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Abstract 

Background  Sand flies serve as crucial vectors in various medical and veterinary diseases. Sand fly-borne diseases 
pose a significant public health burden globally, as the causative agents can infect a diverse range of hosts, leading 
to severe consequences such as leishmaniasis and sand fly fever. Additionally, the widespread use of insecticides 
for agricultural purposes and mosquito control is not specifically targeted at sand flies, potentially leading to resist‑
ance development. We investigated sand fly species, their potential role as vectors of various parasitic agents, 
and insecticide resistance in the endemic regions of Natawi and Sadao districts in Songkhla, Thailand.

Methods  Sand flies were collected using CDC light traps. The collected sand flies were then identified to species 
level using molecular techniques. Subsequent analyses included the detection of pathogens and the identification 
of pyrethroid resistance mutations within the voltage-sensitive sodium channel (Vgsc) domain IIS6 gene, followed 
by sequence analysis.

Results  The study identified nine sand fly species belonging to the genera Phlebotomus and Sergentomyia. The DNA 
of Sergentomyia khawi was the only species found to test positive for one sample of Leishmania orientalis in Sadao 
district. This finding represents the first detection of L. orientalis in Thailand. Moreover, three samples of Leishmania 
martiniquensis and four samples of Trypanosoma sp. were found in the Natawi district. No I1011M, L1014F/S, V1016G, 
or F1020S mutations were detected in Vgsc gene.

Conclusions  The results of this study provide valuable information on sand fly species and the continuous circulation 
of Leishmania spp. and Trypanosoma spp. in Songkhla, southern Thailand. Moreover, the development of geo-spatial 
information on vectors, parasites, and insecticide resistance in sand flies has the potential to provide well-informed 
risk assessments and evidence-based guidance for targeted vector control in Thailand. These results can serve 
as a foundation for integrating the One Health approach, which is crucial for disease control, considering the diverse 
ecological interactions among human and/or animal reservoir hosts, parasites, and sand fly vectors.

Keywords  Sergentomyia khawi, Leishmania martiniquensis, L. orientalis, Trypanosoma sp., Insecticide resistance status

*Correspondence:
Padet Siriyasatien
padet.s@chula.ac.th
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13071-024-06440-0&domain=pdf


Page 2 of 11Phumee et al. Parasites & Vectors          (2024) 17:351 

Background
Sand flies are tiny blood-feeding (hematophagous) 
insects belonging to the order Diptera, family Psychodi-
dae, and subfamily Phlebotominae [1]. These diminutive, 
hairy insects have slender bodies and up-held V-shaped 
wings when resting, distinguishing them from other 
small insects [2]. Approximately 800 species of sand flies 
have been identified worldwide. According to the widely 
accepted classification, there are three genera in the New 
World, Lutzomyia, Psychodopygus, and Nyssomyia, and 
eight genera in the Old World, Phlebotomus, Sergento-
myia, Grassomyia, Spelaeomyia, Idiophlebotomus, Parvi-
dens, Spelaophlebotomus, and Chinius [3–5]. Among 
them, Phlebotomus (Ph.) and Sergentomyia (Se.) are the 
most prevalent. At least 39 species of Phlebotomus are 
known to feed on humans [6]. The genus Sergentomyia 
is recognized for possessing the greatest known diversity 
among sand flies [7]. These sand flies play a crucial role as 
vectors for various established, emerging, and re-emerg-
ing infectious diseases, including leishmaniasis and sand 
fly-borne phleboviruses, impacting both human and ani-
mal health [8]. The World Health Organization (WHO) 
estimates an annual incidence of 700,000 to 1,000,000 
patients and 20,000 to 30,000 deaths due to leishmania-
sis [9]. This complexity in Leishmania (L.) parasite trans-
mission underscores the necessity for the One Health 
approach, which becomes imperative for controlling 
leishmaniasis given the intricate ecological relationships 
among human and/or animal reservoir hosts, parasites, 
and sand fly vectors [10]. In Thailand, autochthonous 
leishmaniasis is caused by several species: Leishmania 
martiniquensis  [11, 12], L. orientalis [13, 14], L. donovani 
[15], and L. infantum [16]. The reports have identified 
cases in the central, northern, and southern regions of 
the country. In 2015, WHO declared Thailand, previously 
considered free from the disease, as an endemic area 
for cutaneous leishmaniasis [17]. Currently, the num-
ber of autochthonous leishmaniasis cases is significantly 
increasing. Furthermore, sand flies in Thailand have been 
found to harbor L. martiniquensis DNA, including spe-
cies like Sergentomyia (Neophlebotomus) gammae, Se. 
khawi, and Se. (Parrotomyia) barraudi. Additionally, L. 
martiniquensis DNA was detected in rats (Rattus rattus) 
using ITS1-PCR in southern Thailand [18, 19]. Trypa-
nosomiasis, a zoonotic disease with diverse symptoms, 
infects various animals in Asia, including cattle [20], rats 
[21, 22], deer [23], and humans [24]. The most common 
species found are Trypanosoma (T.) evansi and T. lewisi 
[21, 25]. While tsetse flies are well-known trypanosome 
vectors, these blood-sucking insects are not present in 
Asia. Here, transmission likely occurs through various 
hematophagous arthropods like mosquitoes, leeches, and 

