presence and abundance, 
especially in Antananarivo.

Studies identifying drivers of mosquito dynamics usu-
ally include multiple sampling sites [21, 22], with the 
aim to consider differences between sites, increase the 
precision and the power of the study and—depending 

on how the sites were selected—ensure representa-
tivity of the sampled areas. Yet, as studying mosquito 
dynamics implies repeated sampling, human and finan-
cial resources often limit the number of sites that can 
be included in any one survey. In the present study, we 
addressed the question of whether adequate information 
on mosquito dynamics and their drivers can be obtained 
in a longitudinal survey carried out in a single site, in a 
resource-limited setting.

Excluding several non-vector transmission risks of 
MBDs which are related to climate change listed in the 
literature [23], this study aims to assess whether the 
dynamics of vector abundance and its drivers can be 
characterised in a single site of a peri-urban area close 
to the capital city Antananarivo. A 16-month longitudi-
nal study consisting of a series of mosquito catches was 
conducted at 2-week intervals on a multi-host farm. In 
particular, the aim was to assess if this sample effort was 
sufficient to: (i) inventorise mosquito species diversity; 
(ii) assess temporal variation in mosquito diversity and 
abundance; and (iii) develop statistical models to identify 
factors driving the variation of the abundance of mos-
quito species.

Methods
Mosquito sampling
Our study was performed on a peri-urban backyard 
farm (18°58′45–55″S, 47°32′20–30″E), in Mahabo 
fokontany (1258 m a.s.l.), Andoharanofotsy municipality 
(approx. 7 km south of the Antananarivo centre) (Fig. 1a, 
b). This farm was selected because it is a small backyard 
farm, which is the predominant type of farm in peri-
urban Antananarivo, and it was easily accessible. This 
farm hosts humans, horses, cattle, poultry, dogs, pigs and 
rabbits, and this wide variety of potential hosts increased 
the chances of collecting a large diversity of vector spe-
cies with different feeding preferences. It consists of a 
small concrete house and animal shelters surrounded by 
residential houses, large areas of rice paddies and water-
cress irrigated by a canal and open areas of herbaceous 
savannah where cattle can graze [24, 25].
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Mosquitoes were collected alive using six CDC min-
iature light traps (LTs) (BioQuip Products, Inc, Rancho 
Dominguez, CA, USA), one placed at each of six loca-
tion. Three traps were placed indoors: one in the house 
(LTHu), one in the horse shelter (LTHo) and one in the 
cattle shelter (LTCa). The other three traps were placed 
outdoors: one near the pig enclosure (LTPi), one near the 
poultry park (LTPo) and one near a water point (LTWp) 
(Fig. 1c), at a distance of 1 to 2 m from hosts. One night of 
capture (from 5  p.m. to 8 a.m. the next day) was carried 
out every 15 days from 12 January 2017 to 26 April 2018.

Collected mosquitoes were transported to the labora-
tory at the Institut Pasteur de Madagascar, in Antana-
narivo, where they were killed with chloroform vapor 
and identified using the keys of Ravaonjanahary [26] 
for Aedes, Grjebine [27] for Anopheles, Doucet [28] for 
Coquillettidia, Edwards [29] for Culex and da Cunha 
Ramos [30] for Uranotaenia.

Moon, climatic and environmental data extraction
Daily records of meteorological parameters (precipi-
tation, temperature and relative humidity [RH]) were 

obtained from NASA Langley Research Center (LaRC) 
[31]. Daily percentage of moon illumination [MI] was 
obtained from the Time and Date AS Company (Stavan-
ger, Norway) [32]. Bi-weekly Normalised Difference Veg-
etation Index (NDVI) (minimum, mean and maximum 
values) and Normalised Difference Water Index (NDWI) 
data for the area within a 200-m, 500-m and 1-km radius 
buffer surrounding the farm were downloaded from the 
Sen2Extract web application [33]. All of these climatic, 
environmental and MI data were extracted from October 
2016 to April 2018.

