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Abstract 

Background Sleeping sickness (gambiense human African trypanosomiasis, gHAT) is a vector‑borne disease targeted 
for global elimination of transmission (EoT) by 2030. There are, however, unknowns that have the potential to hinder 
the achievement and measurement of this goal. These include asymptomatic gHAT infections (inclusive of the poten‑
tial to self‑cure or harbour skin‑only infections) and whether gHAT infection in animals can contribute to the transmis‑
sion cycle in humans.

Methods Using modelling, we explore how cryptic (undetected) transmission impacts the monitoring of progress 
towards and the achievement of the EoT goal. We have developed gHAT models that include either asymptomatic 
or animal transmission, and compare these to a baseline gHAT model without either of these transmission routes, 
to explore the potential role of cryptic infections on the EoT goal. Each model was independently calibrated to five 
different health zones in the Democratic Republic of the Congo (DRC) using available historical human case data 
for 2000–2020 (obtained from the World Health Organization’s HAT Atlas). We applied a novel Bayesian sequential 
updating approach for the asymptomatic model to enable us to combine statistical information about this type 
of transmission from each health zone.

Results Our results suggest that, when matched to past case data, we estimated similar numbers of new human 
infections between model variants, although human infections were slightly higher in the models with cryptic 
infections. We simulated the continuation of screen‑confirm‑and‑treat interventions, and found that forward projec‑
tions from the animal and asymptomatic transmission models produced lower probabilities of EoT than the baseline 
model; however, cryptic infections did not prevent EoT from being achieved eventually under this approach.

Conclusions This study is the first to simulate an (as‑yet‑to‑be available) screen‑and‑treat strategy and found 
that removing a parasitological confirmation step was predicted to have a more noticeable benefit to transmission 
reduction under the asymptomatic model compared with the others. Our simulations suggest vector control could 
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Background
Gambiense human African trypanosomiasis (gHAT), 
commonly referred to as “sleeping sickness”, is a 
neglected tropical disease that threatens the lives of mil-
lions of the poorest populations in West and Central 
Africa. The disease, which is caused by the parasite Tryp-
anosoma brucei gambiense, is transmitted to humans 
through the bite of tsetse (Glossina) [1, 2] and once 
symptoms develop, the untreated disease is usually fatal. 
The last gHAT epidemic, which endured from the 1970s 
until the late 1990s, reached its peak in 1998 with 37,385 
cases reported across Africa [3]. In response to this epi-
demic, the World Health Organization (WHO), national 
control programmes and non-governmental organisa-
tions (NGOs) implemented a range of interventions in 
endemic areas which led to a significant reduction in case 
numbers [3, 4]. Two approaches were adopted to control 
the disease: case detection through passive screening 
(fixed health facilities for patients presenting with gHAT 
symptoms) and active screening [AS; predominantly 
mobile teams travelling to at-risk regions and screen-
ing using the card agglutination test for trypanosomiasis 
(CATT) or rapid diagnostic tests (RDTs)] [5]. Addition-
ally, vector control (VC; reduction of tsetse populations 
in endemic areas) has been used in some settings includ-
ing geographically contained foci and some of the regions 
with highest case reporting. The success of these global 
and national efforts led to fewer than 1000 annual cases 
being reported in 2019–2022 [3, 6].

In 2012, following a decade of sustained control efforts, 
the WHO included gHAT in its “roadmap for eradica-
tion, elimination and control of neglected tropical dis-
eases” [7]. The goals identified were for the elimination 
of gHAT as a public health problem by 2020 and zero 
transmission in humans by 2030. Steady progress has 
been made towards these goals, with Togo and Côte 
d’Ivoire being the first to have elimination as a public 
health problem validated, followed by Benin, Uganda and 
Rwanda, and other countries are working towards build-
ing and submitting dossiers [8]. Even with falling case 
numbers and the sustained progress made by national 
programmes and their partners towards achieving the 
WHO goals, uncertainties remain. Undetected or cryp-
tic hosts, including asymptomatic gHAT infections and 
animal infections, represent a significant uncertainty, 
and understanding the role they play in maintaining the 

human transmission cycle will be critical for elimination 
efforts [9].

Although the classical gHAT disease course is typically 
characterised by an early and a late stage [10], it is now 
clear that there is a range of potential clinical outcomes 
with some infected individuals displaying no symptoms 
following infection (asymptomatic) and some able to 
clear the parasite spontaneously (self-cure) [11]. Healthy 
carriers of gHAT have been documented for half a cen-
tury and can remain infected for years, possibly even 
decades [11, 12]. The parasite, in such cases, can evade 
detection by parasitological tests used for routine screen-
ing of blood, lymph node aspirate or cerebral spinal fluid, 
by residing in the extravascular space of organs includ-
ing the heart and the skin [13–15]. Consequently, these 
individuals may act as a human maintenance reservoir 
or at least hinder intervention efforts (although it has yet 
to be established how infective asymptomatic humans 
are to tsetse [16]). An indicator of asymptomatic infec-
tion is consistently high titres in the CATT [17] used for 
mass screening in endemic locations. The CATT test, 
however, may not be sufficiently specific to T.b.  gambi-
ense infections [18]. Other tests that are more specific to 
T.b.  gambiense infections, including immune trypanoly-
sis, may more accurately correlate with infection preva-
lence; however, these tests are laboratory rather than 
field tests and therefore they are not routinely used for 
population screening [18, 19]. Consequently, under the 
standard “screen-confirm-and-treat” AS algorithm, not 
all individuals infected with gHAT have a chance of being 
diagnosed and treated due to the parasite confirmation 
criterion for the currently available drugs: fexinidazole, 
pentamidine and nifurtimox–eflornithine combination 
therapy (NECT) [20]. A “screen-and-treat” (S&T) sce-
nario in which all individuals with a positive screening 
test (CATT or RDT) may be a feasible option, particu-
larly in light of the ongoing progress in the development 
of a single-dose oral cure, acoziborole [21].