kissing bugs [26]. Interestingly, sand flies are believed to 
potentially transmit trypanosomes to bats [27], snakes 
[28], and lizards [29]. Significantly, Phumee et al. (2017) 
detected the first presence of Trypanosoma sp. DNA 
(potentially indicative of a new Trypanosoma species) in 
a Phlebotomus stantoni sand fly from southern Thailand 
[30]. Presently, Thailand lacks comprehensive informa-
tion regarding the diversity of sand flies and associated 
pathogens. Preventing sand fly-borne diseases relies sig-
nificantly on vector control, which aims to reduce sand 
fly populations and interrupt disease transmission. How-
ever, no prior data exist on the insecticide susceptibility 
and resistance of sand flies in Thailand. Pyrethroids, the 
main insecticides used for controlling adult and imma-
ture mosquitoes, might indirectly combat sand flies 
[31]. The major mechanisms of pyrethroid resistance in 
insects involve knockdown resistance mutations (kdr) 
within the para voltage-gated sodium channel gene (Vgsc) 
in nerve cells [32]. The widespread use of insecticides for 
vector control can lead to increased resistance among 
sand flies. Understanding the patterns and distributions 
of kdr mutations in sand flies highlights the necessity for 
an effective vector control program. Therefore, our study 
aims to survey sand fly species composition, screen for 
sand fly-borne pathogens, and evaluate insecticide resist-
ance at the Vgsc domain IIS6 region using molecular 
diagnostic tools in endemic areas of Songkhla, southern 
Thailand. These data are essential for implementing effec-
tive vector control strategies to prevent the transmission 
of sand fly-borne pathogens and safeguard public health.

Methods
Study areas and sample collection
Sand fly surveillance was conducted in January 2023 
within two districts of Songkhla province, Natawi 
(6°39′28″N, 100°42′49″E) and Sadao (6°38′19″N, 
100°25′26″E). Detailed GPS coordinates and brief 
descriptions of each location are provided. The surveil-
lance team employed CDC miniature light trap, designed 
by the US Centers for Disease Control and equipped with 
25W bulb and ultraviolet (UV) light, to capture sand flies. 
Six traps were strategically positioned at various indoor 
and outdoor locations at each site, including areas under 
a Thai house, animal shed, and chicken coop; around 
termite mounds; under coconut trees; and within shrub-
bery. The traps were set approximately 0.5 to 1.5 m above 
the ground and operated from 6:00 p.m. to 6:00 a.m. the 
following morning. Collections at each site spanned an 
average of 3 nights before being transported to the labo-
ratory for further processing. Insects collected from the 
light traps were anesthetized at −  20 °C for 30 min. All 
sand flies were morphologically differentiated according 
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to their gender under a stereomicroscope (Olympus, 
Japan).

DNA extraction
Each individual sand fly was lysed in 200  µl lysis buffer 
supplemented with 20 µl proteinase K. The samples were 
then homogenized using a sterile plastic pestle. Genomic 
DNA extraction was performed utilizing commercially 
available Invisorb Spin Tissue Mini Kit (STRATEC 
molecular GmbH, Germany) following the manufactur-
er’s protocols. Subsequently, the DNA was eluted in 50 µl  
elution buffer. For long-term storage, the extracted DNA 
was maintained at − 80 °C.

