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Abstract 

Background  The recent rise in the transmission of mosquito-borne diseases such as dengue virus (DENV), Zika 
(ZIKV), chikungunya (CHIKV), Oropouche (OROV), and West Nile (WNV) is a major concern for public health managers 
worldwide. Emerging technologies for automated remote mosquito classification can be supplemented to improve 
surveillance systems and provide valuable information regarding mosquito vector catches in real time.

Methods  We coupled an optical sensor to the entrance of a standard mosquito suction trap (BG-Mosquitaire) 
to record 9151 insect flights in two Brazilian cities: Rio de Janeiro and Brasilia. The traps and sensors remained 
in the field for approximately 1 year. A total of 1383 mosquito flights were recorded from the target species: Aedes 
aegypti and Culex quinquefasciatus. Mosquito classification was based on previous models developed and trained 
using European populations of Aedes albopictus and Culex pipiens.

Results  The VECTRACK sensor was able to discriminate the target mosquitoes (Aedes and Culex genera) from non-tar‑
get insects with an accuracy of 99.8%. Considering only mosquito vectors, the classification between Aedes and Culex 
achieved an accuracy of 93.7%. The sex classification worked better for Cx. quinquefasciatus (accuracy: 95%; specificity: 
95.3%) than for Ae. aegypti (accuracy: 92.1%; specificity: 88.4%).

Conclusions  The data reported herein show high accuracy, sensitivity, specificity and precision of an automated 
optical sensor in classifying target mosquito species, genus and sex. Similar results were obtained in two different 
Brazilian cities, suggesting high reliability of our findings. Surprisingly, the model developed for European popula‑
tions of Ae. albopictus worked well for Brazilian Ae. aegypti populations, and the model developed and trained for Cx. 
pipiens was able to classify Brazilian Cx. quinquefasciatus populations. Our findings suggest this optical sensor can be 
integrated into mosquito surveillance methods and generate accurate automatic real-time monitoring of medically 
relevant mosquito species.
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Background
Emerging and re-emerging vector-borne diseases 
(VBD) represent significant global public health con-
cerns, showing a rising incidence rate in endemic areas 
in the last decades [1, 2]. Equally important, VBD have 
expanded into new regions following an increase in the 
geographic distribution of their primary vectors [3]. Most 
of the VBD impacting public health systems are viruses 
and are transmitted by Aedes and Culex mosquitoes. 
Special interest is given to Aedes aegypti, Ae. albopictus, 
Culex quinquefasciatus and Cx. pipiens, species that are 
well adapted to living in association with humans. Aedes 
aegypti and Cx. quinquefasciatus are more abundant in 
urbanized areas and collected more frequently in the 
intradomestic environment of tropical regions. Aedes 
albopictus is more eclectic in biting behavior and habitat 
preferences, being found from suburban to peridomestic 
areas with high vegetation coverage [4–11].

Several biotic and abiotic factors can be linked to the 
recent expansion of VBD. Temperature seems to be the 
most limiting factor regarding vector distribution and 
thus disease transmission to temperate regions. Con-
sidering climate change and the expected increase in 
temperature in the next years, a subject for research is 
to foresee the impact of temperature rise on the trans-
mission of arboviruses such as dengue (DENV), Zika 
(ZIKV), chikungunya (CHIKV), mayaro (MAYV), West 
Nile (WNV) and St. Louis encephalitis (SLE), to mention 
a few diseases notably transmitted by the three afore-
mentioned mosquito species [12–17]. Climate change’s 
impact is particularly significant in the twenty-first cen-
tury, with some studies projecting a global temperature 
increase of 1.0–3.5  °C by 2100, intensifying arbovirus 
transmission but also expanding their occurrence to areas 
normally free from the viruses or with mild incidence [3]. 
Among the biotic factors influencing arbovirus transmis-
sion, human activities such as unplanned urbanization, 
construction of dams and irrigation schemes, increased 
global travel and trade, deforestation and the spread of 
insecticide resistance are factors playing a role in shaping 
mosquito and disease distribution [18–22].