In addition, and despite an abundance of evidence that 
T.b. gambiense parasites are present in both wildlife and 
domestic livestock, it is uncertain if and to what extent 
they contribute to the transmission cycle [9]. It has been 
suggested by several studies that animals can act as para-
site reservoirs [22–27]; however, studying the infectivity 
and transmissibility to humans is challenging. Mathe-
matical modelling has been used to great effect to predict 

greatly impact all transmission routes in all models, although this resource‑intensive intervention should be carefully 
prioritised.
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what impact non-human animal infections may have 
on transmission and the effectiveness of control meas-
ures. In one such study, it was shown that although the 
probability of elimination would be expected to remain 
high in the presence of animal transmission (at least 77% 
probability of gHAT elimination as a public health prob-
lem in Boffa East, Guinea by 2020), intervention strate-
gies would need to remain in place even after elimination 
as a public health problem to prevent recrudescence [28]. 
Another study presented a model of heterogeneous expo-
sure of humans to tsetse with animal populations that 
differed in their ability to transmit infections [29]; it con-
cluded that increasing the intensity of VC was more likely 
to eliminate transmission while increasing the intensity 
of human screening reduced the time to elimination. 
The latter model, however, was not fitted to gHAT case 
data. Another cautionary study, that used human and 
animal case data to quantify how different species and 
groups of species (domestic and wild animals) contrib-
ute to transmission dynamics, indicated that independ-
ent transmission cycles are likely in wild animals [30] 
and that interventions targeting humans alone are likely 
insufficient for elimination of gHAT. Previous work by 
Crump et  al. [31] directly compared whether there was 
statistical support for a model with animal infection, 
rather than solely anthroponotic transmission and con-
cluded that there are some health zones (administrative 
regions of around 150,000 people) of the Democratic 
Republic of Congo (DRC) where human case data indi-
cated there may be some evidence of this. However, the 
amount of transmission from animals would not be suf-
ficient to maintain infection in the long term without 
human transmission. Some health zones had more than 
a 10% difference in the probability of elimination by 2030 
between the model predictions made with and without 
animal transmission. Some other modelling studies have 
remained inconclusive on the existence of animal trans-
mission having a substantial contribution to human–
tsetse infection cycles; however, optimistically, falling 
case numbers in many regions have indicated that if they 
do exist then we might expect negligible to minor delays 
to EoT [32, 33].

In this study, we use three model variants (baseline, 
animal and asymptomatic) to describe the transmission 
of gHAT in five health zones of the DRC, a country which 
currently has the highest global case burden and great 
geographic heterogeneity in case reporting [3]. We com-
pare asymptomatic and animal transmission to a baseline 
gHAT model and question (1) whether there is statistical 
evidence – based on routinely collected active and pas-
sive case data – to support using a model with asympto-
matic human infection, and (2) if we expect predictions 
of case reporting and elimination to change using such 

model variants? Whilst other modelling studies have pre-
sented [34, 35] and even fitted [36, 37] models with either 
self-curing human infections or skin-only infections, 
none have been conclusive on whether there is more sta-
tistical evidence for the use of this more complex model 
variant or if simpler models without these additions can 
explain the data as well.

The present study makes large advances in both the 
statistical methodology underpinning the analysis and 
addresses a major unresolved question about gHAT: no 
study has previously compared these different putative 
routes of transmission to establish which is most likely 
given case reporting, nor whether it is possible that 
asymptomatic humans infections would cause cases to 
plateau at a low level or  if transmission can be reduced 
to zero in practice.

Methods
Model variants
In this study, we utilised three previously developed vari-
ants of the Warwick gHAT model that can be visualised 
in the schematic diagram in Fig.  1 and are described 
below: 

1 The baseline model (blue boxes, Fig.  1) is a solely 
anthroponotic human–tsetse model that includes 
heterogeneity in people’s exposure to tsetse bites. 
This model, in which low-risk people may attend AS 
but high-risk people do not participate, was found to 
match longitudinal trends in the data well and out-
performed our other simpler anthroponotic model 
variants ([38], note that the baseline model is referred 
to as “Model 4” in the previous publication).

2 The animal transmission model is the same as the 
baseline model but includes possible non-human ani-
mal transmission to and from tsetse (blue and pink 
boxes, Fig.  1). This model has two extra parameters 
– the relative density of animals capable of acquir-
ing and transmitting infection compared with the 
human population size, kA , and the probability that 
a tsetse takes a blood meal on this animal population, 
fA ( [31], note that the animal model is referred to as 
“Model 7” in the previous publication). The model 
with animal transmission has been found to often 
have similar statistical evidence to the baseline model 
when matched to human case data in various regions; 
however, we believe that animal transmission is likely 
to be highly dependent on the geographical context 
with animal–tsetse–human contact varying substan-
tially between regions.

3 The asymptomatic model with possible self-cur-
ing human infections is very similar to the baseline 
model with a high-and-low-risk structure but with 
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alternative disease progressions (natural histories) 
possible in humans (blue and green boxes, Fig. 1). In 
particular, upon completing their intrinsic incubation 
period ( EH ), individuals have a probability ( pbs ) of 
developing stage 1 blood infection ( Ib1H ) with other 
infections leading to skin-only infection ( I s1H ). It is 
assumed that both blood and skin-only infections 
are infectious to susceptible tsetse; however, skin-
only infections have reduced infectiousness to tsetse 
by an unknown factor (x). Unlike the baseline model 
and model with animal transmission, we also assume 
that either of these infected types of individuals can 
self-cure and that this happens at rates ωs

H and ωb
H for 

skin-only or stage 1 blood infections, respectively. We 
assume that skin-only infections which do not self-
cure become stage 1 blood infections at a rate θ . Sim-
ilarly to the model with animal transmission, there 
is no information on unconfirmed human infections 
(e.g. skin infections) in our datasets, so the fitting 
process estimates the parameters based on how well 
detected human case trends can be explained.

Whilst it should not be necessary to read all back-
ground work on the development of each of the model 
variants, we encourage readers to explore the following 

publications to understand the details of the ration-
ale behind them: baseline model [32, 33, 38, 39]; animal 
model [31]; asymptomatic model [31, 32, 34, 38].

For each variant, there are both deterministic and 
stochastic versions. Deterministic models of gHAT, 
described by systems of ordinary differential equations 
(see SI), have been predominantly used in the literature 
due to their quick computational run time and because 
they are simpler to fit to data. It has also been demon-
strated that, despite gHAT being such a low prevalence 
infection, deterministic and stochastic models of gHAT 
have very similar mean dynamic behaviour and therefore 
their ubiquitous use is not unreasonable [40, 41]. Fur-
ther work has found that fitting deterministic variants of 
gHAT models but using the analogous stochastic variant 
for sampling and projections works well to reduce com-
putational challenges but still outputs better estimates for 
elimination [42]; the main advantage in this instance is 
for the evaluation of the probability of EoT as it obviates 
the need for a proxy threshold to determine when the last 
transmission event occurs. Whilst it is not highly perti-
nent in the present study, stochastic models of gHAT 
are also particularly useful when population sizes being 
modelled are smaller than health zones – for example at 
village level [43, 44].

Fig. 1 Model diagrams Schematic for the three model variants considered in this study. Blue components form the baseline model and are 
also included in the other two model variants. The pink boxes and arrows are only found in the animal model and the green box and arrows are 
only in the asymptomatic model variant. Births, deaths and transmission pathways are not shown to aid readability. Arrows relating to disease/
infection progression are shown. The grey oval and dashed lines indicate infection classes assumed to be detectable using a traditional 
screen‑confirm‑treat approach in active screening (AS) (although some infections still may be missed due to imperfect diagnostic sensitivity). 
An alternative version showing the mathematical notation used in the model and transmission pathways is shown in SI Fig. 6
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In this study, we will use a combined approach to take 
advantage of both deterministic and stochastic model 
versions of the three model variants. Fitting of the mod-
els to data and assessment of model evidence will be per-
formed using the deterministic model, whilst forward 
projections to evaluate possible trajectories under dif-
ferent strategies and assess the probability of EoT will be 
simulated using the equivalent stochastic version, param-
eterised by the posteriors of the deterministic fit. Spe-
cifically, in this work, we are defining EoT as being the 
first year after the final transmission event occurs in the 
simulation.