Statistical analysis
Statistical analyses were carried out in R software ver-
sion 4.2.2 [34]. The Shannon (H) and Simpson (S) diver-
sity indices were used to compare diversity between 
traps. The non-parametric estimator Chao1 [35] and 
abundance-based coverage estimator (ACE) [36] were 
used to estimate the true species richness of mosquito 
communities [37, 38]. To determine whether the num-
ber of collected mosquitoes reach the point at which the 
species richness is saturated, we constructed rarefaction 

Fig. 1 Location of the farm, Andoharanofotsy municipality, district of Atsimondrano (Madagascar). a Location of Fokontany Mahabo (bounded 
by the continuous black line). b Location of the farm (delimited by the black rectangle). The red circles denote the 200-m, 500-m and 1-km buffers 
from which the NDVI and NDWI were extracted. c Location of the light traps (filled circle, outdoor traps; open circle, indoor traps). NDVI, Normalised 
Difference Vegetation Index; NDWI, Normalised Difference Water Index
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curves using the rarecurve function from the ’Vegan’ 
package [39].

Differences in the species composition between mos-
quitoes captured in the six traps over the 16 months of 
collection were analysed with the non-metric Multi-
Dimensional Scaling (nMDS) ordination program [40]. 
Analysis of similarities (ANOSIM) was used to test 
the statistical significance of the MDS analysis. This 
method also estimates stress, which is an index aggre-
gating representation errors, with stress values near 
zero being the best. Mosquito abundances in each of 
the six traps were compared using a Kruskal–Wallis 
H-test, followed by Dunn’s multiple comparisons post 
hoc test to determine which pairs of location of light 
traps were different.

The environmental variables used were the rescaled 
(initial values were divided by 100) mean value of the 
NDVI and NDWI extracted from the most recent Sen-
tinel-2 image on 1–3 days before the sampling date. 
Average temperature, average RH and accumulated 
precipitation variables were calculated for the follow-
ing 22 lag periods: 1, 1–2, 1–3, 1–4 (1 month)  and 2, 
2–3, 3, 3–4, 4, 4–5, 5–6, 6–7, 7–8, 8–9, 9–10, 10–11 
and 11–12 weeks before the sampling periods, and 2, 3, 
1–2, 1–3 and 2–3 months before the sampling periods. 
This time range covers the adult mosquito diapause 
period (3 months) [41], which probably affects the sea-
sonal dynamics of mosquito abundance [42].

Models explaining the indoor and outdoor density of 
each of the four most abundant species were developed. 
Data from indoor and outdoor locations were analysed 
separately as it was suspected that some variables, such 
as MI, differentially impact outdoor and indoor abun-
dance [43]. Models were developed in five steps, with 
one step to develop univariable models and four steps 
to develop multivariable models to identify the best fit 
model explaining the indoor and outdoor density of 
each of the four most abundant species.

Step 1: A univariable model was created using the 
indoor and outdoor mosquito densities (average 
number of mosquitos per trap and per capture ses-
sion) of each of the four most abundant species as 
the response variable. Moon illumination, environ-
mental (NDVI and NDWI from the 200-m, 500-m 
and 1-km buffer areas) and climatic variables from 
the 22 lag periods were included as explanatory 
variables. Because data were not distributed nor-
mally and overdispersion with zero-inflation were 
detected with the DHARMa package [44] in the 
univariates Poisson models, a univariate model was 
created using the glm.nb function.

Step 2: Two generalised linear models (GLMs) 
using the glm function for Poisson distribution and 
the glm.nb function for negative binomial distribu-
tion were constructed. Moon illumination + the 
environmental variables for one of the three buffer 
areas and the variable (either temperature, precipi-
tation or RH) of the 22 lag periods that exhibited 
the lowest corrected Akaike information criterion 
(AICc) [45] value in the univariable model were 
retained as covariates in these two GLMs.
Step 3: The DHARMa package [44] was used to test 
the presence of overdispersion or zero-inflation in 
these two subsequent GLMs (Poisson and negative 
binomial [NB]) by simulating their scaled residuals 
with the simulateResiduals function in R. The model 
without overdispersion (< 1) and zero-inflation (< 1) 
was retained, and the model with the smallest AIC 
and Bayesian information criterion (BIC) values was 
retained according to Liaqat et  al. [46]. When over-
dispersion and zero-inflation were detected in both 
the Poisson and NB models, four subsequent models, 
namely, the zero-inflated Poisson (ZIP), zero-inflated 
negative binomial (ZINB), hurdle–Poisson (HP) 
and negative binomial hurdle (NBH) models, were 
applied with the same covariates. The model with the 
smallest AIC and BIC values was retained, according 
to Liaqat et al. [46].
Step 4: The variance inflation factor (VIF) of covariates 
of the model which better fit the data was compared 
using the check_collinearity function from the perfor-
mance package [47]. By excluding covariates with the 
highest VIF (> 10) values, the dredge function from R 
package MuMIn [48] was run to output all possible 
combinations of covariates to build a final model.
Step 5: Finally, the Hosmer–Lemeshow goodness-of-
fit test was assessed using the hoslem.test function 
(ResourceSelection packages) [49].