We need to build and strengthen early warning sys-
tems and increase response capacities and preparedness 
for current and future threats. Regarding mosquito vec-
tors, one of the greatest research gaps involves the imple-
mentation of a surveillance agenda that can efficiently 
determine seasonal mosquito population fluctuation 
and identify the high-risk areas in endemic metropoli-
tan cities [23–25]. Undoubtedly, considering arbovirus 
epidemiology and disease dynamics, surveillance needs 
to determine the spatiotemporal risk in a timely man-
ner, allowing further intervention (e.g. vector control 
activities such as ULV fogging, removal of potential 

breeding sites, community engagement, urban clean-
ing, etc.) to mitigate or halt transmission [26–28]. To 
estimate the sub-areas of a city with higher risk of dis-
ease transmission, vector sampling must be conducted 
citywide [26]. Regarding the biology of Aedes and Culex 
mosquitoes, performing mosquito sampling in the lar-
val stage is unfeasible because of the many health agents 
required to sample every premise, the tedious nature of 
the work, which may impact the search effort, and a lack 
of long-term paramilitary organization to conduct lar-
val surveys [23, 29]. Therefore, use of mosquito traps is 
recommended to make citywide sampling feasible. Addi-
tionally, it is well known that although immature stage 
monitoring might be simpler to set up, it lacks utility in 
estimating adult abundance and transmission risk due to 
poor correlation with egg, larval and pupal density indi-
ces [23, 25, 30]. A growing body of evidence shows that 
monitoring mosquito populations with adult traps better 
represents seasonal variations in mosquito abundance 
compared to indices derived from immature stage-based 
sampling like the House or Breteau Index [23, 30–33]. 
Myriad mosquito traps are available using different types 
of attractants and mechanisms, with their pros and cons 
[34]. Conventional traps with catch bags require periodic 
field collection and time-consuming entomological iden-
tification by an expert holding an appropriate taxonomic 
key, leading to delays in analyzing mosquito population 
dynamics [35]. Therefore, new approaches such as opti-
cal sensors combined with machine learning could pro-
vide almost real-time mosquito classification to support 
surveillance programs with timely determination of mos-
quito composition as soon as target species are trapped 
[36]. While historically wingbeat frequency has been the 
primary predictor variable, recent efforts have focused on 
improving classification methods to distinguish mosquito 
species, sex and even parity status [36]. Locally acquired 
field data on mosquito captures could be modeled with 
climatic records, traps, spatiotemporal localization and 
ecological features not only to improve remote mosquito 
classification in the field but also to develop real-time 
wireless entomological surveillance.

The development of automatic devices to further clas-
sify mosquito species is a growing field. It is important 
to test those devices under field conditions to provide a 
realistic challenge and reliable estimates. We report here 
an independent evaluation of a prototype optical sensor 
coupled to the BG-Sentinel [37, 38], a commercial mos-
quito trap commonly used in the field for trapping urban 
mosquito vectors. This evaluation included field sam-
pling of Aedes and Culex mosquitoes in two sites in Bra-
zil with subsequent adoption of previously established 
models to determine mosquito counts [36]. Herein, we 
report the effectiveness of the VECTRACK sensor in 
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identifying and counting Ae. aegypti and Cx. quinque-
fasciatus in Rio de Janeiro and Brasilia using a classifica-
tion model developed for Ae. aegypti and Cx. pipiens in 
Europe [36], highlighting the relevance of this model for 
genus classification.

Methods
Sensor and trap description
The VECTRACK sensor, developed and manufactured by 
Irideon SL in Barcelona, Spain, was integrated with the 
entrance of a commercial BG-Mosquitaire suction trap 
from Biogents AG in Regensburg, Germany, as depicted 
in Fig. 1. Under a field setting, the BG-Mosquitaire trap 
captures mostly host-seeking mosquito females that are 
attracted to both visual and sensory cues, like its prede-
cessor, BG-Sentinel [37, 38]. This trap is equally efficient 
in trapping both target species in field scenarios with 
high and low mosquito population density [37, 38]. The 
trap was equipped with a Biogents AG BGSweetscent 
chemical attractant sachet, and the fan-driven airflow 
within the trap was maintained at approximately 3 m/s in 
the downward direction. Mosquitoes flying in proximity 
to the sensor’s entrance funnel could be drawn in by the 
fan, detected by the sensor, and subsequently trapped in 
the catch bag within the trap body.