Data
The WHO define risk thresholds of “high risk” as > 1 
annual case per 1000 population, “moderate risk” as 
1–10 annual cases per 10,000 population, “low risk” as 
1–10 annual cases per 100,000 population and “very low 
risk” as 1–10 annual cases per 1,000,000, all averaged for 
5 years [45]. These thresholds apply to spatially smoothed 
risk areas with 30  km radii, which do not align with 
administrative areas [4]. Although different, one can also 
look at a similar health zone-level risk measure of the 
average number of cases averaged over the last 5  years 
per 10,000 people across the health zone – this measure 
is interesting as <1 annual case per year per health zone 
does correspond with one of the country-level indicators 
for elimination as a public health problem [6]. Almost all 
health zones of the DRC were classified as < 10 annual 
cases on average per 10,000 population during 2011–
2015 with only 4 of 516 with >10 average annual cases 
per 10,000. For 2016–2020 cases fell further with only 17 
health zones having > 1 cases per 10,000 people and none 
having > 10 cases per 10,000. The health zones selected 
for this model comparison study were chosen as they rep-
resent a variety of health zone-level risk levels observed 
across the country and they also represent a range of 
present-day and historical coverages of AS activities. 
Table  2 presents summary information for each health 
zone and their geographical position in the country is 
shown in Fig. 2. It is noted that recent (mean) coverage 
of AS is correlated to risk in two different ways: firstly, 
one year’s AS is supposed to be dictated by the previous 
years’ case reporting – according to WHO guidelines, vil-
lages reporting cases within the last three  years should 
continue AS, whereas, for those with no reporting in this 
period and a further year of no case reporting (in years 
four or five), AS may be stopped [7]. Secondly, if AS is 
low then there is less chance of finding extant infections, 
so low coverage will also result in low reporting and 
therefore lower risk categorisation. We see this played 
out in the selected health zones – the two health zones 
with >1 annual case per 10,000 for 2011–2015 had higher 

mean AS, and the two health zones with <1 annual case 
per 100,000 for 2011–2015 had virtually no AS coverage 
in the last 10 years.

For each health zone, annual case data for the period 
2000–2020 was extracted from the WHO HAT Atlas 
using geolocation information (where known). The data 
were aggregated to the health zone level; however, the 
method of detection (active or passive) and staging infor-
mation (generally known from 2015) were separated. 
More information on data from each health zone can be 
found in the supplementary information including time 
series plots of the active and passive cases and the num-
ber of people tested in active screening. None of the five 
health zones had had large-scale VC implemented before 
2020; however, Bagata health zone did commence Tiny 
Target deployments in mid-2021 and it is possible that 
there were some minor effects of VC in Mosango health 
zone due to deployments along a shared river with the 
neighbouring health zone (Yasa Bonga) since mid-2015. 
These VC activities have been included in the model 
simulations – including during the fitting for Mosango, 
and during projections for 2021–2023 for Bagata (as 
described in Antillon et al. [46]).

Visualisations for case reporting in the five health zones 
over time can be found in the Supporting Information.

Model fitting and evidence
To directly compare the outcomes of the three model 
variants, we utilise the same adaptive Metropolis–Hast-
ings random walk Markov chain Monte Carlo (MCMC) 
methodology [47] to fit each model variant to the same 
longitudinal case data (2000–2020) for five health zones 
of the DRC (see Table 2). This approach finds parameteri-
sations of the model which align the model outputs with 
the number of active and passive case detections in the 
datasets. Where known, we use staged case data (match-
ing stage 1, stage 2 or unknown stage data to correspond-
ing model outputs).

For the baseline model, we fit a total of 12 parameters 
which are believed to vary geographically. These first are 
the relative bites taken on high-risk humans compared 
with low-risk humans, the proportion of people in the 
low-risk group, the specificity of the historical AS algo-
rithm and the basic reproduction number ( R0 ). By fitting 
R0 , which is an epidemiological value representing the 
transmissibility of the pathogen in each region, we avoid 
the need to directly fit the number of tsetse per person 
but we can then arrive at a model estimate of this value. 
The other eight parameters correspond to the rates of 
detection in PS in stage 1 and stage 2 including improve-
ments over time and underreporting. In the animal 
model, all the parameters in the baseline model are fit-
ted plus two additional ones representing the proportion 
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of blood meals taken on animals which can acquire and 
transmit the parasite and the relative size of this animal 
population. In the asymptomatic model, again all 12 
parameters fitted in the baseline model are fitted, and 
an additional five parameters are included represent-
ing various factors of skin-only infection and self-cure of 
asymptomatic. We picked our prior parameter distribu-
tions for all these parameters based on plausible biologi-
cal ranges with sufficient breadth to ensure we span the 
best-fit parameters for each region but most weight on 
values believed to be highly likely. See the SI for the full 
details and parameter prior distributions. Full details of 
the MCMC procedure are given in the SI.

For all the baseline model fitted parameters and the 
animal model parameters, we believe these could be 
geographically variable depending on the local context 
(tsetse habitat, animal presence and species, the strength 

of the PS system, and human behaviour in terms of AS 
participation and intersection with tsetse habitat). This 
means we can fit both the baseline and animal models 
independently to each region as we do not expect any 
correlation between health zones. Conversely, the five 
extra asymptomatic model parameters are understood 
to be biologically innate – dependent on the host–path-
ogen–tsetse biology – rather than varying across space. 
This means that if fitting in one health zone provides us 
with good information about these parameters we can 
feed this through into our fits for other health zones.

Therefore, with the asymptomatic model, we follow 
an additional step called sequential Bayesian updating 
(SBU) after the initial fitting so that we can share infor-
mation from health zones that are more informative for 
this model with health zones with less information. This 
is the first time this approach has been used to fit gHAT 

Fig. 2 Locations of the health zones considered in this study. The whole of the Democratic Republic of Congo (DRC) is shown in grey 
with coordination boundaries for gambiense human African trypanosomiasis (gHAT) control shown in white. The five health zones under analysis 
in this study are shown as coloured regions with a black border and the names of the coordinations they are in are labelled
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models and provides a way to make the most of data from 
across the health zones to assess asymptomatic transmis-
sion. Ideally, all health zones would be considered jointly 
with some form of spatial structure. However, this would 
be very computationally demanding when performed 
across the whole of the DRC so SBU was chosen as a 
more feasible option.

