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Abstract

Background: Reliable maps of the geographical distribution, number of infected individuals and burden estimates
of schistosomiasis are essential tools to plan, monitor and evaluate control programmes. Large-scale disease
mapping and prediction efforts rely on compiled historical survey data obtained from the peer-reviewed literature
and unpublished reports. Schistosomiasis surveys usually focus on school-aged children, whereas some surveys
include entire communities. However, data are often reported for non-standard age groups or entire study
populations. Existing geostatistical models ignore either the age-dependence of the disease risk or omit surveys
considered too heterogeneous.

Methods: We developed Bayesian geostatistical models and analysed existing schistosomiasis prevalence data by
estimating alignment factors to relate surveys on individuals aged ≤ 20 years with surveys on individuals aged >
20 years and entire communities. Schistosomiasis prevalence data for 11 countries in the eastern African region
were extracted from an open-access global database pertaining to neglected tropical diseases. We assumed that
alignment factors were constant for the whole region or a specific country.

Results: Regional alignment factors indicated that the risk of a Schistosoma haematobium infection in individuals
aged > 20 years and in entire communities is smaller than in individuals ≤ 20 years, 0.83 and 0.91, respectively.
Country-specific alignment factors varied from 0.79 (Ethiopia) to 1.06 (Zambia) for community-based surveys. For S.
mansoni, the regional alignment factor for entire communities was 0.96 with country-specific factors ranging from
0.84 (Burundi) to 1.13 (Uganda).

Conclusions: The proposed approach could be used to align inherent age-heterogeneity between school-based
and community-based schistosomiasis surveys to render compiled data for risk mapping and prediction more
accurate.

Background
An estimated 200 million individuals are infected with
Schistosoma spp. in Africa, and yet schistosomiasis is
often neglected [1]. The global strategy to control schis-
tosomiasis and several other neglected tropical diseases
(NTDs) is the repeated large-scale administration of
anthelminthic drugs to at-risk populations, an approach
phrased ‘preventive chemotherapy’ [2,3]. The design,
implementation, monitoring and evaluation of schistoso-
miasis control activities require knowledge of the

geographical distribution, number of infected people
and disease burden at high spatial resolution.
In the absence of contemporary surveys, large-scale

empirical risk mapping heavily relies on analyses of his-
torical survey data. For example, Brooker et al. [4] com-
piled survey data and presented schistosomiasis (and
soil-transmitted helminthiasis) risk maps within the glo-
bal atlas of helminth infections (GAHI) project (http://
www.thiswormyworld.org/). The GAHI database, how-
ever, is not fully open-access, and country-specific pre-
dictive risk maps only show probabilities of infection
prevalence below and above pre-set thresholds where
preventive chemotherapy is warranted (e.g. > 50% of
school-aged children infected, which demand annual
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deworming of all school-aged children and adults con-
sidered to be at risk) [2]. Starting in late 2006, the Eur-
opean Union (EU)-funded CONTRAST project
developed a global database pertaining to NTDs, the
GNTD database (http://www.gntd.org) [5]. This open-
access database compiled raw survey data from pub-
lished (i.e. peer-reviewed literature) and unpublished
sources (e.g. Ministry of Health reports). It is continu-
ously updated and data can be downloaded as soon as
they are entered in the database. In early 2011, the
GNTD database consisted of more than 12,000 survey
locations for schistosomiasis in Africa [5]. The database
has already been utilised for high-spatial resolution
schistosomiasis risk mapping and prediction in West
Africa [6] and East/southern Africa.
An important drawback of data compilation is the lack

of homogeneity and comparability between surveys, such
as target population (different age groups), time of sur-
vey, diagnostic method employed, among other issues.
The GNTD database is populated with schistosomiasis
prevalence surveys conducted in schools, as well as in
entire communities, involving different, sometimes over-
lapping age-groups [5]. However, each population sub-
group carries a different risk of infection, with school-
aged children and adolescence known to carry the high-
est risk of infection [7,8]. Simple pooling of this type of
studies is likely to result in incorrect disease risk
estimates.
Schistosomiasis survey data are correlated in space