The sensor itself comprises an optical emitter panel and 
an optical receiver panel, positioned facing each other 

through a transparent flight tube with 105  mm diam-
eter. The optical emitter consists of a two-dimensional 
(2D) array of 940-nm wavelength infrared light-emitting 
diodes (LEDs), while the optical receiver incorporates a 
2D array of 940-nm photodiodes. The active length of 
the optical sensor in the downward direction is 70 mm. 
The output from the optical receiver undergoes amplifi-
cation and is acquired by an analog-to-digital converter 
(ADC) with a sampling frequency of 9603 samples per 
second. Upon a mosquito entering the sensing volume, 
it triggers an automatic recording of up to 1024 samples, 
with a duration of up to 107 ms. Considering the typical 
duration of a mosquito’s flight is approximately 50  ms, 
this setup enables effective monitoring. Additionally, the 
sensor automatically timestamps each recording and cap-
tures the measured ambient temperature.

In this study, we targeted Ae. aegypti and Cx. quinque-
fasciatus from two field sites from Brazil, as described 
below. The classification of field-gathered specimens 
was based on previously developed and trained mod-
els. For Ae. aegypti, we used a model that was devel-
oped using both Spanish and Portuguese populations 
of Ae. albopictus, originally collected from Rubi, Barce-
lona (41°29′49″N; 02°02′05″E), and Algarve, Portugal 
(37°10′48″N; 08°22′22″E) [39]. The model used to clas-
sify Brazilian populations of Cx. quinquefasciatus was 
developed and trained for Spanish populations of Cx. 

Fig. 1  Time series plots representing the number of target mosquitoes (sensor count and manual count) per field assay. The x-axis indicates 
the end date of each field assay. A Sensor 1, B Sensor 2, C data gathered in Rio de Janeiro, D data gathered in Brasilia
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pipiens obtained from Cerdanyola del Vallés, Barcelona 
(41°29′10″N; 02°04′29″E) [39].

Data acquisition process
The two available VECTRACK sensors were exposed to 
a total of 28 non-simultaneous assays between July 2022 
and May 2023. From those 28 assays, 21 were done in Rio 
de Janeiro and 7 in Brasilia. The two sensors were rotated 
in both cities to avoid any bias possibly related to specific 
geographic condition. Each assay consisted of exposing 
the VECTRACK sensor and BG-Mosquitaire to the field 
conditions reported above for a period ranging from 12 
to 15 consecutive days.

Study area and field trial conditions
The sensors were installed in two Brazilian cities: Rio 
de Janeiro and Brasilia. In Rio de Janeiro, the sensors 
were installed in a commercial company in Jacarepaguá 
(22°58′35″S; 43°24′59″W), a neighborhood character-
ized by vegetation coverage, mild mean temperature 
and presence of Ae. albopictus [7]. In Brasilia, the sen-
sors were installed at the National Health Surveillance 
Department (15°48′53″S; 47°54′59″W), a highly urban-
ized area with almost no vegetation coverage. In each 
field site, the two sensors were installed indoors and 
outdoors to capture the diversity of mosquito vectors in 
the surroundings. Traps remained in the field for periods 
between 12 and 15  days, and all assays were conducted 
in an approximately 1  year period. The catch bags of 
the BG-Mosquitaire were inspected twice per week, i.e. 
around four times per assay. Traps remained plugged 
into power during the assays. The insects were identified 
using a Zeiss stereomicroscope and recorded considering 
the sensor and its location. The taxonomic identification 
of mosquito vectors was conducted using the appropriate 
local entomological keys [40]. A taxonomic identification 
of non-target species up to species level was out of the 
scope of this article.