The final model was used to calculate the incidence rate 
ratio (IRR) for the four most abundant species densities 
indoors and outdoors. The predicted indoor and out-
door densities were derived from the corresponding final 
model using the predict function.

Results
From 12 January 2017 to 26 April 2018, a total of 46,737 
mosquitoes were collected in 189 trap-nights, corre-
sponding to a mean of 247 mosquitoes (standard devia-
tion [SD] 441.39) collected per LT (Table  1). At least 20 
mosquito species belonging to seven genera (Aedes, 
Anopheles, Coquillettidia, Culex, Lutzia, Mansonia and 
Uranotaenia) were collected.
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For the LTCa, the rarefaction curve (plot of the number 
of species against the number of collections) stabilised at 
12 species (Fig.  2). The greatest number of species (16) 
was obtained in the LTPi and the smallest (10) in the 
LTHu. The rarefaction curves observed for the remain-
ing traps indicated that an additional trapping effort was 
needed to capture all the diversity present, in particular 
in the LTWp and LTPo.

The  SChao1 and  SACE estimated that the highest number 
of species would be expected in the LTHo (25 species) 
and LTPi (24 species), and the lowest number of species 
would be observed in the LTHu (10 species). The Shan-
non and Simpson indices were higher in both the LTWp 
and LTPo, indicating that mosquitoes were distributed 
more equitably in these places. Both indices were lower 
in the LTHu (Additional file 2: Table S2).

The species composition differed between the six trap 
locations during the 16  months of the study (ANOSIM 
statistic, R = 0.3912, P = 1e−04) (Fig. 3). The stress value 
of 0.115 reflects that the differences between the actual 

Fig. 2 Rarefaction curves representing species richness 
of mosquitoes collected in traps at six locations on the Mahabo farm, 
Andoharanofotsy, Madagascar, from January 2017 to April 2018. 
Indoor traps were placed in the house (LTHu), horse shelter (LTHo) 
and the cattle shelter (LTCa); outdoor traps were placed near the pig 
enclosure (LTPi), near the poultry park (LTPo) and near a water point 
(LTWp). Ca, Cattle; Ho, horse; Hu, humans; LT, light traps; Pi, pigs; Po, 
poultry; WP, water point

Fig. 3 Nonmetric multidimensional scaling (MDS) ordination showing the differences in assemblages of mosquitoes caught in traps at the six 
different locations on the Mahabo farm, Andoharanofotsy, Madagascar, indicated on figure by different colours, and at different months of the year, 
indicated by different symbols, from January 2017 to April 2018. LTCa, LTHo, LTHu, Indoor traps in the house, horse shelter and cattle shelter, 
respectively; LTPi, LTPo, LTWp, outdoor traps near the pig enclosure, the poultry park and a water point, respectively 
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distances and their predicted values is slightly fair. The 
assemblage collected in the LTHu was distinctly sepa-
rated from those of the other assemblages. The assem-
blage collected in indoor LTs (LTCa, LTHo, LTHu) were 
separated from those collected outdoors (LTPi, LTPo, 
LTWp) on the second axis.