Molecular identification of sand fly species
For sand fly DNA species identification, we employed 
primers CB3-PDR (5’ CAY-ATT-CAA​CCW​-GAA-TGA-
TA 3’) and N1N-PDR (5’ GGT-AYW-TTG-CCT​CGA​
-WTT-CGW-TAT-GA 3’) to amplify the cytochrome B 
(CytB) gene, resulting in a 500-bp amplicon, adhering to a 
methodology previously described by Ready et al. (1997) 
[33]. In brief, the PCR reaction mixture, with a total 
volume of 25 µl, included 12.5 µl 2X green PCR master 
mix direct-load (Biotechrabbit, Germany), 0.4 µl of each 
primer (10  pmol/μl), 8.7  µl deionized distilled water 
(ddH2O), and 3 µl DNA template. The ddH2O was used 
as a negative control. The PCR reaction program proto-
col was executed according to the following steps: initial 
denaturation at 94  °C for 3  min; followed by five cycles 
consisting of denaturation at 94  °C for 1 min, annealing 
at 40 °C for 1 min, and extension at 68 °C for 1 min; sub-
sequently, 35 cycles of denaturation at 94  °C for 1  min, 
annealing at 44  °C for 1 min, and extension at 68  °C for 
1  min; finally, a concluding extension step at 68  °C for 
10 min.

Detection of Leishmania and Trypanosoma parasite DNA
PCR amplification was annealed specifically to the 
nuclear ribosomal internal transcribed spacer 1 (ITS1) 
region of Leishmania parasites and the small subunit 
ribosomal ribonucleic acid (SSU rRNA) gene of Trypa-
nosoma parasites. For Leishmania spp., the reactions 
were performed using primers LeR: 5′ CCA-AGT-CAT-
CCA-TCG-CGA-CAC-G 3′ and LeF: 5′ TCC-GCC​CGA​
-AAG-TTC-ACC-GAT-A 3′, targeting a fragment of 
approximately 370 bp [34]. For Trypanosoma spp., a set 
of primers TRY927-F: 5′ AGA-AAC-ACG-GGA-G 3′ 
and TRY927-R: 5′ CTA-CTG-GGC-AGC-TTG-GA 3′ 
was applied to amplify approximately 900 bp as described 
by Noyes et al. (1999) [35]. PCR reactions were prepared 
in a total volume of 25 µl using green hot start PCR mas-
ter mix direct load (Biotechrabbit, Germany) in a PCR 

mastercycler (Eppendorf, Germany). The reaction con-
ditions included an initial denaturation step at 94 °C for 
4 min, followed by 40 cycles of denaturation at 94 °C for 
1 min, annealing at 65 °C for 1 min for the ITS1 gene or 
51.7  °C for the SSU rDNA gene, and extension at 72  °C 
for 1 min. Subsequently, a final extension step was con-
ducted at 72  °C for 7  min. The resulting PCR products 
underwent analysis by electrophoresis on a 1.5% agarose 
gel for 40  min at 100  V and were then visualized using 
Quantity One Quantification Analysis Software Version 
4.5.2 (Bio-Rad, USA).

Identification of mutations in the voltage‑gated sodium 
channel (Vgsc) region
The conserved primers Vssc8F (5′ AAT-GTG-GGA-
TTG-CAT-GCT-GG 3′) and Vssc1bR (5′ CGT-ATC-
ATT-GTC-TGC-AGT-TGG-T 3′) [36] were designed to 
amplify a genomic DNA fragment from the Vgsc domain 
II, segment 6. These primers were used to monitor the 
presence and frequency of the kdr mutations at codon 
1011, 1014, 1016, and 1020, specifically targeting muta-
tions I1011M, L1014F/S, V1016G, and F1020S in sand 
flies. Each amplification was conducted in a 25  μl PCR 
reaction mixture, which comprised 2X green PCR master 
mix direct load (Biotechrabbit, Germany), specific prim-
ers, ddH2O, and the DNA template. The thermocycling 
conditions were set as follows: an initial denaturation at 
95 °C for 5 min, followed by 35 cycles of 96 °C for 30 s, 
56 °C for 30 s, and 72 °C for 30 s, concluding with a final 
extension at 72 °C for 5 min. The complete Vgsc sequence 
of Musca domestica (house fly) (accession no. X96668) 
and partial sequences of Phlebotomus argentipes (acces-
sion nos. KY114616-KY114619) were obtained from 
GenBank.