In this approach, we first assess the asymptomatic 
model fits for the five health zones and rank the health 
zones in order of how much the asymptomatic param-
eter posterior distributions have shifted from their pri-
ors. We take the health zone where we have learnt the 
most information (have the highest deviation – measured 
by the total Kullback–Liebler divergence ( DKL ) across 
the five additional asymptomatic model parameters and 
reorder this to be our first health zone. We then rank the 
other four health zones from most to least information 
learnt using DKL . After re-ordering we perform refitting. 
For the health zone with the most information, we can 
keep the original model fit; however, starting from the 
second highest ranked health zone, we first update the 
five asymptomatic parameter priors to be a multivariate 
parametric approximation of the posterior parameter 
distributions from the previous model fit, using a Gauss-
ian mixture model (GMM). Each of the five asympto-
matic model-specific parameters was transformed to a 
(−∞,+∞) scale and then to have a mean of zero and a 
standard deviation of one. The GMM was fitted multiple 
times to the transformed parameters using the MATLAB 
routine fitgmdist with different numbers of Gaussian 
distributions and Akaike’s Information Criterion (AIC) 
was used to select the final number of components in 
the GMM. After refitting the second-ranked health zone 
using the updated prior we take the new posterior and 
use this in turn to provide the new prior for the third-
ranked health zone. This process of prior updating and 
refitting continues until we have an updated fit for the 
lowest-ranked health zone. A graphical illustration of this 
process can be found in Fig. 3.

In the MCMC analysis of the baseline and animal trans-
mission models, we ran two chains resulting in 2000 sets 
of posterior samples. To facilitate the sequential Bayesian 
updating, we ran five MCMC chains in the asymptomatic 
model analyses to give 5000 sets of posterior samples, 
improving the chances of sampling in the extreme tails of 
the parameter distributions and consequently incorpo-
rating this information into our multivariate priors.

Following the fitting of all three model variants to the 
five health zones we use the model evidence, or mar-
ginal likelihood, to compare the fit of the models. Impor-
tance sampled estimates of the model evidence [48] 
were generated, using a defence mixture [49] consisting 
of a weighted combination of a multivariate Gaussian 

mixture model fitted to all of the posterior samples 
(weight =  0.95) and the prior distributions of the fitted 
parameters (weight = 0.05) [31]. To create the weighted 
ensemble model in each health zone, samples were ran-
domly selected from the individual model posterior sam-
ples in proportion to their relative model evidence to give 
an ensemble of 2000 posterior parameter samples. All 
of the projected samples associated with each of these 
posteriors from the individual model runs, ten for each 
posterior set, were taken to produce the ensembled pro-
jection results, i.e. 20,000 ensemble realisations.

Model projections
To assess the impact of possible cryptic transmission on 
future case reporting and elimination, we utilise the pos-
teriors from fitting the different model variants and pro-
ject forwards using the stochastic model version.

Many different strategies may be considered to control 
gHAT, comprising passive screening in fixed health facili-
ties; AS at different levels of coverage; the introduction of 
safer, single-dose drugs; and the use of VC. Here we will 

A
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Fig. 3 An illustration of the sequential Bayesian updating method 
used to improve the estimation of the five asymptomatic model 
parameters. In this example, locations A, B and C have been analysed 
to estimate a single parameter. In the first round of analyses, the same 
prior (purple lines) was used in each location. Following this analysis, 
the locations were ranked in terms of how much the posterior 
distribution (orange lines) diverged from the prior distribution—the 
greater the divergence the more information was in the data—such 
that the order for re‑evaluation was B then A then C. Location B did 
not require re‑analysis. Location A was analysed with the posterior 
for location B acting as the prior. The resulting posterior from location 
A was then used as the prior in a re‑analysis of location C. We can see 
that the posterior parameter distributions for locations A and C are 
now far more like the one for the informative location B
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consider only a few strategies, all of which assume that 
present-day passive screening continues to operate at the 
same level (see Table 3).

Under each model variant, AS is assumed to be con-
ducted by mobile teams which attend villages and screen 
a certain number of people each year. All of our models 
have a high-/low-risk structure and assume that only low-
risk people participate in AS. A key difference between 
the strategies for AS is which algorithm is used. In Mea-
nAS and MeanAS+VC, the current algorithm based on 
an initial screening test (CATT or RDT) followed by 
parasite confirmation is simulated. This algorithm is 
assumed to have a sensitivity of 91% and the specificity is 
fitted. Whilst this sensitivity is relatively high, some true 
infections are likely to get missed from AS, especially if 
only the low-risk group is repeatedly screened each year. 
We assume that 100% specificity is possible to achieve 
with additional measures in place including video confir-
mation of the parasite via computer tablets which can be 
validated by others. We assume this happened in 2018 in 
the Bandundu Nord and Sud coordinations based on the 
historical availability of computer tablets for this activity 
and would happen elsewhere when case detections are 
very low (see SI).

The S&T algorithm simulates the treatment of all indi-
viduals presenting to screening with a positive screening 
test (CATT or RDT). At present this is not possible; how-
ever, it is hoped that the introduction of a single-dose 
oral cure, acoziborole, could make this option feasible in 
the future. In these simulations, we assume that removing 
the need for a confirmation test before treatment would 
lead to higher sensitivity (95%) but sacrifice specificity 
(99.5%). This is expected to result in some “over-treat-
ment” (treatment of false positives) but has the potential 
to reduce transmission more quickly by treating more of 
the truly infected individuals. We assume that post hoc 
laboratory testing via trypanolysis (or similar) would be 
performed after serosuspects are treated and that only 
laboratory-confirmed infections would count towards 
case reporting – this assumption around post hoc con-
firmation has no direct impact on transmission in the 
model; however, could make a large difference in number 
of “cases” reported. We also assume that those serosus-
pects (who test CATT or RDT positive) but with non-
detectable blood parasiteamia would be equally likely to 
be confirmed as cases using the highly specific immune 
trypanolysis as those with detectable blood infections.

Under the asymptomatic model, the MeanS&T algo-
rithm is particularly appealing as it has the potential to 
detect and enable treatment of skin-only infection where 
there is no detectable blood parasitaemia [50]. Under the 
standard AS algorithm, only those with blood infections 
have a chance of being diagnosed and treated due to the 

parasite confirmation criterion. The asymptomatic model 
still has a high-/low-risk structure so MeanS&T cannot 
directly combat high-risk individuals not presenting to 
screening.

Infected people in high-risk groups are assumed to be 
detected only through passive screening based on self-
presentation after symptoms develop and are severe 
enough to seek medical attention. In all models, we 
assume that late-stage infections (stage 2) are more likely 
to be detected than early stage infections and the rela-
tive detection rate from early and late-stage infections 
is fitted to the human case data. We assume that passive 
case detection rates remain the same even if acoziborole 
becomes available. Under the asymptomatic model, we 
assume that skin-only infections have no discernible 
symptoms that could result in a gHAT diagnosis and 
treatment.