because the disease transmission is driven by environ-
mental factors [9-11]. However, standard statistical
modelling approaches assume independence between
locations, which could result in inaccurate model esti-
mates [12]. Geostatistical models take into account
potential spatial clustering by introducing location-spe-
cific random effects and are estimated using Markov
chain Monte Carlo (MCMC) simulations [13]. Geostatis-
tical models have been applied on compiled survey data
for disease risk prediction, for example in malaria
[14-16] and helminth infections, including schistosomia-
sis [6,17].
Age-heterogeneity of survey data has been addressed

in geostatistical modelling by omitting those surveys
which consist of particularly heterogeneous age-groups
[6,15]. As a result, the number of survey locations
included in the analysis is reduced, and hence model
accuracy is lowered, especially in regions with sparse
data. Gemperli et al. [18] used mathematical transmis-
sion models to convert age-heterogeneous malaria pre-
valence data to a common age-independent malaria
transmission measure. This approach has been further
developed by Gosoniu [19] and Hay et al. [16]. To our
knowledge, the age-heterogeneity problem has yet to be
investigated in schistosomiasis.

In this paper, we developed Bayesian geostatistical
models, which take into account age-heterogeneity by
incorporating alignment factors to relate schistosomiasis
prevalence data from surveys on individuals aged ≤ 20
years with surveys on individuals > 20 years and entire
communities. Different models were implemented
assuming regional and country-specific alignment fac-
tors. The predictive performance of the models was
assessed using a suite of model validation approaches.
Our analysis is stratified for Schistosoma haematobium
and S. mansoni with a geographical focus on eastern
Africa.

Methods
Disease data
Prevalence data of S. haematobium and S. mansoni from
11 countries in eastern Africa were extracted from the
GNTD database. We excluded non-direct diagnostic
examination techniques, such as immunofluorescence
tests, antigen detections or questionnaire data. Hospital-
based studies and data on non-representative groups,
such as HIV positives, are not part of the GNTD data-
base [5].
The remaining data were split into three groups and

stratified for the two Schistosoma species according to
study type. The three groups correspond to surveys on
(i) individuals aged ≤ 20 years, (ii) individuals > 20 years
and (iii) entire community surveys. In case a survey con-
tained prevalence data on multiple age groups, we sepa-
rated the data according to groups (i) and (ii).
Preliminary analyses suggested only weak temporal

correlation in the data for either Schistosoma species.
Hence, spatial models instead of spatio-temporal models
were fitted in the subsequent analyses employing the
study year only as a covariate. We grouped the study
years as follows: surveys conducted (i) before 1980; (ii)
between 1980 and 1989; (iii) between 1990 and 1999;
and (iv) from 2000 onwards.

Environmental data
Freely accessible remote sensing data on climatic and
other environmental factors were obtained from differ-
ent sources, as shown in Table 1. Data with temporal
variation were obtained from launch until the end of
2009 and summarised as overall averages for the avail-
able period. Estimates for day and night temperature
were extracted from land surface temperature (LST)
data. The normalized difference vegetation index
(NDVI) was used as a proxy for vegetation. Land cover
categories were restructured into six categories: (i)
shrublands and savannah; (ii) forested areas; (iii) grass-
lands; (iv) croplands; (v) urbanized areas; and (vi) wet
areas. Digitized maps of rivers and lakes were combined
as a single freshwater map covering the study area.
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Characteristics on perennial and seasonal water bodies
at each survey location were obtained using the spatial
join function of ArcMap version 9.2. In addition, the
minimum distance between the locations and the closest
freshwater source was calculated with the same
function.
All data were used as covariates for modelling. Con-

tinuous covariates were categorized based on quartiles
in order to account for potential non-linear outcome-
predictor relations. Processing and extraction of the cli-
matic and environmental data at the survey locations
was performed in ArcMap version 9.2, IDRISI 32 and
the Modis Reprojection Tool.