Gel purification and sequencing
The corresponding bands from the gels, which exhib-
ited clear, single bands, were purified using ExoSAP-IT 
(Biotechrabbit, Germany), following the manufacturer’s 
instructions. In cases where positive bands displayed 
multiple bands on gel electrophoresis, they were excised 
from the gels and purified using the agarose gel DNA 
purification kit Invisorb Fragment CleanUp (STRATEC 
molecular GmbH, Germany), following the manufactur-
er’s instructions. Subsequently, the purified DNA sam-
ples were sent for direct DNA sequencing to Macrogen, 
Inc. (Macrogen Inc., South Korea).

DNA cloning and sequencing
For faint or multiple bands on gel electrophoresis, PCR 
amplicons were ligated into pGEM-T Easy Vector (Pro-
mega, USA). The ligation reaction mixture consisted of 
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5  µl of  2X Rapid ligation buffer, 3  µl of  PCR products, 
1 µl of pGEM-T Easy Vector, and 1 µl of  ddH2O. Subse-
quently, the ligated vector was transformed into DH5α 
competent cells, and chimeric plasmids were screened 
using the blue-white colony selection system. Suspected 
positive colonies were cultured and utilized for further 
plasmid DNA extraction, employing the Invisorb Spin 
Plasmid Mini kit (STRATEC Molecular GmbH, Ger-
many), following the manufacturer’s instructions. Puri-
fied plasmids were then forwarded to Macrogen, Inc. 
(South Korea) for Sanger sequencing service using the 
universal forward T7 primer.

Sequences and phylogenetic analysis
Nucleotide sequences were analyzed using BioEdit 
Sequence Alignment Editor, version 7.0.9.0; the consen-
sus sequences were compared with available sequence 
data in the GenBank by BLAST search (available at 
http://​www.​ncbi.​nlm.​gov/​BLAST). This tool searches 
nucleotide databases using % nucleotide queries and 
identity. Phylogenetic trees were generated using the 
maximum-likelihood method with IQ-TREE on the IQ-
TREE web server (http://​iqtree.​cibiv.​univie.​ac.​at/) with 
1000 ultrafast bootstrap replicates. The best fit model of 
substitution was identified using the auto function on the 
IQ-TREE web server (http://​iqtree.​cibiv.​univie.​ac.​at/). 
The phylogenetic tree is finally viewed and edited with 
FigTree version 1.4.4 (http://​tree.​bio.​ed.​ac.​uk/​softw​are/​
figtr​ee/).

Statistical analyses
Descriptive statistics were used to determine the esti-
mated prevalence, expressed as a percentage. The preva-
lence calculation employed a formula established from 
a pilot study and a previous publication by our team. A 
95% confidence interval was used. In simpler terms, the 
prevalence was calculated by dividing the number of sand 
flies collected during the survey by the total number of 
sand fly samples. All statistical analyses were conducted 
using Microsoft Excel 2019 (Microsoft Corp., USA).

Results
Molecular identification of sand fly species
A total of 121 female sand flies were collected for this 
study, with 62 (51.2%) samples obtained from Natawi dis-
trict and 59 (48.8%) from Sadao district. Molecular iden-
tification revealed these sand flies belonged to two genera 
and nine species. In the Natawi, the identified species 
included Phlebotomus stantoni, Sergentomyia barraudi, 
Se. khawi, Se. hivernus, and Sergentomyia sp. Sadao dis-
trict had Phlebotomus betisi, Sergentomyia barraudi, 
Se. khawi, Se. bailyi, Se. anodontis, and Se. slyertica. 
The composition of sand fly fauna exhibited distinctive 

characteristics in each district. Phlebotomus stantoni, Se. 
hivernus, and Sergentomyia sp. were exclusively found 
in the Natawi district, whereas Ph. betisi, Se. bailyi, Se. 
anodontis, and Se. slyertica were identified solely in the 
Sadoa district. Notably, Se. khawi was the most preva-
lent species in both districts, accounting for 40 out of 
62 samples in Natawi and 35 out of 59 samples in Sadao 
(see Additional file 1). The phylogenetic tree constructed 
based on the CytB gene of sand fly species revealed a 
well-supported clade, providing clear insights into the 
relationships among various sand fly species, including 
Se. khawi, Se. anodontis, Se. hivernus, Se. barraudi, Se. 
slyertica, Sergentomyia sp., Se. bailyi, Ph. stantoni, and 
Ph. betisi. Interestingly, four specimens of Sergentomyia 
sp. from the Natawi clustered with sand flies previously 
recorded in the Lao People’s Democratic Republic (Lao 
PDR), specifically referenced as IP-Laos-IPH-20160335 
(accession no. MK651804) and IP-Laos-IPH-20160336 
(accession no. MK651805). The analysis of Se. khawi 
from both the Natawi and Sadao districts revealed sig-
nificant genetic diversity (0.5–3%). Notably, a subset of 
Se. khawi from the Sadao formed a distinct sister clade 
separate from the major Se. khawi clade (Fig. 1).