In this study, we simulate the introduction of VC 
through Tiny Targets for strategy MeanAS+VC. We 
assume that Tiny Targets are deployed twice a year and 
achieve an 80% reduction in total tsetse population after 
1 year, which is slightly more conservative compared to 
previous reductions observed in the field in several loca-
tions (e.g. > 85% in Yasa Bonga health zone in the DRC 
[51], > 90% in Uganda [52], > 99% in the Mandoul focus 
of Chad [32], > 95% in Côte d’Ivoire [53]) and comparable 
to the reduction observed in the Boffa focus of Guinea 
[54]. Further detail on the model formulation used is pro-
vided in the Supplementary Information.

For the period 2021–2023 for which we do not have 
data but has already occurred, we simulate the continua-
tion of the current strategy in all simulations.

By drawing samples from the posterior parameter set 
for each health zone and for each model variant, we run 
each projection strategy from 2024 to 2053. We run the 
model ten times for each posterior sample, giving a total 
of 20,000 realisations for the baseline and animal trans-
mission models and 50,000 realisations for the asymp-
tomatic human transmission model, and therefore we 
incorporate both parameter and stochastic (chance) 
uncertainty in our predictions.

We track the number of new human infections occur-
ring each year in the model and use this to assess when 
EoT has been met for each iteration. We say that EoT has 
been met when 10 consecutive years with no new human 
infections are produced in the iteration and so can assess 
the probability of EoT up until 2040. This method was 
previously used to assess the likelihood that EoT had 
been or would be met in three health zones of the Equa-
teur Nord coordination (Budjala, Bominenge and Mbaya) 
using the baseline model elsewhere [55].

Across all three models and all five health zones 
under the continuation strategy, we found that 99.95% 
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of simulations which had the last year of transmission 
between 2000 and 2040 achieved elimination of infection 
within 13  years of reaching EoT. This being all realisa-
tions under the baseline and animal models, and 99.91% 
under the asymptomatic model. For simulations of the 
asymptomatic model that achieved elimination of infec-
tion under the continuation strategy, the average time 
between the last year of transmission and elimination 
of infection was 4.03  years (95% PI: 0–14  years), with 
the delay being less than or equal to 13  years in 97.4% 
of realisations. For the baseline and animal models, the 
means were 1.50 (95% PI: 0–4 years) and 1.33 years (95% 
PI: 0–4  years). Therefore, we believe that using the last 
year of transmission in our simulations as the EoT year 
is reasonable even for EoT in 2040. This approach is a lit-
tle different to the modelled cut-off for EoT presented in 
Castano et al. [41] which used the first year after which 
there were five consecutive years of no transmission as 

the metric of EoT in the simulations; this approach in 
Castano et al. will slightly overestimate EoT probabilities. 
The approach in the present study will give more accu-
rate probabilities, especially for the earlier years but there 
is a very marginal bias in the later years towards overesti-
mated EoT probabilities.

Results
Model fitting
The model captures the different trends in case reporting 
well across the 21 years despite the qualitative differences 
between health zones (see Fig. 4 and SI Figs. 13–17). All 
model variant fits to the data look very similar and, visu-
ally, there are no obviously better or worse fits for each 
health zone. The main difference we see is the difference 
in the number of new annual human infections with 
slightly higher credible intervals for the asymptomatic 
model compared with the baseline model or model with 

Fig. 4 Comparison of fits in Mosango. The deterministic model was used to perform fitting and sampling was conducted by using the stochastic 
model with the fitted posterior distributions. Blue, pink and green box and whisker plots show the baseline model, model with animal transmission 
and asymptomatic model fits respectively. The orange boxes represent the ensemble model outputs. The central line of each box is the median, 
the box is the 50% credible interval (CI) and the whiskers show the 95% CI. Case data are shown as a black line. New infections are estimated 
through the model fit, however, there is no way to directly observe these so there are no corresponding observational data
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animal transmission. We use the relative model evidence 
to assess support for the different models, despite their 
apparent similarity. Figure 5 shows the results of this for 
the five different health zones, and the values are pre-
sented in Table E of the Supplementary Information. We 
notice that (a) all models have < 13% support for the ani-
mal model; (b) Mosango, Budjala, Bagata and Mbaya all 
have somewhat similar support for the asymptomatic and 
baseline models; and (c) Bominenge, the most informa-
tive health zone for the asymptomatic model based on 
DKL , has almost all of its support for the baseline model. 
Despite the inconclusive nature of this model evidence 
analysis, by looking at the five asymptomatic model-
specific parameter posteriors for each health zone (see SI 
Figs. 8–12) we notice that some of them pull away from 
the prior in the direction that means less contribution 
from asymptomatics to transmission [(i.e.  lower relative 
infectiousness (x), higher probability of developing blood 
infection ( pbs ) and higher rate of self-cure from skin-only 
infection ( ωs

H)].
In our initial fit of the asymptomatic model, we found 

that, whilst in some health zones the additional five 

asymptomatic posteriors pulled away from the priors in a 
direction indicating smaller contributions from asympto-
matics to transmission than our initial belief (lower rela-
tive transmissibility, quicker self-cure rates and a higher 
probability of initially being a blood-detectable infection), 
for other health zones the asymptomatic model parame-
ter posteriors followed the priors more closely – meaning 
little information had been learnt about them during fit-
ting (see SI Fig. 7). By ranking the health zones based on 
the total Kullback–Liebler divergence of posterior distri-
butions from prior distributions for the five parameters 
specific to the asymptomatic model (see SI Table C) and 
then refitting using SBU we passed some of the infor-
mation present in Bominenge’s data, and sequentially in 
other health zones, down to the least informative health 
zones (Bagata and Mbaya) and this meant that the SBU 
posteriors for Bagata and Mbaya no longer followed the 
original prior closely, see SI Figs. 8–13.

There was little information in any of the datasets on 
the transition rate from skin infections to blood infec-
tions ( θ ) and the self-curing rate in blood infections ( ωb

H ) 
with the posterior distributions for these parameters 
very closely following the prior distributions in all health 
zones and all analyses, before and with SBU.

SI Table D gives our estimated posterior parameters 
after SBU. In summary, the posterior median of θ was 
around 3.5×10−5 days−1 and, combined with the esti-
mate for ωs

H of 8.2×10−4 days−1 , we estimated less than 
5% of skin-only infections progressed to blood infec-
tions rather than self-curing. The posterior median of 
ωb
H was around 5.4×10−6 days−1 and, combined with our 

fixed estimate of stage 1 progression rate φ of 1.9×10−3 
days−1 , we estimated that almost all (99.7%) of stage 1 
blood infections progressed to stage 2 rather than self-
curing. We estimated the median of x to be about 0.15 
meaning skin-only infections were estimated to be about 
seven times less infective than blood infections to tsetse, 
and pbs was about 0.9, therefore, only around one in ten 
infections were initially skin-only infections rather than 
blood infections. In conclusion, skin-only infections were 
not estimated to be the initial infectious phase for most 
people, they were not very infectious, and many self-cure 
without becoming blood infections. Conversely, most 
early-stage blood infections were estimated to progress 
to more severe disease without treatment.