Mosquitoes of Culex genus, comprising at least eight 
species, were dominant, accounting for 92.8% of the total 
number of mosquitoes collected, followed by those of 
Anopheles genus, comprising at least four species (5.2% 
of total collected mosquitoes) (Table  1). The remaining 
2.0% consisted of mosquitoes of genus Aedes (4 species), 
Coquillettidia (2 species), genus Lutzia (1 species), genus 
Mansonia (1 species) and genus Uranotaenia genus (at 
least 1 species). Culex antennatus (68.9% of individu-
als) was by far the most abundant species, followed by 
Cx. quinquefasciatus (19.8%), Cx. poicilipes (3.7%) and 
An. gambiae s.l. (2.3%). Eight species (Cx. antennatus, 
Anopheles coustani, An. gambiae s.l., Cx. giganteus, Cx. 
poicilipes, Cx. quinquefasciatus, Mansonia uniformis and 
Cx. univittatus) were collected in all six LTs but their 
abundance varied between LTs and time periods. The 
largest number of mosquitoes was collected in LTCa and 
the smallest in LTWp (Kruskal–Wallis H-test, H = 46.99, 
df = 5, P < 0.001) (Additional file  3: Table  S3). Dunn’s 
post hoc tests showed that three-, five- and sixfold more 
mosquitoes were collected in the LTCa compared to the 
LTHu (α = 0.001), LTPo (α = 0.000) and LTWp (α = 0.001), 

respectively. Regarding outdoor LTs, the LTPi provided 
three- to fourfold more mosquitoes than the LTPo 
(α = 0.002) and LTWp (α = 0.001); regarding indoor LTs, 
the LTHu provided threefold more mosquitoes than the 
LTWp (α = 0.006), and the LTHo provided twofold more 
mosquitoes than the LTHu (α = 0.019).

Ranking of the 20 mosquito species showed that Cx. 
antennatus was the dominant mosquito species in 
the LTPi, LTCa, LTHo, LTWp and LTPo, with relative 
abundances of 90.0%, 71.0%, 69.5%, 55.2% and 47.1%, 
respectively (Additional file 4: Fig. S1). In the latter four 
traps, the second ranking was occupied by Cx. quinque-
fasciatus, with relative abundances of 34.0% (LTPo), 
23.5% (LTWp), 20.0% (LTCa) and 11.0% (LTHo). Culex 
quinquefasciatus occupied the first ranking only for  the 
LTHu, inside the house, where it accounted for 96.0% of 
mosquitoes collected; An. gambiae s.l. was the second 
most abundant species in the LTHu, but represented 
only 1.0% of individuals collected. In LTPi, the second 
most abundant species was Cx. poicilipes (2.6%), closely 
followed by Cx. quinquefasciatus (2.3%) and An. cous-
tani (2.2%).

The abundance of specimens collected varied accord-
ing to the month of capture (Kruskal–Wallis H-test, 
H = 24.92, df = 11, P < 0.01). The abundance of Ma. uni-
formis, Cx. antennatus, An. squamosus/cydippis, Cx. 
poicilipes, An. gambiae s.l. and An. squamosus started 
to increase in February, with the highest abundance of 

Fig. 4 Variations in the monthly density of mosquitoes collected in the light traps located in indoor and outdoor environments on the Mahabo 
farm, Andoharanofotsy, Madagascar, from January 2017 to April 2018
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An. gambiae s.l. observed in February, of Ma. uniformis 
in March, of Cx. antennatus and An. squamosus/cydip-
pis in April and of Cx. poicilipes in June (Fig.  4). The 
abundance of these species decreased greatly after their 
respective highest peak period, and mosquitoes were 
rarely collected in the cold dry season (between August 
and November). Culex quinquefasciatus was abun-
dant throughout the year, with four abundance peaks 
observed in February, June, September and November. 
Anopheles coustani was mostly abundant during the 
wet season, when four abundance peaks were observed 
(from December to May), and rarely collected between 
August and October.