Data analysis of sensor classification in the field
Two main functions of the automated sensor were 
assessed: (i) the ability of the system to discriminate Ae. 
aegypti and Cx. quinquefasciatus target mosquitoes from 
non-target insects that were accidentally trapped and (ii) 
the ability of the system to correctly discriminate tar-
get mosquito species’ genus and sex. The potential rela-
tionship between sensor count (mosquitoes counted by 
the sensor) and manual count (mosquitoes counted by 
manual inspection) was evaluated through correlation 
and linear regression analyses, with the results depicted 
using both time series and scatter plots for each collec-
tion cycle.

Pearson correlation coefficient (r) and associated 
P-values were calculated to assess the strength and sig-
nificance of the relationship between the two variables. 
Additionally, regression coefficients, including the coef-
ficient of determination (R2), linear slope and intercept, 
were computed to evaluate how well sensor count pre-
dictions aligned with manual counts. A regression slope 
greater or less than one indicated whether sensor counts 
tended to be higher or lower, respectively, than manual 
counts on average.

We used confusion matrix to evaluate the accuracy, 
sensitivity, specificity and precision of the classification 
tasks proposed. One confusion matrix was developed 
for each classification task, which involved classifying (i) 
target or non-target species, (ii) Aedes or Culex, (iii) Ae. 
aegypti sex and (iv) Cx. quinquefasciatus sex. For each 
confusion matrix, we determined the number of true 
positives (TP), true negatives (TN), false positives (FP) 
and false negatives (FN) using the manual classification 
as the reference gold standard. TP and TN are the num-
bers of positive and negative cases respectively that the 
system classified correctly. FP is the number of negative 
cases that the system incorrectly classified as positive, 
and FN is the number of positive cases that the system 
incorrectly classified as negative. To calculate TP, TN, 
FP and FN for a particular class, this class was defined as 
the positive class and the other class(es) were defined as 
the negatives. For the positive class, TP equals the mini-
mum common value of the sensor and manual count. If 
the sensor count was greater than the manual count, then 
the difference was taken as FP; otherwise, FP equaled 
zero. If the sensor count was less than the manual count, 
then the difference was taken as FN. TN is calculated by 
subtracting FP from the manual counts for the negatives. 
Accuracy means how often the classifier is correct and 
was measured as (TP + TN)/total samples. Sensitivity, 
also known as true-positive rate or recall, indicates the 
proportion of positives that are correctly classified by the 
system and is represented as TP/(TP + FN). Specificity, 
also known as true-negative rate, indicates the propor-
tion of negatives that are correctly classified by the sys-
tem and is estimated TN/(TN + FP). Finally, the precision 
evaluates when the sensor predicts the sample as posi-
tive, how often it is correct. Precision is determined by 
TP/(TP + FP).

Results
Manual target species identification
A total of 1300 mosquitoes were sampled in all 28 assays, 
resulting in an average of 46.4 mosquitoes trapped per 
assay. From the total mosquitoes sampled, 627 (48.2%) 
were Cx. quinquefasciatus (545 females and 82 males) 
and 662 (50.9%) Ae. aegypti (436 females and 226 males). 
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We still sampled 11 Ae. albopictus (10 females and 1 
male), corresponding to 0.8% of the sampled specimens. 
Regarding the two field sites, 1215 (93.5%) mosqui-
toes were captured in Rio de Janeiro and 159 in Brasilia 
(12.2%). Focusing on the target species, in Rio de Janeiro, 
43.7 and 55.4% were Ae. aegypti and Cx. quinquefascia-
tus, whereas in Brasília these species represented 82.4 
and 17.6%, respectively.

Manual non‑target insect species identification
During all the 28 field assays, a total of 8012 non-target 
insects were sampled. From this sum, 6826 (85.2%) were 
sampled in Rio de Janeiro, whereas 1186 (14.8%) were 
collected in Brasilia. Among the non-target sampled 
insects, most insects were flies and other small dipterans, 
although we did not conduct the appropriate taxonomic 
identification of non-targeted specimens up to species 
level.