Model evidence and ensemble model outputs
The model evidence for each model was converted into 
relative model evidence values, such that the within-
health zone sum of the model evidence was 100, and then 
used principally in two ways: to compare the statistical 
support for each model in each health zone and to pro-
duce an ensemble model. The calculation of the relative 

Fig. 5 Ternary plot of relative evidence from the three models. 
The model evidence for the baseline model and the models 
including animals or asymptomatic human infections contributing 
to transmission are scaled such that the sum is 100%. These three 
values are transformed and plotted on an equilateral triangle 
with edges forming the axis for each model. To read off the relative 
support for one model variant pick the axis for that model 
and trace the corresponding coloured line back to the point; e.g. for 
Bominenge (circle), there is 4% support for the animal model (this 
is sitting on the animal axis), 0% support for the asymptomatic model 
and 96% support for the baseline model. For Bagata (cross), there 
are 12%, 49% and 38% for the animal, asymptomatic and baseline 
models, respectively
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model evidence assumes equal prior weight on each of 
the three models, in which case our ensemble model is 
a Bayesian model average. The relative model evidence 
is presented as a ternary plot in Fig. 5. Alternatively, the 
log model evidence can be summed across health zones 
within a model before normalising to give an across-
health zone relative posterior probability of each model. 
These values are 99.9%, 0.002% and 0.126% for the base-
line, animal and asymptomatic human transmission 
models. Across health zones, the animal model has at 
most 12.2% relative evidence. Bagata has the most sup-
port for animals amongst all health zones which could be 
because our posterior for the proportion of feeding on 
animals that can acquire and transmit the parasite ( fA ) is 
a little higher than estimates for this parameter in other 
health zones. Bagata’s higher level of recent cases com-
pared with the other regions may explain why this esti-
mate was higher.

Pairwise comparisons of the two models with cryptic 
transmission to the baseline model were performed using 
Bayes factors and categorising them using statistical sup-
port via a widely accepted scale [56]. The Bayes factor 
for each cryptic transmission model was calculated by 
dividing the model evidence for the model of interest by 
the model evidence for the baseline model. The catego-
risation was extended to reflect that a reciprocal Bayes 
factor could also be considered. The categorisation of 
the strength of statistical support for the models on the 
log10 scale was: Weak = 0 < log10 BF ≤ 0.5 , Substantial 
= 0.5 < log10 BF ≤ 1 , Strong = 1 < log10 BF ≤ 1.5 , Very 
strong = 1.5 < log10 BF ≤ 2 , Decisive = log10 BF > 2 . In 
these five health zones, there is no substantial support 
for the models with either animal transmission or asymp-
tomatic human transmission over the baseline model 
(Table 1).

Given the similarity of the individual model fits to the 
historical data, the ensemble model’s case reporting dur-
ing the fitted period is also very similar to the individual 
model outcomes whereas the estimated new infections 
lie between the baseline and asymptomatic model in 
most health zones (see Fig. 4 and SI Figs. 13–17).

Model projections under a continuation strategy (Mean AS)
Next, we used our model projections under a continua-
tion strategy (MeanAS) to assess how the use of the dif-
ferent model variants affects the model predictions. 
Comparing the case reporting of the three model variants 
for 2021–2035 from the stochastic model (see Fig. 6 and 
SI Figs 18–32) shows that they all overlap; however, there 
are some noticeable differences for the three models.

The differences in 2021–2035 are very small in all 
health zones, although Bagata and Mosango are expected 
to have marginally higher case reporting under the 

animal and asymptomatic model variants. The differ-
ences in estimated new human infections are also most 
visible in Bagata and Mosango, but this is not so clear in 
the other health zones.

It is clear that for Mosango, the baseline model pro-
duced the most optimistic probability of EoT by 2030 
(96%), followed by the model with animal transmission 
(90%) and finally the asymptomatic model is the least 
optimistic (84%) (Fig.  7). Bominenge and Budjala also 
have the asymptomatic model as the most pessimistic but 
with no difference between the baseline and animal mod-
els, whereas Bagata and Mbaya have the animal model 
as being more pessimistic than the asymptomatic model 
(see SI Fig. 33).

Unsurprisingly, Bagata, which is one of the health 
zones classified as high risk based on 2011–2015 report-
ing, has lower probabilities of EoT (all model variants are 
under 93% by 2030 for the MeanAS strategy). Mosango 
(the other high-risk health zone) has around 96% prob-
ability of EoT by 2030 under the baseline model, whereas 
the health zones classified as moderate or low risk for 
2011–2015 all have a high probability of EoT (around 
99%) under the baseline model for the same MeanAS 
strategy.

Model projections under other strategies
In line with previously published work, the addition 
of VC through relatively rapid and high levels of tsetse 
reduction has a dramatic impact in turn on new infec-
tions to humans (Fig. 7 and SI Fig. 33). In all model vari-
ants, we predict that the simulated 80% reduction of 
tsetse would quickly curtail transmission via all possible 

Table 1 Statistical support and Bayes factors ( log10BF ) for 
pairwise comparisons of models with cryptic transmission and 
the baseline model

The Bayes factor was the evidence for the cryptic transmission model divided 
by the evidence for the baseline model, therefore negative values on the log10 
scale favour the baseline model. The categorisation for the statistical support is 
presented as “strength of support, favoured model”

Health zone Cryptic transmission model

Baseline versus animal Baseline versus 
asymptomatic

log10BF Support log10BF Support

Bominenge −1.41 Strong, baseline −2.87 Decisive, baseline

Mosango −0.81 Substantial, 
baseline

0.01 Weak, asympto‑
matic

Budjala −1.32 Strong, baseline −0.19 Weak, baseline

Bagata −0.50 Weak, baseline 0.11 Weak, asympto‑
matic

Mbaya −0.70 Substantial, 
baseline

0.05 Weak, asympto‑
matic
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hosts, including putative non-human animals and/or 
asymptomatic humans. This intense intervention may 
not be needed in all settings; however, it may prove a 
powerful tool in regions of persistent transmission, what-
ever the cause.

