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Abstract 

Background Eave spaces are major entry points through which malaria vectors enter houses. Interventions that tar-
get mosquitoes at the eaves have recently been developed. However, most of these interventions are based on insec-
ticides for which resistance has been reported. Here we evaluated the efficacy of mosquito electrocuting eave 
tubes (MEETs) against Anopheles gambiae sensu stricto (An. gambiae s.s.) and Anopheles funestus s.s. under semi-field 
conditions.

Methods Experiments were conducted in two semi-field chambers, each containing one experimental hut. Six elec-
trocuting eave tubes were installed in each hut to assess their impact on laboratory-reared An. gambiae s.s. and An. 
funestus s.s.. Each species was assessed separately over 10 nights by releasing 200 unfed females per night into each 
chamber. One volunteer slept in each hut from 7 p.m. to 5 a.m. Mosquitoes were collected indoors and outdoors 
using mouth and Prokopack aspirators.

Results The placement of MEETs significantly reduced the nightly An. gambiae s.s. indoor and outdoor biting, 
by 21.1% and 37.4%, respectively. Indoor-biting An. funestus s.s. were reduced by 87.5% while outdoor-biting numbers 
of An. funestus s.s. declined by 10.4%.

Conclusions MEETs represent a promising tool for controlling mosquitoes at the point of house entry. Further valida-
tion of their potential under natural field conditions is necessary. Several advantages over insecticide-based eave 
tubes are indicated and discussed in this article.
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Background
Malaria remains a major public health concern, with 
about 249 million reported cases of malaria and 
608,000 deaths due to this disease in 2022 [1]. The bur-
den is disproportionately higher in sub-Saharan Africa 
where about 94% and 95% of all global cases and deaths 
occurred in 2022, respectively [1]. Despite the pivotal 
role played by vector control measures such as insecti-
cide-treated nets (ITNs) and indoor residual spraying 
(IRS) in reducing malaria cases and deaths [2], emerg-
ing challenges such as insecticide resistance and shifts in 
mosquito biting behaviour threaten the efficacy of these 
interventions [3–6]. The slow-down in the gains in recent 
years [1] suggests that even with these tools, malaria 
eradication is unlikely.

In response to the limitations of current vector control 
strategies, there is an urgent need for innovative and sus-
tainable approaches to malaria prevention. Developing 
interventions that are not only effective against mosquito 
vectors but also address the challenges of conventional 
methods is essential for long-term success in malaria 
control and ultimately the elimination of malaria [7, 8].

House improvement has been demonstrated to offer 
protection against malaria [9, 10] and is one of the most 
preferred interventions for malaria control in south-
ern Tanzania [11, 12]. Several field studies have demon-
strated that house design is one of the factors influencing 
the abundance of indoor malaria vector densities and 
malaria transmission [13–15]. Simple house modifica-
tions can significantly reduce malaria transmission, yet 
a previous study found that communities in rural Tan-
zania were unable to improve their houses due to finan-
cial constraints and competing household priorities [16]. 
Poor housing is not only associated with high incidences 
of malaria transmission but also with other numerous 
infectious diseases, notably insect-borne diseases such as 
filariasis and arboviruses, which are major public health 
and economic concerns in most African countries [9, 13, 
14, 17, 18]. In Tanzania, approximately 93% of the popu-
lation lives in areas at risk of malaria [19], which could 
be largely preventable by, among other measures, living 
in proper housing. However, housing is not included in 
control programmes due to high costs and various chal-
lenges  [12]. Nonetheless, the major malaria vectors in 
Africa mostly prefer to feed on humans and bite and rest 
inside houses [20, 21].

Eave tubes have been introduced as a promising alter-
native for malaria vector control [22]. The method 
involves closing the eave spaces while leaving open-
ings for eave tubes, thereby facilitating ventilation in 
the house while channeling human odour outdoors to 
attract mosquitoes into the tubes [22]. The tubes are fixed 
at eave height to target mosquitoes as they attempt to 

enter houses based on the observation that malaria vec-
tors often use eaves as house entry points [23–25]. As 
mosquitoes attempt to enter the houses, they come into 
contact with netting inside the tubes that is treated with 
insecticides. The insecticide, in powder form, is bound 
to the netting using electrostatic forces, which increases 
mosquito exposure and ensures high efficacy even against 
pyrethroid -resistant mosquitoes [26]. While the use of 
eave tubes alone, without insecticides, provides a physi-
cal barrier against mosquitoes and thus  provides protec-
tion to the household, the addition of insecticides offers 
communal protection by effectively killing them [27, 28].