Geostatistical model formulation and age-alignment
Let Yi be the number of infected individuals and Ni the
number of individuals screened at location i (i = 1,..., n).
We assumed that Yi arises from a Binomial distribution,
i.e. Yi~Bin(pi,Ni), with probability of infection.pi We
introduced covariates Xi on the logit scale, such as
log it(pi) = XT

i β , where β is the vector of regression
coefficients. Unobserved spatial variation can be mod-
elled via additional location-specific random effects, �i.
We assumed that ϕ = (ϕ1, . . . ,ϕn)T arises from a latent

stationary Gaussian spatial process, ϕ ∼ MVN(0, σ 2R)
with correlation matrix R modelling geographical depen-
dence between any pairs of locations i and j via an iso-
tropic exponential correlation function, defined by Rij =
exp(-rdij), where dij is the distance between i and j, r a
correlation decay parameter and s2 the spatial variance.
A measurement error can also be introduced via loca-
tion-specific non-spatial random effects, εi, such as εi~N
(0, τ2), with non-spatial variance τ2.
We aligned the risk measured by the different types of

studies by incorporating a factor as such that Yis~Bin(qi,
s,Ni,s), with qi,s = aspi and s = 1 (surveys with individuals

aged ≤ 20 years); s = 2 (surveys with individuals aged >
20 years); and s = 3 (entire community surveys). School-
aged children carry the highest risk of Schistosoma
infection, and hence many studies focus on this age
group. We set a1 = 1 in order to use the probability of
infection for individuals aged ≤ 20 years as baseline and
to align the other groups to this designated baseline.
To complete Bayesian model formulation, we assumed

non-informative priors for all parameters. Normal prior
distributions with mean 0 and large variance were used
for the regression coefficients, β . Non-informative
Gamma distributions with mean 1 were assumed for the
variance parameters, s2, τ2 and the alignment factors as,
while a uniform distribution was implemented for the
spatial decay parameter r.
Models were developed in OpenBUGS version 3.0.2

(OpenBUGS Foundation; London, UK) and run with
two chains and a burn-in of 5000 iterations. Conver-
gence was assessed by inspection of ergodic averages of
selected model parameters and history plots. After con-
vergence, samples of 500 iterations per chain with a
thinning of 10 were extracted for each model resulting
in a final sample of 1000 estimates per parameter.

Model types
We implemented four different models, separately for S.
haematobium and S. mansoni. The models varied based
on different features. The first feature was the underly-
ing data. Model A only consisted of schistosomiasis pre-
valence data on individuals aged ≤ 20 years (s = 1),
while models B-D included data on all three kinds of
study types (s = 1,2,3). The second feature was the
introduction of alignment factors for disease risk model-
ling. Model C assumed common alignment factors
across the entire study region, while model D assumed
country-specific alignment factors.

Model validation
Validation for each model was carried out to identify the
model with the highest predictive ability for either Schis-
tosoma species and to compare models with and with-
out alignment factors. All models were fitted on a
subset of the data (training set) and validated by com-
paring the posterior median of the predicted risk p∗

j with
the observed risk Pj for the remaining set of the data
(test set, j = 1,...,m, m <n). The test set consisted of 20%
of the locations from the dataset on individuals aged ≤
20 years and was congruent over all models.
Comparisons of predicted vs. observed risk were based

on three different validation approaches. Mean absolute
errors (MAE) calculate the absolute difference between
observed and predicted schistosomiasis risk by

MAE =
1
m

m∑
j=1

∣∣∣p∗
j − pj

∣∣∣. An alternative way to quantify

Table 1 Remote sensing data sourcesa

Data type Source Date Temporal
resolution

Spatial
resolution

LST MODIS/Terra1 2000-2009 8-days 1 km

NDVI MODIS/Terra1 2000-2009 16-days 1 km

Land cover MODIS/Terra1 2001-2004 Yearly 1 km

Rainfall ADDS2 2000-2009 10-days 8 km

Altitude DEM3 - - 1 km

Water bodies HealthMapper4 - - Unknown
a All data accessed on 3 February 2011
1 Moderate Resolution Imaging Spectroradiometer (MODIS) (https://lpdaac.
usgs.gov/lpdaac/products/modis_products_table)
2 African Data Dissemination Service (ADDS) (http://earlywarning.usgs.gov/
fews/africa/index.php)
3 Digital elevation model (DEM) (http://edc.usgs.gov/#/Find_Data/
Products_and_Data_Available/gtopo30/hydro/)
4 HealthMapper database (http://gis.emro.who.int/PublicHealthMappingGIS/
HealthMapper.aspx)
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divergences in the predictions to the observed data is

the c2 measure, defined as χ2 =
1
m

m∑
j=1

(
p∗
j − pj

)2

pj
. The

best predicting model based on these two methods is
the model with smallest MAE and c2 estimates and
therefore with predictions closest to the observed values.
The proportion of the test data being correctly pre-

dicted within the q-th Bayesian credible interval (BCIq)
of the posterior predictive distribution is calculated by