Indoor and outdoor abundance models for Cx. anten-
natus, Cx. quinquefasciatus, Cx. poicilipes and An. gam-
biae s.l. were further developed. A total of 73 covariates 
including MI, 66 covariates of climatic factors (22 lag 
periods of temperature, 22 of RH, 22 of precipitation) 
and six covariates of the respective three buffers of NDVI 
and of NDWI were assessed through univariable analysis 
(Additional file 5: Table S4). According to the univariable 
models, MI had a significant impact only on the outdoor 
abundance of Cx. antennatus, Cx. quinquefasciatus and 
Cx. poicilipes. Statistically significant associations were 
also evident between:

(i) outdoor abundance of the four species and two to 16 
lag periods of temperature, and between 12 and 21 
lag periods of temperature and the indoor abun-
dance of Cx. antennatus, Cx. poicilipes and An. 
gambiae;

(ii) two to 16 lag periods of RH and outdoor abundance 
of the four species, four to 17 lag periods of RH and 
indoor abundance of these four species;

(iii) one to 11 lagged periods of precipitation and out-
door abundance of these four species, and between 
three and 10 lag periods of precipitation and indoor 
abundance of the four species;

(iv) NDVI 200-m buffer, NDVI 500-m buffer and the 
NDVI 1-km buffer and indoor abundance of Cx. 
antennatus, Cx. poicilipes and Cx. quinquefasciatus, 
respectively,

(v) the three buffers of NDWI and the outdoor and 
indoor Cx. antennatus and An. gambiae abundance, 
the indoor abundance of Cx. quinquefasciatus and 
the NDWI 500-m buffer.

Six covariates per species were used as explanatory 
variables (Additional file  6: Table  S5) on the basis of 
smallest AICc and introduced in the Poisson and NB 
models. The Poisson model was adequate to model 
the outdoor abundance of only An. gambiae because 
of the absence of the overdispersion and zero-inflation 

(Additional file  7: Table  S6). Therefore, the NB model 
was retained to construct the final model for outdoor 
and indoor densities of Cx. antennatus, Cx. poicili-
pes and Anopheles gambiae s.l. and also for the indoor 
abundance of An. gambiae s.l. due to the absence of 
overdispersion and zero-inflation (< 1). The outdoor 
abundance Poisson and NB models of Cx. quinquefas-
ciatus exhibited overdispersion and were therefore not 
retained. Based on the lowest AIC and BIC values, NBH 
provided the best fit for outdoor and indoor densities 
of Cx. quinquefasciatus (Additional file  8: Table  S7). 
Covariates with strong collinearity (VIF > 10) were 
excluded from the models (Additional file 6: Table S5).

The MI was retained in outdoor abundance models of 
Cx. antennatus, Cx. quinquefasciatus and Cx. poicilipes, 
temperature was retained in outdoor and indoor abun-
dance models of Cx. antennatus, Cx. poicilipes and An. 
gambiae s.l., RH was retained only in the indoor abun-
dance model of Cx. antennatus, NDWI was retained only 
in the outdoor abundance model of Cx. quinquefascia-
tus, precipitation was retained only in the indoor abun-
dance model of this last species and NDVI was retained 
only in the outdoor abundance model of An. gambiae s.l. 
(Table 2).

The variables retained in each best fit model explained 
approximately 75.7%, 47.8%, 35.9% and 66.4% of the 
outdoor densities of Cx. antennatus, Cx. quinquefascia-
tus, Cx. poicilipes and An. gambiae s.l., respectively. The 
retained variables explained approximately 60.4%, 49.9%, 
29.8% and 43.9% of the outdoor densities of Cx. antenna-
tus, Cx. quinquefasciatus, Cx. poicilipes and An. gambiae 
s.l., respectively (Table 2).

None of the eight best fit models were rejected by the 
Hosmer–Lemeshow goodness-of-fit test (P = 1), indicat-
ing the ability of all final models to predict indoor and 
outdoor mosquito densities. The IRRs of the explanatory 
variables associated to the outdoor and indoor mosquito 
densities are summarised in Fig. 5 and Additional file 9: 
Table S8.

Moon illumination had a negative impact on outdoor 
mosquito abundance (IRR 0.99, 97.5% CI 0.98–1.00). This 
parameter was not associated with indoor abundance for 
any species.