Eave tubes were found to reduce mosquito densities 
in semi-field studies conducted in Tanzania [28], Kenya 
[29] and Ivory Coast [30]. In a cluster-randomized trial in 
Ivory Coast, a combination of house screening and eave 
tubes significantly reduced malaria incidence [31, 32], 
as well as the entomological inoculation rate [32]. How-
ever, despite the efficacy of this intervention in reducing 
and killing mosquitoes, inevitably problems with insecti-
cides will arise. Frequent replacement of eave tube inserts 
with insecticides boosts labour costs and will ultimately 
cause resistance. Therefore, non-insecticidal approaches 
are likely to be more sustainable. These can be integrated 
in long-term vector control strategies without causing 
resistance buildup in mosquito populations by eliminat-
ing selection pressure.

Mosquito electrocuting eave tubes (MEETs) represent a 
promising alternative in the fight against malaria without 
relying on insecticides. The MEET utilizes an electrocut-
ing grid installed inside a standard 6-inch (15.24 cm) pol-
yvinyl chloride (PVC) tube that is installed at eave height 
while other spaces are sealed. In this study, we assessed 
the efficacy of MEETs against Anopheles gambiae sensu 
stricto (An. gambiae s.s.)  and Anopheles funestus s.s. in a 
semi-field setting. The results are discussed in the context 
of utilizing MEETs for and its contribution to sustainable 
vector control.

Methods
Description of the study facility
This study was conducted near Ifakara, south-east Tan-
zania in the ‘mosquito city’ facility, which is located in 
Kining’ina village, approximately 6 km north of the town 
of Ifakara (8.10800°S, 36.66585°E). A semi-field system 
with a total surface area of 553  m2 was utilized (Fig. 1A). 
The semi-field system comprises of six chambers/com-
partments, each measuring 9.6 × 9.6 × 4.5  m (length × 
width × height). Two semi-field chambers within one 
semi-field system were used. Inside each semi-field 
chamber, experimental huts measuring 3.1 × 2.7  m were 
constructed in which the MEETs were installed (Fig. 1B). 
Each experimental hut had six MEETs. More details on 
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the semi-field systems and experimental huts can be 
found in previous publications [33–35].

Mosquito electrocuting eave tubes
The MEETs were made up of standard 6-inch (15.24 cm) 
PVC tubes, each equipped with an electrocuting grid 
tightly fitted against the rim of the PVC tube. Grids were 
removed from commercially available mosquito lamps 
(model IK GP02; input AC220-240  V 50  Hz; output 
800-1000 V through a high-voltage transformer, Tronic, 
China). The MEETs were serially connected to the mains 
and were operated permanently by fixing the press but-
ton in the ‘on’ mode. Thus, a hut could have all of its 
grids switched ‘on’ or all of the grids switched ‘off’. To 
prevent mosquitoes from passing the electrocuting grid 
and entering the hut, pieces of untreated bednet material 
were used to cover the tube outlet inside the hut.

Mosquitoes
Female An. gambiae s.s. (Ifakara strain) and An. funestus 
s.s. (FUMOZ strain) reared in the laboratory and main-
tained at the Ifakara insectaries were used at age 3 to 6 
days in the experiments. Larvae were fed on Tetramin 
fish food (Tetra Werke, Melle, Germany) and maintained 
at 26–28 °C. Adults were fed ad libitum with a 10% glu-
cose solution, and the insectary was maintained under 
12:12-h light/dark conditions.

Release and recapture of mosquitoes
Each night a total of 200 blood-naive females were 
released in the semi-field chambers at 7 p.m.−50 mosqui-
toes in each of the four corners of the semi-field chamber. 
The mosquitoes had been starved for 6 h prior to the start 
of the experiment by removing the glucose solution from 
the insectary. The experiment was conducted for 10 days 
for each species, with each species released separately.