Molecular detection of Leishmania and Trypanosoma 
parasites in sand flies
All female sand flies were tested for Leishmania spp. 
and Trypanosoma spp. infection using ITS1-PCR and 
SSU rRNA-PCR, respectively. In Natawi district, three 
samples of Se. khawi tested positive for L. martiniquen-
sis, while four samples of Se. khawi were positive for 
Trypanosoma sp. In Sadao, only one Se. khawi sample 
was positive for L. orientalis, showing a 99.66% identity 
to L. orientalis (isolate PCM2, accession no. JX195640) 
and a 99.60% identity to L. orientalis (isolate MHOM/
TH/2021/CULE5, accession no. ON303842). The ITS1 
sequences of Leishmania spp. were analyzed using phy-
logenetic analysis alongside representative sequences 
of various strains and species. The findings distinctly 
revealed the classification of all samples into two dis-
tinct groups, L. martiniquensis and L. orientalis, within 
the same clade as reference sequences belonging to the 
Mundinia subgenus. These groups were notably sepa-
rate from other species complexes within the subgenera 
Leishmania, Viannia, Sauroleishmania, and Paraleish-
mania (Fig. 2A). Furthermore, phylogenetic analysis of 
Trypanosoma species based on the SSU rRNA region 
demonstrated that all four sequences were distinctly 
classified within the Trypanosoma sp. isolated from 
sand flies in Thailand. Additionally, we observed two 
distinct groups of Trypanosoma sp. The first group 
was previously identified in Se. khawi collected from 
Chantaburi, Thailand (accession no. ON680850 and 

http://www.ncbi.nlm.gov/BLAST
http://iqtree.cibiv.univie.ac.at/
http://iqtree.cibiv.univie.ac.at/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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ON680863) and exhibited a close relationship with 
the amphibian trypanosome group. Meanwhile, the 
second group exhibited similarities to Trypanosoma 
sp. found in Se. khawi collected from Songkhla, Thai-
land (accession no. MH989552) (Fig. 2B). Interestingly, 
Trypanosoma parasites demonstrated host specific-
ity, as evidenced by their distinct separation within the 

phylogenetic tree based on their respective hosts. The 
sequences generated in this study were deposited in the 
NCBI GenBank database with the following accession 
numbers: PP860607-PP860610 for Trypanosoma sp., 
PP862807 for L. orientalis, and PP862808-PP862810 for 
L. martiniquensis.

Fig. 1  The phylogenetic tree of CytB gene sequences among various sand fly species. The tree was constructed using IQ-TREE 
with maximum-likelihood bootstrap support (1000 replicates). The best-fit substitution model was determined using the auto function 
on the IQ-TREE web platform. Sequences from the Natawi and Sadao districts are differentiated by blue and red colors, respectively
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Assessment of insecticide resistance mutations in sand 
flies
The sequences of the 75 Vgsc domain IIS6 from Se. 
khawi were processed by intron removal and exon 
splicing to generate the translated amino acid sequence 

(Fig.  3A). The results revealed that all 75 samples 
(100%) showed no kdr mutation at codon 1014 with the 
presence of the wild-type allele (leucine, TTA). There 
was no replacement of leucine with serine (L1014S, 
TCA) or with phenylalanine (L1014F), which can occur 

Fig. 2  Phylogenetic trees representing the ITS1 gene of Leishmania spp. A and SSU rRNA gene of Trypanosoma spp. B. These trees were constructed 
using IQ-TREE with maximum-likelihood bootstrap support (1000 replicates). Sequences from the Natawi and Sadao districts are distinguished 
by blue and red colors, respectively
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through two alleles (TTC and TTT), compared to ref-
erences sequences. Moreover, only wild-type alleles 
were identified at codons 1011I/I (isoleucine, ATT), 
1016  V/V (valine, GTT), and 1020F/F (phenylalanine, 
TTC) in all samples (Fig. 3B and C).