BCIq =
1
m

m∑
j=1

min
(
I
(
cilj(q) < pj

)
, I

(
ciuj(q) > pj

))
, with q

= 50%, 70%, 90% and 95%. For this approach, the best
performing model contains most test locations within
BCIs of smallest width.

Results
Schistosomiasis prevalence data
Figure 1 shows the distribution of the observed schisto-
somiasis prevalence data over the study region, stratified
by study type. An overview of the amount of observed

data and mean prevalence levels per country for either
Schistosoma species, stratified by survey period and
diagnostic methods, is given in Table 2. Some countries
(e.g. Kenya and Tanzania), contain large numbers of
survey locations, while other countries, such as Burundi,
Eritrea, Rwanda, Somalia and Sudan, are not well cov-
ered. Burundi and Rwanda do not include any locations
for S. haematobium, and Rwanda contains only four
surveys on individuals aged > 20 years for S. mansoni.
As expected, there were more surveys carried out with
individuals aged ≤ 20 years than surveys focussing on
adult populations or entire communities.
The mean prevalence per country for surveys on indi-

viduals aged ≤ 20 years varies between 0% (Eritrea) and
53.9% (Malawi) for S. haematobium and between 0%
(Somalia) and 61.6% (Sudan) for S. mansoni. We found
an overall mean prevalence of S. haematobium and S.
mansoni of 32.8% and 23.2%, respectively. Community
surveys usually showed higher mean prevalence levels.
However, the survey locations might not be the same
among the different types of studies and therefore the
observed prevalence levels are not directly comparable.

Figure 1 Compiled prevalence data of Schistosoma haematobium (A) and S. mansoni (B) across eastern Africa. Prevalence data are
stratified by three different age groups.
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Table 2 Overview of schistosomiasis surveys, stratified by survey year, diagnostic method, country and age group

Age* Survey year Diagnostic† TOTAL

< 1980 1980-
1989

1990-
1999

2000-
2009

S. haema-tobium UC RS

Burundi 1 - - - - - - -

2 - - - - - - -

3 - - - - - - -

Eritrea 1 0.0 (4) - - - 0.0 (4) - 0.0 (4)

2 0.0 (1) - - - 0.0 (1) - 0.0 (1)

3 0.0 (2) - - - 0.0 (2) - 0.0 (2)

Ethiopia 1 17.0 (7) 30.5 (6) 25.2 (18) - 22.7 (10) 22.2 (17) 24.4 (31)

2 15.0 (6) 27.6 (5) 16.4 (12) - 20.7 (11) 17.9 (6) 18.5 (23)

3 35.0 (3) 29.5 (4) 74.1 (1) - 38.4 (5) - 37.1 (8)

Kenya 1 21.0 (65) 52.8 (15) 54.0 (30) 40.6 (2) 34.4 (109) 37.5 (3) 34.5 (112)

2 22.7 (6) 49.6 (7) 30.3 (3) - 34.9 (15) 50.7 (1) 35.9 (16)

3 24.8 (7) 14.0 (25) 64.9 (2) 45.8 (6) 23.2 (40) - 23.3 (40)

Malawi 1 22.6 (2) - 55.5 (40) - 21.5 (6) 59.3 (36) 53.9 (42)

2 48.2 (7) 34.3 (8) 75.0 (1) 31.6 (5) 36.4 (17) 31.5 (1) 40.2 (21)

3 31.4 (1) - - - 31.4 (1) - 31.4 (1)

Rwanda 1 - - - - - - -

2 - - - - - - -

3 - - - - - - -

Somalia 1 39.4 (11) - - - 39.4 (11) - 39.4 (11)