Temperature was retained in the indoor and outdoor 
abundance models of all species except for Cx. quinque-
fasciatus. The mean temperature of the third month 
before the collection positively impacted outdoor abun-
dance of Cx. antennatus, Cx. poicilipes and An. gambiae 
s.l. (1.20 < IRR < 2.25, 97.5% CI 1.07–1.88) and outdoor 
abundance of Cx. antennatus (IRR 2.13, 97.5% CI 1.17–
1.76). The mean temperature of the week of the collection 
negatively impacted the indoor abundance of Cx. poicili-
pes (IRR 0.79, 97.5% CI 0.67–0.92) and positively impacted 
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the indoor abundance of An. gambiae s.l. (IRR 1.89, 97.5% 
CI 1.47–2.48). Temperature (of the week preceding the 
collection) was negatively associated with indoor abun-
dance of Cx. poicilipes (IRR 0.79, 97.5% CI 0.67–0.92).

Precipitation was positively associated with the indoor 
Cx. quinquefasciatus density (IRR 1, 97.5% CI 0.99–1) 

(precipitation during the 7th and 8th week before the 
collection).

The RH during the first week before collection was pos-
itively associated with the indoor Cx. antennatus abun-
dance (IRR 1.17, 97.5% CI 1.03–1.33).

Fig. 5 Effects of variables retained in the eight final models on the incidence rate ratio of mosquito abundance for Cx. antennatus, Cx. 
quinquefasciatus, Cx. poicilipes and An. gambiae s.l., with 95% confidence interval. MI, Moon illumination; NDVI, Normalised Difference Vegetation 
Index; Prew7.8, 7.8-week lag period for precipitation; Rhw1, 1-week lag period for relative humidity; Tpm3, 3-month lag period for temperature; 
Tpw1, 1-week lag period for temperature    

Fig. 6 Prediction graphs of the density of the four most abundant species according to the eight final GLMs models by location of trap
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The NDVI 0.2-km buffer was negatively associated 
with the outdoor abundance of An. gambiae s.l. (IRR 0.94, 
97.5% CI 0.91–0.97).

NDWI was included into the final models of Cx. 
quinquefasciatus (outdoor abundance), although the 
association was not statistically significant.

The predicted and the observed mosquito densities 
overlapped and demonstrated that the models correctly 
predicted the variation of mosquito density in times for 
indoor and outdoor trap locations (Fig. 6).

Discussion
Diversity and abundance
Twenty mosquito species were identified during this 
study, and rarefaction curves were still increasing for 
most of LTs at the end of the study period (Fig. 2), sug-
gesting that more species than those collected could have 
been present. Indeed, a total of 36 species have been 
reported in Antananarivo City and its surrounding areas 
so far [1, 14]. This difference is probably due to the sin-
gle method (LTs) used in the present study, as well as the 
single collection site investigated. Applying this meth-
odology, the greater abundance of mosquitoes collected 
indoors than outdoors was expected because this has 
already been reported in other countries [50, 51].

The abundance of Cx. antennatus, Cx. quinquefascia-
tus, An. coustani and Ma. uniformis has been already 
highlighted in Antananarivo and its surroundings [1, 14]. 
The abundance of An. gambiae s.l. and Cx. poicilipes is 
new information. The abundance of Cx. quinquefascia-
tus, a species related to peri-domestic breeding sites, and 
of the rice field-breeding species Cx. antennatus, An. 
coustani, An. gambiae s.l., Cx. poicilipes and Ma. uni-
formis [20, 52] can be explained by the omnipresence of a 
mixture of waterbodies associated with both agricultural 
activity and poor household sanitation in Mahabo fokon-
tany [20, 22, 24, 52]. Although Ae. albopictus had previ-
ously been reported to be abundant in Antananarivo [1, 
53], this species was not collected in our study, prob-
ably because LTs are not suitable for collecting this diur-
nal species, possibly explaining its very low abundance 
observed here during our study period.