This is the first time the Warwick gHAT model variants 
have been used to predict the impact of an S&T strategy 
on infection dynamics. Figure 7 shows how the outcome 
may be more noticeable for the asymptomatic model 
compared with the other variants. In the baseline model 
and the model with animal transmission, MeanS&T does 
little to the projected probability of EoT. The main dif-
ference between MeanAS and MeanS&T in those mod-
els is the slight improvement to AS algorithm sensitivity 
(from 91% to 95%); however, the model assumption that 
high-risk people still do not present in AS overwhelms 
this small improvement. In contrast, in the asymptomatic 
model, the change to S&T also allows for the treatment 
of infections which are not detectable in the blood and 
would not have met the confirmation threshold in cur-
rent AS algorithms. For Bominenge, Budjala and Mbaya, 
it is predicted that there is already a high probability 
that the health zone has achieved EoT in the simulations 

when S&T begins in 2028 so we do not see an impact of 
this novel screening approach (see SI Fig. 33).

Discussion
In this study, we have fitted a gHAT model with asymp-
tomatic transmission to data from the DRC for the first 
time and compared it with models without asymptomatic 
and with or without animal transmission. Using human 
case data from five health zones of the DRC from 2000 to 
2020, we have concluded that there is minimal statistical 
evidence for animal transmission in these locations; how-
ever, when we create our ensemble model for these five 
health zones, there is between 0% (in Bominenge) and 
49% (in Bagata) of these samples selected from the model 
with asymptomatic transmission. By using sequential 
Bayesian updating to learn information about asymp-
tomatic parameters between different health zones, our 
results indicate that whilst the model results with asymp-
tomatics are more pessimistic about the elimination of 
transmission compared with the baseline model with 
continued medical strategies, the probability of elimina-
tion by 2030 in each location is only a little lower.

Table 2 Summary information for the example health zones used in this modelling analysis

 The percentages of active screening (AS) coverage are presented here as the mean number out of the health zone population size for the corresponding years

Health zone Coordination Estimated 
population size 
(2018)

Mean reported cases 
per 10,000 (2011–2015)

Mean AS coverage per 
year (2011–2015) (%)

Mean reported cases 
per 10,000 (2016–2020)

Mean AS coverage 
per year (2016–2020) 
(%)

Bagata Bandundu Nord 181,000 41.9 31.4 8.3 30.9

Bominenge Equateur Nord 171,000 1.85 3.6 0.6 6.9

Budjala Equateur Nord 142,000 0.46 1.4 0.2 0.3

Mbaya Equateur Nord 73,000 0.45 0.1 0 0

Mosango Bandundu Sud 133,000 13.8 12.7 3.0 4.7

Table 3 Strategies considered for forward projections (2024–2050)

Our default strategy, MeanAS, represents a “continuation” strategy based on recent activity in the health zone

AS: active screening; S&T: screen-and-treat; VC: vector control
a Default strategy
b The active screening diagnostic algorithm specificity is fitted to 2000–2020 data, and is assumed to increase to 100% from 2015 in Mosango, 2018 in Bagata and 
2024 in the other health zones simulated.
c  Vector control began in Bagata in mid-2021 and Mosango had low-level inadvertent benefit from vector control along shared rivers with a neighbouring health 
zone from mid-2015. We assume this stops from 2024 in the MeanAS and MeanS&T strategies

Strategy name Passive screening AS coverage AS diagnostic algorithm Vector  controlc

MeanASa Continues at present levels Mean of 2016–2020 Parasite confirmation needed for treatment. Assumed 
91% sensitivity and 100%  specificityb

None

MeanAS+VC Continues at present levels Mean of 2016–2020 Parasite confirmation needed for treatment. Assumed 
91% sensitivity and 100%  specificityb

80% tsetse reduction 
after 1 year starting 
in 2024

MeanS&T Continues at present levels Mean of 2016–2020 Treatment may be given with positive RDT from 2028. This 
is assumed to increase the algorithm sensitivity to 95% 
and decrease specificity to 99.5%.

None
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Fig. 6 Projected dynamics in Mosango health zone in Bandundu Sud coordination under a mean active screening (AS) strategy. Comparing 
three model variants using the stochastic model including projections for 2021–2035 under a MeanAS strategy (using AS coverage for Mosango 
from 2016–2020). Blue, pink, green and orange box and whisker plots show the baseline model, model with animal transmission, asymptomatic 
model and ensemble model projections, respectively. The central line of each box is the median, the box is the 50% prediction interval (PI) 
and the whiskers show the 95% PI

Fig. 7 Comparing the probability of elimination of transmission (EoT) in Mosango health zone under each model variant and three different 
strategies. The blue, pink and green curves represent the model‑estimated probability of EoT by each year, calculated by taking the number 
of realisations where there are no new infections to humans in or after that year until the end of the simulation and diving by the total number 
of realisations (20,000 for the baseline and animal models and 50,000 for the asymptomatic model). The ensemble results are given by the orange 
curve which is computed as the weighted average of the probability of EoT from the individual model variants. As per Table 3, for the second 
strategy with vector control (VC), we assume this novel intervention begins in 2024, and for the third strategy using screen‑and‑treat (S & T) we 
assume this novel intervention begins in 2028
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The results are, of course, dependent on both our 
choice of health zones and our small set of models (even 
within the scope of this study we rejected the alterna-
tive model in which the asymptomatic parameters vary 
between locations). There may be alternative models that 
better represent disease transmission, and the results 
may vary in other locations (the current result is heavily 
influenced by the outcome in Bominenge health zone) if 
there are informative locations that give more support to 
the animal or symptomatic human transmission models.

The ensemble model represents appropriately weighted 
results taking account of uncertainty about which model 
to favour appropriately. The use of an ensemble model 
here makes our outcomes slightly more pessimistic com-
pared with the baseline model. Fortunately, this appears 
to suggest the worst-case scenario of the asymptomatic 
model having a lower endemic equilibrium but being 
prevented from reaching zero cases, discussed in previ-
ous modelling work by Aliee et al. [34] through a model 
sensitivity analysis, does not appear to be the case in 
these regions of the DRC and the impact of asympto-
matic transmission is to slightly delay elimination rather 
than prevent it. Furthermore, as we believe the asympto-
matic model parameters will be the same across the DRC 
since they relate to the parasite–human interaction and 
are not dependent on the local geography, this model-
ling indicates that we should expect qualitatively similar 
results across health zones for the DRC with the asymp-
tomatic model if we can assume that the most informa-
tive health zones will continue to be those that do not 
favour the asymptomatic model.

In future work, we suggest that this model could be 
used for fitting in other locations in the DRC and for 
other endemic countries to capture this possible hin-
drance to interventions happening across these settings 
targeted at elimination. It could be that human–parasite 
interactions in West Africa are sufficiently different that 
these relatively optimistic results will not extrapolate to 
countries such as Guinea or Côte d’Ivoire. More region-
specific data on asymptomatic and skin infections like 
that collected in Guinea [50] could improve our priors on 
some fitted parameters and would supplement routinely 
collected case data.