Fig. 1 Semi-field set-up for the assessment of the efficacy of mosquito electrocuting eave tubes (MEETs). A An experimental hut fitted with 6 
MEETs (3 on the front and three at the back). B Magnified view of a MEET with a red dashed circle showing some electrocuted mosquitoes. C A net 
fitted in the inner side of the MEET trap. D Wiring layout of MEET traps
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At 5 a.m., mosquitoes were collected indoors and 
outdoors using Prokopack and mouth aspirators. The 
assumption was made that the grids would kill mosqui-
toes attempting to enter the hut through the PVC tubes. 
Therefore, the number of live mosquitoes available for 
collection in the morning was expected to be lower when 
the grids were ‘on’.

Efficacy of MEETs against An. gambiae s.s. and An. funestus 
s.s.
A comparative study was undertaken in the semi-field 
system. Two chambers, each with one experimental hut, 
were used. Six MEETs were fixed in each hut, three on 
each side. They were installed with the bottom of the pipe 
aligned with the wall, while the top part was fitted at a 
slight angle to guide odours coming out of the hut. All 
other openings (including eaves) were sealed as much as 
possible with mud so that airflow only passed through 
the eaves.

Two volunteers slept in each experimental hut from 
7 p.m. to 5 a.m.. Each compartment alternated between 
having all grids turned on for 5 days and all grids turned 
off for 5 days. Volunteers were rotated randomly to 
ensure they slept in each hut for 5 days. They were not 
informed about whether the grids were on or off. Mos-
quito collection was done by another team, which com-
prised two volunteers who were also unaware of whether 
the grids were turned on or off.

Data analysis
Data were analysed  using R software (version 4.1.2) [36]. 
Data for each species was analysed separately. Descriptive 
statistics were analysed using the dplyr package [37]. Graph-
ics were generated using ggplot2 [38]. The efficacy of MEETs 
(percentage reduction in mosquitoes recaptured) was calcu-
lated as:  Mean capture in control−Mean capture in treatment

Mean capture in control
× 100, 

where ‘Control’ was the number of mosquitoes recaptured 
in the ‘MEETs OFF’ chamber, and ‘Treatment’ was the num-
ber of mosquitoes recaptured in the ‘MEETs ON’ chamber. 
The chi-square test of proportions was used to assess 
whether there was any statistically significant difference 
between the percentage reduction of mosquito species 
released, intervention and location. Lastly, to assess the effi-
cacy of MEETs, a generalized linear mixed model (GLMM) 
was deployed, the number of mosquitoes recaptured was 
added as a response variable, while the intervention (ON or 
OFF) was added as a fixed factor. Volunteer identification 
(ID), chamber ID and experimental day were added as ran-
dom factors in the models. Model selection for the inclusion 
of the random effects (volunteers ID, chamber ID and 
experimental day) was performed using the Akaike infor-
mation criterion (AIC); the model with the lowest AIC value 
was considered to be the best model. the odds ratio (OR) 

was reported along with the respective  95% confidence 
interval (CI).

Results
Mosquito recaptures
A total of 8000 female Anopheles mosquitoes were 
released during the 20-day experiment, of which half 
were An. gambiae s.s., with An. funestus s.s. accounting 
for the other half. A total of 2259 (28% of the released) 
mosquitoes were recaptured from all chambers, irrespec-
tive of the intervention and mosquito species released 
into the chamber. A similar trend in the recapture rate 
was observed for both species released. For An. gam-
biae s.s., the recapture rate was lower for the treatment 
(MEETs ON) chamber than for the control (MEETs OFF) 
chamber: 28.3% (n = 566 of the released mosquitoes 
recaptured) versus 44% (n = 889 of the released mosqui-
toes recaptured), respectively. Similarly, for An. funestus 
s.s., the recapture rate was lower for the treatment cham-
ber compared with the control chamber: 19.0% (n = 379 
of the released mosquitoes) versus 21.5% (n = 430 of the 
released mosquitoes).