Our study supplements knowledge acquired during 
a longitudinal survey carried out on mosquito popu-
lations in Antananarivo City which dates back to the 
1980s [1]. Data from that study show that although most 
mosquito populations declined during the cold dry sea-
son (between August and October), this decline did not 
represent an absence of Cx. antennatus, An. gambiae s.l. 
and Cx. poicilipes during this period; rather, the dynam-
ics showed a maintenance of these species, with low 
numbers of individuals collected throughout the cold 
dry season. This seasonal variation in the populations of 

these three mosquito species has been reported in earlier 
studies using LTs and human landing catch in rural, peri-
urban and urban areas of Antananarivo province [1, 52]. 
In contrast, Cx. quinquefasciatus populations were pre-
sent and abundant all year round, as previously observed 
in Antananarivo City and its surrounding areas [1]. 
Because the effect of MI was suspected to be different on 
outdoor and indoor mosquito abundances, but the effect  
not very clear [43], and because other climatic variables 
could impact abundances differently [54], indoor and 
outdoor abundances were modelled separately.

Univariable and multivariable analyses
Given the large number of covariates tested (66 lag 
periods of climatic variables and 3 buffers of NDVI and 
NDWI), AICc was used in the univariable analysis instead 
of AIC [55]. Our results suggest the importance of testing 
these different lag periods for each explanatory variable 
and for each species due to the differences in ecological 
traits associated with the four main mosquito species col-
lected [20]. Indeed, short lag periods (weeks 1–3 prior 
to the collection date) of climatic conditions were found 
to affect the current adult populations, while those with 
longer lag periods affected the current larval populations 
or the adult populations of the previous generation [56]. 
Our results showed that variables with short and long lag 
periods were selected for inclusion in the models, dem-
onstrating that the climatic variables impacted different 
mosquito generations. Moreover, outdoor climatic data 
were used to predict both outdoor and indoor mosquito 
densities, taking into account that indoor weather meas-
urements were correlated with outdoor ones in Antana-
narivo City [57]. Testing three sizes of buffers for NDVI 
and NDWI variables showed that the best size varied per 
species, variable and indoor/outdoor locations.

Drivers of mosquito abundance
After running the dredge function, which examined all 
possible variable combinations [48], we found that eight 
final models revealed for the first time that MI and cli-
matic (temperature, RH and precipitation) and envi-
ronmental factors were important drivers of mosquito 
abundance in at least one urbanised area of Madagascar.

One striking result was the demonstration of the effect 
of MI on the outdoor abundance of all four predomi-
nant mosquito species. The increase of the number of 
mosquitoes collected outdoors when MI decreases has 
been demonstrated in other countries [43, 58], with pre-
vious studies reporting the impact of MI on the length 
of oviposition cycles [59] and flight orientation [60]. In 
our study, the negative effect of MI on mosquito out-
door density could be explained by the nocturnal activ-
ity and strong positive phototropism of these mosquitoes 
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[1, 14, 43]. MI could reduce the efficiency of LTs placed 
outdoors, suggesting that MI should be considered as an 
explanatory variable when modelling mosquito abun-
dance using outdoor LTs.

Temperature had positive effects on mosquito den-
sities (for An. gambiae s.l., Cx. antennatus and Cx. 
poicilipes collected, Cx. antennatus and An. gambiae 
s.l. collected indoor), and generally the lag period was 
quite important (3 months). Yet, there was one excep-
tion: temperature negatively impacted Cx. poicili-
pes indoor densities with a short lag period (1 week). 
Given the positive effect of long lag periods, tempera-
ture probably did not directly affect the current gen-
eration. Because increasing temperature is known to 
increase host-seeking, reproduction and larval develop-
ment [61], an increase in temperature 3  months prior 
to the collection probably affected the previous genera-
tion and led to an increased adult density of the current 
one. Positive relationships between monthly anteced-
ent temperature and mosquito abundance have been 
observed in other countries [62].

The positive correlation between first-week lagged RH 
and indoor Cx. antennatus densities might be explained 
by the fact that increases in RH enhance the attrac-
tion of current populations to the indoor hosts. Indeed, 
increased RH is known to enhance the attraction of 
mosquitoes to warmer baits [63]. It is also possible that 
odorant cues increase with humidity [64]. Increasing 
humidity is also known to increase mosquito lifespan and 
abundance [61].