Automated detection of target mosquito species 
in the field
A remarkable overlapping between manual and sen-
sor counts was observed in the two sensors used in 

the 28 field assays in both cities (Fig.  1). Linear regres-
sion analysis indicated a good fit of the linear regression 
line to manual count versus sensor count (Fig. 2). How-
ever, we should highlight the fit varied according to the 
species*genus combination. The coefficient of determina-
tion was > 0.99 in all cases, with the exception of males of 
Cx. quinquefasciatus, with a R2 equaling 0.889. Although 
we still consider it a satisfactory fit, further investigations 
should understand the hurdles in classifying Cx. quinque-
fasciatus males. Taking all the data together, i.e. using 
data from both sensors, both target species (Ae. aegypti 
and Cx. quinquefasciatus), plus males and females, a final 
coefficient of determination of 0.991 was observed, sug-
gesting the VECTRACK sensor performed well in identi-
fying mosquitoes.

Confusion matrix and classification parameters
We developed one confusion matrix for each classifica-
tion task. The most impressive results were obtained for 
classifying samples between target or non-target species, 
with accuracy, sensitivity, specificity and precision > 0.99 
(Table  1). Those identified as target species were later 
classified under the genus Aedes or Culex. In this case, 
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Fig. 2  Scatter plot and linear regression of sensor count versus manual count for A Aedes aegypti and B Culex quinquefasciatus per mosquito 
gender showing the regression line equation (slope and y-intercept) and coefficient of determination. In A, the regression line for female 
and male is y = 1.0706x–0.1224 and y = 1.1085x + 0.1879, whereas the coefficient of determination is R2 = 0.992 and R2 = 0.9819 for female and male, 
respectively. In B, the regression line for female and male is y = 1.066x–0.248 and y = 0.9023x + 0.1432, whereas the coefficient of determination 
is R2 = 0.995 and R2 = 0.8897 for female and male, respectively
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the VECTRACK sensor was able to accurately classify 
samples in 93.7% of the cases. In the genus classification, 
we observed the lowest sensitivity of the classification 
tasks we proposed: 92.1%. It indicates that around 8% of 
the samples were FN, i.e. the sensor classified them as 
Culex but they were Aedes after manual check. Regarding 
sex classification, better results were obtained for Culex, 
although similar results in sensitivity were observed for 
male and female sorting for both genera (Table 1).

Discussion
The development of automated identification sensors and 
systems designed for accurately identifying medically 
relevant mosquito species has seen significant advance-
ment in recent years [41–43]. These ‘smart traps’ aim 
to provide reliable information regarding the identifica-
tion of target species, ideally sorting them by sex. This is 
particularly important as it allows for the timely detec-
tion of female mosquitoes, a crucial parameter for esti-
mating local disease transmission risk. In our study, we 
recorded the flight patterns of 10,534 insects in two dis-
tinct field sites in Brazil, characterized by different land-
scapes, abiotic conditions and arbovirus epidemiology. 
Among these, 1383 flight records belonged to medically 
important mosquitoes. To our knowledge, this report 
represents the first instance of utilizing sensors to classify 
target mosquito species and their sex within a dengue-
endemic country.

Brazil has been experiencing over 1 million dengue 
cases annually since the late 2010s. By the end of April 
2024, > 3 million dengue cases had been reported in 
the country, with concurrent circulation of CHIKV and 
ZIKV, albeit in smaller proportions [44, 45]. In this con-
text, reliable tools for rapidly classifying field-caught 
mosquitoes are essential for public health management 
in endemic areas. Immediate identification of disease 
vectors can promote timely interventions. For instance, 
Brazil has been investing in strengthening its surveil-
lance capacity for arboviruses. The city of Foz do Iguaçu 
has developed an innovative surveillance network based 
on One Health principles, focusing on five main areas: (i) 
integrating previously sectorized field teams into a uni-
fied One Health team capable of performing multiple 
tasks after receiving household allowances for indoor 