Despite similar trends in recapture rates, there was a 
significant difference between the species released and 
location (χ2 = 151.06, df = 1, P < 0.001). The recapture 
rate of indoor-biting mosquitoes showed a similar catch 
in the deployed interventions between mosquito species 
released (χ2 = 2.47, df = 1, P = 0.116). The mean (± stand-
ard error [SE] indoor recapture rate for An. gambiae 
s.s. was 4.5 ± 0.5 and 5.7 ± 1.6 per day for the treatment 
and control chambers, respectively. Similarly, the mean 
indoor recapture rate for An. funestus s.s. sensu stricto 
was 0.1 ± 0.1 and 0.8 ± 0.6 per day for the treatment and 
control chambers, respectively (Fig. 2).

In comparison, there was a significant difference in the 
mean outdoor recapture rate across mosquito species fol-
lowing the deployment of the intervention (χ2 = 15.44, 
df = 1, P < 0.001). For An. gambiae s.s., the mean (± SE) 
outdoor recapture rate was 52.1 ± 7.2 and 83.2 ± 12.7 per 
day for the treatment and control chambers, respectively. 
Similarly, the mean outdoor recapture rate for An. funes-
tus s.s. sensu stricto (An. funestus s.s.) was 37.8 ± 5.2 and 
42.2 ± 6.5 per day for the treatment and control cham-
bers, respectively (Fig. 2).

Efficacy of MEETs against An. gambiae s.s. and An. funestus 
s.s.
Placement of MEETs reduced the number of female 
mosquitoes attempting to bite human volunteers in the 
treatment chamber. The number of indoor- and out-
door-biting  An. gambiae  females was reduced by 21.1% 
and 37.4% in the treatment chambers (MEETs ON), 
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respectively, relative to the control chambers (MEETs 
OFF). The observed reduction was statistically signifi-
cant for both indoor- and outdoor-biting mosquitoes 
(GLMM: OR = 0.82, P < 0.001 and OR = 0.63, P < 0.001, 
respectively; Table  1). Similarly, the number of indoor- 
and outdoor-biting An. funestus s.s. was reduced by 
87.5% and 10.42% in the treatment chambers (MEETs 
ON), respectively, relative to the control chambers. The 
observed reduction was marginally statistically insignifi-
cant for indoor-biting mosquitoes and not significant for 
outdoor-biting mosquitoes (GLMM: OR = 0.12, P = 0.052 
and GLMM: OR = 0.88, P = 0.086, respectively; Table 1).

Discussion
Poor house designs in sub-Saharan Africa continue to 
contribute to malaria transmission [9, 10, 15, 39–41]. 
One key link in this interaction is the presence of an eave 
space opening created by household owners to reduce 
indoor heat stress, but which allows the entry of  mos-
quitoes. Studies have shown that Anopheles mosquitoes 
utilize eave space openings as their main entry point into 
houses [23–25, 42–44], a behaviour that has formed the 
basis for several innovative interventions that will kill or 
repel mosquitoes on their way into the house. Examples 

Fig. 2 Assessing the efficacy of mosquito electrocuting eave tubes (MEETs). A Comparison of different recapture rates of Anopheles gambiaes.s. 
with location. B Comparison of different recapture rate of Anopheles funestus s.s. with location. Black open circles denote number of mosquitoes 
recaptured nightly; red circles with error bars denote mean recaptures ± standard error. s.s., Sensu stricto
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of such interventions include screens treated with bio-
logical control agents (e.g. entomopathogenic fungi) 
[45], insecticidal eave curtains [46, 47], repellent-treated 
eave ribbons [48–52], insecticide-treated eave tubes 
[22, 27–30], among others. All of these interventions 
have been shown to effectively control malaria vectors 
in sub-Saharan Africa. Despite their effectiveness, how-
ever, the implementation of these tools is hindered by 
their dependency on chemicals, to which mosquitoes will 
inevitably develop resistance. Therefore, complementary 
non-insecticidal approaches in eave spaces are needed 
that will provide additional benefits by eliminating selec-
tion pressure for insecticide resistance (although it is 
appreciated that active avoidance of tube entry will ulti-
mately pose a form of behavioural resistance).