Discussion
Numerous cases of leishmaniasis have been reported in 
southern Thailand [37, 38], underlining the importance 
of comprehensive sand fly surveys in these areas. While 
previous surveys documented a variety of sand fly species, 

Fig. 3  Chromatograms of homozygous genotypes demonstrating nucleotide sequencing (A), sequence alignment of the domain IIS6 fragment 
of Vgsc in Sergentomyia khawi for nucleotide sequences (B) and amino acid (C). The alignment includes the wild type of Musca domestica (accession 
number: X96668) and Phlebotomus argentipes (accession nos; KY114616–KY114619), highlighting amino acid positions 1011, 1014, 1016, and 1020 
and nucleotide sequences indicated by a vertical column
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misidentification remains a significant challenge [39]. 
Furthermore, challenges arise from cryptic species com-
plexes and subtle morphological differences, leading to 
misidentification as reported in numerous studies. Preati-
vatanyou et al. (2023) highlighted the ambiguity between 
Sergentomyia gemmea and Se. khawi [40], while Phuphisut 
et al. (2021) provided evidence of misidentification of Se. 
gemmea as Se. iyengari and vice versa [41]. Additionally, 
Vu et al. (2021) proposed that the historical records of Se. 
iyengari in Southeast Asia may actually be relevant to Se. 
khawi [42]. The taxonomy of these species has been further 
confounded by the synonymization of Se. iyengari with Se. 
hivernus [30]. Utilizing molecular techniques that target 
both mitochondrial and nuclear DNA for sand fly species 
identification serves as a valuable and practical solution 
for resource conservation while confirming species iden-
tities [43, 44]. This approach enables additional molecular 
investigations, facilitating the generation of data on patho-
gen detection and identification of insecticide resistance 
mutations. In this study, the CytB gene identified sand fly 
species, revealing Se. khawi as the predominant species in 
both districts, with unique species distribution and domi-
nant species in each area. Interestingly, Sergentomyia spp. 
grouped with sand flies reported in the Lao PDR [39], 
and specific Se. khawi specimens from the Sadao district 
formed a unique sister clade distinct from the primary 
Se. khawi clade. Rispail and Léger (1998) revealed the 
genus Sergentomyia as having the highest level of diversity 
among sand flies [7]. The diversity of sand fly fauna, with 
comparable species compositions across various environ-
ments within each area [45], suggests that the interaction 
between caves and their surroundings plays a significant 
role in sustaining sand fly communities.

In our molecular detection of pathogens in sand flies, 
we found Leishmania parasites (L. orientalis and L. mar-
tiniquensis) as well as Trypanosoma   parasites  (Trypano-
soma sp.)  in Se. khawi. A previous report from Thailand 
detected L. martiniquensis DNA in various sand fly spe-
cies, including Se. gammae [46], Se. (Parrotomyia) bar-
raudi [18], Se. khawi [19], and Grassomyia indica [40], 
all collected from the southern region. To the best of our 
knowledge, this study provides the first report of L. ori-
entalis DNA detected in Se. khawi in southern Thailand. 
This aligns with report of an autochthonous visceral leish-
maniasis case involving the L. orientalis strain PCM2 
(formerly named L. siamensis) isolated from Trang prov-
ince, southern Thailand [47]. These results suggest that 
Se. khawi may serve as a potential vector for Leishmania 
parasites within the Mundinia subgenus. However, dissec-
tions were not performed in this study to confirm the pres-
ence of metacyclic promastigotes in the sand flies. In Se. 
khawi, our analysis of Trypanosoma  species using the SSU 
rRNA gene identified two distinct groups of Trypanosoma 

sp. Interestingly, two samples from one group clustered 
closely with the amphibian trypanosome group. The pre-
vious report demonstrated that Trypanosoma sp. isolated 
from Se. khawi in this same area in 2018 exhibited the 
highest genetic differentiation, primarily being isolated 
from various Amazonian amphibian species [40]. How-
ever, a detection of an unknown Trypanosoma sp., geneti-
cally related to rodent-infecting T. microti and T. kuseli, 
was reported in Ph. stantoni collected from Songkhla 
province [30]. Srisuton et al. (2019) investigated that Tryp-
anosoma noyesi had been identified in Se. anodontis and 
Phlebotomus asperulus [19]. Furthermore, sand flies from 
several species, including Se. khawi, Gr. indica, Se. ano-
dontis, Ph. asperulus, and Ph. betisi, harbored an unidenti-
fied Trypanosoma species across all study areas. Notably, 
a co-infection sample of L. martiniquensis and Trypano-
soma was discovered in Se. khawi from Songkhla Province. 
As aforementioned, the results indicate the ongoing circu-
lation of Leishmania and Trypanosoma parasites in sand 
flies, especially Se. khawi, which could potentially result in 
future disease transmission to humans and animals.