The positive impact of the 7- to 8-week lagged pre-
cipitation on the indoor density of Cx. quinquefasciatus 
could highlight the role of this parameter on adult popu-
lations of the previous generation, through increasing 
RH and larval breeding surfaces and favouring mosquito 
abundance [65]. Precipitation was positively associated 
with the densities of species for which it contributes 
to increases in larval breeding habitats, probably peri-
domestic breeding habitats (e.g. the water point investi-
gated in this farm).

That the NDWI was not significantly associated to at 
least Cx. quinquefasciatus density does not mean that 
it failed to predict mosquito abundance. The significant 
associations of NDVI and NDWI mainly with Cx. anten-
natus, Cx. quinquefasciatus and An. gambiae s.l. densi-
ties resulting from the univariable analysis highlights 
the suitability of these parameters to predict mosquito 
abundance [61, 66]. The role of the NDVI 0.2-km buffer 
in driving mosquito abundance (i.e. An. gambiae s.l.) 
might be related to the role of plants as nectar sources 
[67] and/or to the presence of aquatic plants which stim-
ulate mosquito oviposition [68] and/or to the presence 
of terrestrial plants that provide humidity favourable 

for outdoor-resting mosquitoes [69, 70]. The NDWI, a 
parameter used to identify open water, might reflect the 
presence of larval breeding habitats such as rice fields 
and canals present in our study site [28].

Others confounding factors, such as human and ani-
mal activities, use of bednets and mosquito behaviour—
all of which might affect mosquito abundance— were 
not assessed during this study. That only a single house-
hold was included as collection site limited our ability to 
describe the human and animal factors. Regarding the 
use of bednets as a factor that may induce vector behav-
ioural change [71], Magbity et al. [72] demonstrated that 
there was insufficient evidence to show that the presence 
of treated nets altered the relative efficiency of LTs.

Finally, despite our data being collected at a single 
study site, the large number of capture sessions (n = 32) 
and trapping (n = 189) were performed both indoors and 
outdoors at that site. This large sampling effort increased 
the robustness of our data-based model and allowed us 
to characterise the drivers of the dynamics of main vec-
tor species in our study, similar to the conclusions drawn 
from the authors of a similar study focusing on Culicoides 
population from a single site [73]. In our study, the mod-
els from the outdoor data were able to demonstrate the 
bi-weekly and main seasonal patterns of mosquito densi-
ties. The models from the indoor data only demonstrated 
the main seasonal patterns of mosquito densities. Our 
results should inform mosquito control operations of 
public health systems at least for the peri-urban munici-
pality level.

Conclusions
In resource-limited contexts, longitudinal surveys car-
ried out in a single site can be informative on mosquito 
dynamics and their drivers. By combining repeated sam-
pling and using six LTs placed in close proximity to dif-
ferent animal hosts, we were able to capture an important 
diversity of mosquitoes in peri-urban areas of Antanana-
rivo, including major and candidate vectors of important 
viral and parasitic pathogens. The most abundant species 
were Cx. antennatus, a major vector of WNV and RVFV, 
Cx. quinquefasciatus, a major vector of WNV, Cx. poicili-
pes, a candidate vector of RVFV and An. gambiae s.l., a 
major vector of Plasmodium spp. Importantly, this work 
shows that these four mosquito species were present all 
year round, although the abundance of Cx. antennatus, 
An. gambiae s.l. and Cx. poicilipes declined during the 
dry cold season. The main drivers of their abundance 
were temperature, RH and precipitation. These variables 
impacted mosquito densities with different lag periods, 
reflecting their impact on different generations of mos-
quitoes and different stages of their life-cycle: the previ-
ous generation and the current larval adult populations. 
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A consistent effect of moonlight was observed on the 
outdoor densities of all four species, probably due to a 
reduction in the efficiency of LTs on moonlit nights. Mul-
tiple trapping sites should be included to increase the 
scope of these findings. Alternatively, another option—
less resource-intensive than repeating the same longi-
tudinal study in other sites—could be to validate the 
models developed here using data collected in a limited 
number of sites at key timepoints and assess their predic-
tive capacities on a larger study area. Identifying the driv-
ers of dynamics is a first step towards the development 
of the pathogen transmission models (R0 models) [74] 
that are key to informing public health stakeholders on 
the periods that populations are at risk for vector-borne 
diseases.
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