inspections; (ii) adopting digital solutions to replace 
archaic practices such as recording field information on 
printed spreadsheets; (iii) empowering health agents and 
providing them with continuous training alongside local 
scientists; (iv) mobilizing communities through meetings 
at schools, churches and community centers; (v) con-
ducting active surveys to gain a better understanding of 
dengue epidemiology [27, 46]. A cornerstone of this sur-
veillance system involves implementing adult mosquito 
sampling through extensive citywide trapping [26]. This 
enables local public health managers to predict periods of 
increased dengue transmission based on entomological 
indicators estimated through adult mosquito sampling 
[26, 28]. Further investigations have revealed that den-
gue transmission within the city is highly structured [47]. 
Analyzing a time series from 2017 to 2022, we observed 
certain areas with a higher likelihood of dengue trans-
mission [48]. Therefore, incorporating VECTRACK sen-
sor into an ongoing surveillance system, such as the one 
developed in Foz do Iguaçu, could significantly enhance 
its impact. In the routine entomological surveillance of 
Foz do Iguaçu, several hundreds of mosquitoes are sam-
pled monthly. Assuming the mass trapping conducted by 
the city consists of collections in the urban environment, 
the mosquito diversity is low, i.e. only three species are 
sampled: Ae. aegypti, Ae. albopictus and Cx. quinquefas-
ciatus. The VECTRACK sensors would be particularly 
useful in settings where large quantities of specimens are 
collected, where individual insect identification by local 
entomologists might be unfeasible. Installing these sen-
sors in more vulnerable areas for dengue transmission 
would enable local public health managers not only to 
identify mosquito species and sex but also to integrate 
them into the early warning system algorithm [49]. This 
would provide alerts and prompt further interventions in 
areas with, for example, a high concentration of female 
Ae. aegypti mosquitoes and nearby human populations 
[13, 50–53].

Some reports have shown effective automatic clas-
sification of mosquito genera [54], sex [41] or both [36], 
but only a few have been able to provide point-of-cap-
ture classification. The VECTRACK sensor was used 
in two provinces of Barcelona, Spain, after training and 
developing a machine learning model using the flight of 

Table 1  Summary of classification parameters based on confusion matrixes developed accordingly to the classification task

Classification task Number of samples Accuracy Sensitivity Specificity Precision

Target and non-target species 9151 0.9987 1.000 0.9986 0.9915

Target species genus 1383 0.9372 0.9206 0.9471 0.9641

Aedes aegypti sex 731 0.9206 0.9408 0.8837 0.9368

Culex quinquefasciatus sex 660 0.95 0.9494 0.9534 0.9927
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laboratory-reared Ae. albopictus and Cx. pipiens. A bal-
anced accuracy of 95.5 and 88.8% in discriminating tar-
get mosquitoes and classifying genus/sex was observed, 
respectively [39]. In a recent report using semi-field 
conditions, the ability of an optoacoustic smart trap in 
classifying Ae. aegypti, Cx. quinquefasciatus and Anoph-
eles stephensi with accuracies > 90% was shown [55]. We 
conducted field capturing of mixed native populations of 
both Ae. aegypti and Cx. quinquefasciatus in two dengue-
endemic cities and observed 99.87% accuracies for clas-
sifying target species. Furthermore, the VECTRACK 
sensor discriminated Aedes and Culex with an accuracy 
of 93.72%. We also showed > 92% accuracy in discrimi-
nating mosquito sex in each of the target genera.

One remarkable outcome of our field survey in Brazil 
is that we used the models developed in Barcelona for 
Ae. albopictus and Cx. pipiens [36]. At least two con-
clusions can be reached regarding this result. First, the 
machine learning-based model for Ae. albopictus worked 
well in classifying Ae. aegypti mosquitoes from two Bra-
zilian populations. The model developed and trained 
with Spanish and Portuguese Ae. albopictus popula-
tions worked surprisingly well for Brazilian populations 
of Ae. aegypti. The second remark regards classifying 
Cx. quinquefasciatus using the model developed and 
trained using Spanish populations of Cx. pipiens [36]. 
Culex pipiens complex comprises Culex pipiens pipiens, 
which exists in two forms, pipiens and molestus, along 
with Culex pipiens pallens, Cx. quinquefasciatus, Cx. 
australicus and Cx. globocoxitus. While some members 
of the complex have restricted geographic distributions, 
Cx. pipiens pipiens and Cx. quinquefasciatus are widely 
distributed across urban and suburban temperate and 
tropical regions worldwide [56]. Our findings suggest 
the original models developed and trained for European 
native mosquitoes of the Aedes and Culex genera could 
be extrapolated to other genetically related mosquito 
species from different countries. In that scenario, a fur-
ther next step would involve developing specific models 
for Ae. aegypti and Cx. quinquefasciatus to test whether 
an expected increase in model accuracy in classifying tar-
get species is achieved.