The semi-field system in which houses are created to 
mimic the natural village setting provides a real-life sce-
nario to evaluate the efficacy of MEETs under controlled 
environments. The main finding of this study was a dis-
tinct reduction of recaptures of both An. gambiae  s.s. 
and An. funestus s.s. within the ‘MEETs-ON’ chambers. 
Given the innate behaviours of both mosquito species to 
feed (endophagy) and rest indoors afterwards (endoph-
ily), it may be assumed that tube entry occurred while the 
mosquitoes were host-seeking and that mosquito elec-
trocution upon contact with the grid caused the decline 
in numbers recaptured. Endophagy is more pronounced 
for An. funestus s.s than for An. gambiae  s.s., which 
caused the likely higher reduction of numbers recaptured 
indoors, with the caveat that numbers were very low 
indeed.

To the best of our knowledge, this is the first study to 
directly assess the efficacy of MEETs on mosquitoes. 
While the objectives were broadly achieved, a number 
of limitations are noted. First, the study used an indirect 
measure of reduction in the number of mosquitoes. We 
could not directly count electrocuted mosquitoes but 
rather counted recaptured mosquitoes in the chamber. 
However, this approach has been used in previous studies 
to assess the effectiveness of eave tubes in Tanzania [28], 

Kenya [29] and Ivory Coast [30]. Moreover, the Kenya 
study, in which eave tubes were treated with fluorescent 
dye that was transferred to mosquitoes upon contact and 
showed on their bodies after recapture, provided proof 
of tube entry and contact. Using videography, the same 
has been shown in open-field studies in Tanzania, where 
the median contact time of mosquitoes with (treated) 
netting was 71 s [44]. Second, this study was conducted 
in a semi-field setting using laboratory-reared mosqui-
toes; consequently, field trials are required to determine 
if these efficacies can also be achieved under real-world 
conditions. A third shortcoming in our study was the 
large variation in the numbers of recaptured mosqui-
toes in both the treatment and control chambers during 
the experimental nights; although the differences were 
significant, these would likely have been more dramatic 
if recapture rates had been more consistent, which did 
occur during previous trials with insecticides in Ifakara 
[28].

Given that electrocuting grids have been used to study 
odour-mediated behaviour of mosquitoes [53] and have 
been considered to be incorporated in traps [54] and as 
an alternative to human landing catches [55], we assume 
that approaching mosquitoes were not repelled by the 
MEETs [56].

Future use of MEETs will likely require their use in 
areas where houses lack electricity. Given the rapid devel-
opments in solar technology, solar conversion efficiency 
and decreasing costs, it will be relatively easy to run 
MEETs off-grid in this manner. Moreover, access to solar 
energy in communities without access to electricity may 
enhance acceptance of mosquito control tools. Matowo 
et  al. [57] found increased community acceptance of 
mosquito landing boxes in Tanzania by simply adding 
solar power to the outdoor devices that rural commu-
nities could use for lighting their homes and charging 
their mobile phones. A trial with odour-baited traps near 
houses in Kenya achieved the same results through solar 
panels [58]. Similar approaches could be adopted for scal-
ing up the use of MEETs in similar settings. Considering 

Table 1 Impact of mosquito electrocuting eave tubes on indoor and outdoor biting densities of Anopheles gambiae sensu stricto and 
Anopheles funestus s.s. sensu stricto in the semi-field setting

CI Confidence interval, OR Odds ratio

Species Indoor Outdoor

OR (95% CI) Reduction (%) P OR (95% CI) Reduction (%) P

1 1

Anopheles gambiae 
sensu stricto

0.82 (0.51–1.31) 21.1  < 0.001 0.63 (0.57–0.70) 37.4  < 0.001

Anopheles funestus 
s.s. sensu stricto

0.12 (0.01–1.02) 87.5 0.052 0.88 (0.76–1.02) 10.42 0.086
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that the cost of MEETs will be crucial for scalability and 
accessibility, mass production will be necessary. Fortu-
nately, the electronics of MEETs are already being mass-
produced for ‘mosquito rackets’ and are easy to obtain 
for less than US$1. However, open-field evaluations of 
MEETs are still necessary in order to obtain a satisfactory 
prototype for further development.

Conclusions
MEETs can effectively kill mosquitoes and thus signifi-
cantly reduce their densities and thereby malaria trans-
mission. MEETs not only provide household protection 
but may also provide communal protection by mass kill-
ing, but this aspect needs to be confirmed in open field 
trials.
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