Data
As gHAT is a disease with such low levels of case report-
ing in 2023 and cases are spread across numerous foci, 
one challenge with data analysis is the effect of statisti-
cal noise. Despite this noise, there are several ways in 
which the gHAT data from the WHO HAT Atlas over-
come barriers so that we are able to meaningfully analyse 
case reporting. Firstly gHAT reporting is mandatory; 
unlike most diseases such as malaria, any treated case 

will be reported by the national programme to the WHO. 
Secondly, the Atlas contains two different types of case 
reporting: active screening provides not only cases but 
the number of people screened to find cases giving a 
strong prevalence measure, conversely passive screening 
provides case incidence data which can be more suscep-
tible to noise but is less variable in the number of peo-
ple tested between different years. Thirdly, in this study, 
we had access to 21 years of case reporting meaning that 
our analysis is based on the complete trends in the data 
starting at much higher prevalence and therefore noise 
becomes statistically much easier to deal with.

In the present study, we have selected health zones 
where we feel that the data is amongst the more robust 
data for HAT and we do not assess locations which have 
suffered from major activity interruptions or inaccessibil-
ity, such as those in the Bas Uélé region of the country 
where past activities were conducted by Médecins Sans 
Frontières using a different algorithm [57]. The striking 
declines in case reporting in all these five analysed health 
zones between 2000 and 2020 are what drives the conclu-
sion that cryptic infections are unlikely to substantially 
hinder elimination.

Model assumptions
The model presented here was fitted to health zone-level 
data, where we assumed independence between health 
zones. Whilst there could be some movement of people 
in and out of health zones and therefore cross-infection 
between different locations, we believe this effect to be 
very small. gHAT is highly focal in nature and the para-
site is able to persist at extremely low prevalence in small 
geographical areas due to the long infection durations 
which can occur [58]. Previously a small between-village 
importation rate was estimated for gHAT in the DRC 
[43] – which could be explained by the relatively small 
scale of tsetse movement [59] – and we would expect 
transmission of the parasite to be less likely over larger 
spatial scales. Furthermore, in this analysis, the selected 
health zones are not geographically contiguous and are 
spread across two large provinces. Ideally, this model 
could be used at the health area level (around 10,000 
people) to provide more targeted predictions on a simi-
lar scale to intervention planning by the national pro-
gramme. Recent work has demonstrated that the baseline 
model framework presented here would be suitable for 
use with health area fitting [42].

It is noted that in the previous model fitting and com-
parison of the baseline and animal transmission mod-
els (but with fewer years of data), Mbaya health zone 
had strong support for animal transmission and Bagata 
had weak support for animal transmission. Budjala, 
Bominenge and Mosango had substantial or strong 
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support for the model without animal transmission [31]. 
It is unclear whether previous support for the animal 
model variant will correlate with support for the asymp-
tomatic model variant; however, it is possible that in 
these health zones case reporting has not fallen as much 
as would be expected and one explanation is cryptic 
transmission by either undetected (or even undetectable) 
human infections or by animals.

The present study does not aim to make specific pol-
icy recommendations, but to explore structural, param-
eter and stochastic uncertainty for a variety of settings 
in the highest-burden country for gHAT [see SI Table F 
for details on the ways this research meets the Policy-
Relevant Items for reporting Models in Epidemiology of 
Neglected Tropical Diseases (NTD-PRIME) [60]]. Future 
strategies are selected for illustration of the general 
potential impact on reporting and new infections. To use 
this framework for guiding policy, the fitting would need 
to be performed for all health zones (or health areas) 
using the latest available data.

Interventions
We have assumed that S&T will become possible from 
2028; however, in practice, we do not yet know if and 
when acoziborole will be able to be rolled out in such a 
manner. Our results here are illustrative of the type of 
effect we might expect to see across different regions 
with this type of intervention. Even after acoziborole is 
rolled out, it is possible that some groups in the popula-
tion (e.g.  infants and pregnant people) may still require 
parasitological confirmation before treatment. Con-
versely, we did not explicitly simulate S&T in passive 
screening in this analysis, but this intervention could 
reduce attribution between initial screening and receiv-
ing treatment and, consequently, it could improve passive 
detection rates.

As routine data on skin infections is not collected, we 
have a large amount of uncertainty about how good the 
CATT and RDTs are at detecting skin infections (sensi-
tivity), although data from Guinea suggest there is very 
good correspondence between RDT  positivity and con-
firmed skin infections [50]. More data on this link could 
improve our assumptions which are currently that the 
screening test sensitivity is the same for both skin-only 
and blood-detectable infections.

VC interventions target transmission to and from all 
host types and could be particularly effective at reduc-
ing transmission if there are animal contributions or 
asymptomatic human infections. However, deploy-
ment of widespread VC is infeasible over a short time 
period. Health zones such as Bagata could conceivably 
add VC to their strategy as other nearby health zones 
have recently put this in place, but the extra resources 

(both financial and for trained personnel) are non-
negligible for this kind of scale-up. Currently, there are 
no health zones in Equateur Nord coordination prov-
ince with large-scale VC in place. It may not represent 
a cost-effective use of resources to deploy Tiny Tar-
gets in very low-burden settings in terms of $/DALY  
given the opportunity costs (i.e.  the DALYs that could 
be averted by spending on other higher-burden health 
zones or other diseases) [61]. As with many diseases 
at the end game, pushing to zero is likely to represent 
fairly large costs for minimal DALY reduction, but has 
the advantage of being able to (eventually) scale back 
programmes in the long term. The cost-effectiveness 
of EoT is a complex issue [62]. Recently the Food and 
Agriculture Organization of the United Nations (FAO) 
and WHO convened an expert meeting on VC against 
gHAT and concluded that more criteria and approaches 
are needed to prioritise regions for VC [63]; we hope 
that the present study and other modelling and health 
economic analyses can support this aim through quan-
tification of benefits and costs in different locations.

In the present study, we have simulated “continue for-
ever” strategies but we will need a cessation of vertical 
interventions at some point – particularly we need a con-
firmation method if switching to S&T strategy as oth-
erwise we will have false positive reporting forever with 
high screening coverage. Our group’s other work, which 
is designed to support specific decision making, does fac-
tor in cessation [46, 61]; however, this was not the focus 
of this analysis.

Conclusions
Whilst recent evidence suggests that some people can 
harbour gambiense trypanosomes in the skin and have 
undetectable blood parasitemia, the modelling work 
presented here suggests that such infections do not play 
a large role in transmission, if any. We cannot rule out 
some level of asymptomatic transmission but we expect 
the impact of this on elimination targets to be relatively 
small. Likewise, there is some small predicted delay to 
elimination if we simulate animal transmission in the 
model; however, in these five health zones of the DRC, it 
appears relatively unlikely that non-human animals are 
contributing to transmission. If there is some asympto-
matic transmission, a screen-and-treat strategy with a 
safer new drug would be expected to be more beneficial 
compared with if there is no asymptomatic transmission. 
For infections arising from asymptomatics, non-human 
animals or people not participating in screening, vec-
tor control could help to reduce transmission quickly 
although it should be coupled with suitable detection and 
treatment and will not be necessary in all settings.
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