The lowest correlation between manual counting and 
the VECTRACK sensor was observed for Cx. quinque-
fasciatus males. If the coefficient of determination 
between manual records and the VECTRACK sensor 
was > 0.98 for Ae. aegypti males and females, as well as 
for Cx. quinquefasciatus females, an R2 of 0.889 was esti-
mated for Cx. quinquefasciatus males. One hypothesis to 
explain this could be related to mosquito size. It is well 
known in vector biology that the wing size is a proxy of 
mosquito size. Furthermore, the size of an adult mos-
quito is influenced by the quality of the breeding site in 

which mosquitoes have developed. In highly competi-
tive low-resource breeding sites, mosquito size will likely 
be smaller than if mosquitoes are reared in a low-com-
petitive and high-resource environment. Regarding Cx. 
quinquefasciatus, this species often uses large water bod-
ies full of organic material for egg-laying and by corollary 
larval rearing [4, 57, 58]. Therefore, considering larval 
nutrients might be abundant in those breeding sites, 
the size of adult Cx. quinquefasciatus males that were 
trapped could have impacted our estimates.

The study had further limitations that should be noted. 
One is that we did not estimate mosquito size by meas-
uring wing length, a common proxy adopted in medical 
entomology, and therefore could not test whether the size 
of Cx. quinquefasciatus males could negatively impact 
the coefficient of determination between manual count-
ing and the VECTRACK sensor [59]. Additionally, our 
field sampling lasted almost 1 year, and due to abiotic fac-
tors related to seasonality, a period of 2 years of moni-
toring would be recommended. Nevertheless, herein we 
show the VECTRACK sensor is able to operate and pro-
vide robust and reasonably good classification accuracy 
results (93.72%) for the target Aedes and Culex mosquito 
species over the sampling conducted in two dengue-
endemic cities of Brazil. We recommend additional tests 
should be done under more realistic field scenarios such 
as urban landscapes and areas with higher mosquito bio-
diversity. Furthermore, developing and training models 
for other mosquito vector species would be valuable as 
well.

Conclusions
The use of emerging technologies to improve mosquito 
surveillance and vector control is on the rise lately, and 
their use can supplement the response to mosquito-
borne diseases outbreaks. Our data show the effec-
tiveness of an optical sensor in classifying target vs. 
non-target insect species with an accuracy of 99.9% 
and a specificity of 99.9%. Using field-gathered data, we 
could differentiate Aedes and Culex mosquitoes with an 
accuracy of 93.7% and precision of 96.4%. Finally, we 
also determined sex differentiation for the two genera 
of interest: Aedes and Culex. The determination of sex 
in Cx. quinquefasciatus mosquitoes achieved an accu-
racy of 95%, whereas separating male and female Ae. 
aegypti was done with a 92.1% success rate. Remark-
ably, similar results were obtained in two different 
Brazilian cities, Rio de Janeiro and Brasilia, suggesting 
high reliability of our findings. One important feature 
to highlight is potential extrapolation of the original 
developed and trained models. The model developed 
and trained for European colonies of Ae. albopictus 
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and Cx. pipiens presented high accuracy for Brazilian 
populations of Ae. aegypti and Cx. quinquefasciatus, 
respectively. Our findings show this optical sensor can 
be coupled with conventional traps and later integrated 
into mosquito surveillance methods to generate accu-
rate automatic real-time monitoring of medically rel-
evant mosquito species.
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