Preventing sand fly-borne diseases relies significantly 
on effective vector control measures. Disease control 
primarily involves interrupting disease transmission by 
reducing the sand fly population. In Thailand, insecti-
cide spraying is a widely used method of vector control, 
while pyrethroids are commonly used to target adult and 
immature stages of mosquitoes [31]. However, no spe-
cific sand fly control program using insecticides exists in 
the country. Consequently, data on sand fly insecticide 
resistance are not available. This study encouragingly 
revealed that Se. khawi showed no presence of known 
pyrethroid resistance mutations (I1011M, L1014F/S, 
V1016G, and F1020S) in the Vgsc gene. Unfortunately, 
due to limitations in rearing sand flies in the laboratory, 
we were unable to conduct bioassays to determine pyre-
throid resistance phenotype. Therefore, we strongly rec-
ommend that future studies perform phenotypic analysis 
followed by determining the molecular mechanisms of 
resistance. Interestingly, a previous study reported that 
Phlebotomus perfiliewi, the primary vector of L. infan-
tum in Northern Italy, showed the absence of mutations 
in the Vgsc gene, including I1011M, L1014F/S, V1016G, 
or F1020S [48]. Conversely, Ph. argentipes collected from 
Bangladesh showed mutant alleles (L1014F/S), but no 
mutations were detected at codons 1011, 1016, and 1020 
[49]. Historically, sand flies have been considered gener-
ally susceptible to insecticides. However, DDT resistance 
in Ph. argentipes and Ph. papatasi was reported in 1979 
in Bihar, India [50]. Amelia-Yap et al. (2018) revealed that 
over 37 resistance-associated kdr-type mutations or com-
binations of mutations have been detected in pyrethroid 
and DDT-resistant insect populations [51]. Recently, 
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two kdr mutations at codon 1014 (L1014F and L1014S) 
have been investigated in sand flies in India, located in 
the same codon regions as described in mosquitoes [36]. 
L1014F is the most common kdr mutation in insects, 
whereas L1014S has only been found in mosquitoes [52]. 
Pathirage et al. (2020) investigated the insecticide suscep-
tibility status of Ph. argentipes in Sri Lanka for the first 
time, examining metabolic and genetic mechanisms that 
may confer insecticide resistance [53]. In 2024, the kdr 
mutation L1014F and L1014S was detected in Phleboto-
mus papatasi and Ph. tobbi, but no kdr mutations were 
found in the Ph. caucasicus, Ph. perfiliewi, and Ph. ser-
genti in Armenia [54]. Currently, the lack of knowledge 
regarding the status of pyrethroid resistance in Thai sand 
flies hinders effective vector control. Here, we propose 
the first investigation of molecular markers in sand fly 
populations from Thailand to determine their pyrethroid 
resistance status using molecular genotyping assays tar-
geting known resistance markers.

The information from this study can provide valuable 
insights into the prevalence of parasites in the sand fly 
population, the potential role of specific sand fly species 
as a vector in endemic areas of leishmaniasis, and insecti-
cide resistance status of sand flies in Thailand. Neverthe-
less, future studies should conduct extensive surveys and 
collect samples from various locations across Thailand 
for a more comprehensive analysis.

Conclusions
The current study indicated Leishmania and Trypa-
nosoma parasites circulating in sand flies at Songkhla, 
southern Thailand. Notably, L. orientalis was first identi-
fied in Se. khawi, highlighting a potential vector for this 
parasite in the region. However, kdr mutations in Vgsc 
region were not observed in the predominant Se. khawi. 
The establishment of geo-spatial information on vectors, 
Leishmania and Trypanosoma parasites, and the insec-
ticide resistance status in sand flies has the potential to 
significantly improve risk assessments and guide targeted 
vector control efforts in Thailand.
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