2 55.5 (22) 87.1 (1) - - 56.9 (23) - 56.9 (23)

3 53.1 (21) - - - 53.1 (21) - 53.1 (21)

Sudan 1 5.2 (1) 45.3 (3) - - 31.2 (2) - 35.2 (4)

2 - 1.8 (7) - 53.0 (3) 10.7 (8) - 17.2 (10)

3 1.8 (2) 20.6 (2) - - 20.6 (2) - 11.2 (4)

Tanzania 1 41.5 (48) 39.9 (173) 30.2 (12) 20.0 (84) 30.6 (173) 59.8 (73) 34.5 (317)

2 45.5 (41) 29.2 (9) 20.0 (8) 10.0 (2) 39.1 (47) - 38.5 (60)

3 47.1 (16) 30.3 (3) - 28.4 (3) 42.2 (20) - 42.3 (22)

Uganda 1 42.5 (2) - - 0.6 (36) 2.8 (38) - 2.8 (38)

2 9.8 (14) - - 0.8 (3) 8.7 (16) - 8.2 (17)

3 33.3 (2) - - 3.0 (2) 18.1 (4) - 18.1 (4)

Zambia 1 28.2 (22) 30.5 (11) 29.6 (32) 49.2 (4) 31.0 (38) 29.8 (31) 30.5 (69)

2 13.7 (30) 35.1 (6) 22.9 (5) 13.3 (1) 17.9 (42) - 17.9 (42)

3 17.0 (3) 62.4 (3) 35.5 (1) 32.5 (3) 37.1 (10) - 37.1 (10)

TOTAL 1 28.8 (162) 40.1 (208) 42.4 (132) 15.7 (126) 28.6 (391) 49.4 (160) 32.8 (628)

2 33.1 (127) 31.0 (43) 22.0 (29) 25.2 (14) 30.5 (180) 26.7 (8) 30.6 (213)

3 40.3 (57) 21.3 (37) 59.8 (4) 33.1 (14) 34.2 (105) - 33.8 (112)

S. mansoni KK SC

Burundi 1 - 16.4 (12) 38.3 (3) - 20.8 (15) - 20.8 (15)

2 - 20.8 (19) 44.1 (2) - 23.0 (21) - 23.0 (21)

3 - 19.8 (8) 50.5 (2) - 25.9 (10) - 25.9 (10)

Eritrea 1 12.5 (4) - - - - 12.5 (4) 12.5 (4)

2 10.0 (1) - - - - 10.0 (1) 10.0 (1)

3 41.7 (2) - - - - 41.7 (2) 41.7 (2)

Ethiopia 1 2.7 (27) 25.0 (23) 28.0 (51) 33.0 (4) 30.1 (69) 6.9 (36) 22.2 (105)

2 25.7 (15) 18.6 (93) 18.4 (36) 41.8 (7) 18.8 (100) 23.2 (50) 20.3 (151)

3 4.6 (9) 16.0 (8) 21.1 (62) 36.3 (4) 26.4 (28) 16.0 (55) 19.5 (83)

Kenya 1 18.6 (48) 72.8 (9) 74.3 (18) 53.8 (15) 68.4 (43) 8.7 (39) 41.0 (90)

2 49.2 (7) 75.2 (7) 36.0 (5) 33.3 (1) 65.4 (14) 28.1 (6) 54.2 (20)
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Two-third of the S. haematobium survey data were
obtained before the 1990s (66.5%), while few surveys were
compiled from 2000 onwards (16.2%). On the other hand,
S. mansoni surveys were mainly conducted in the 1980s
(32.7%) and from 2000 onwards (29.8%), whereas only
15.9% of the surveys were carried out in the 1990s. The
distribution of surveys within the different time periods
varies from country to country and between the two Schis-
tosoma species. While some countries (e.g. Eritrea and
Somalia) only have surveys for one or two periods, other
countries (e.g. Kenya, Tanzania and Zambia) are well cov-
ered over time. The data also vary in the diagnostic meth-
ods. For example, even though 67.4% of the S. mansoni
surveys with known diagnostic methods employed the
Kato-Katz thick smear method, in Somalia and Eritrea
only stool concentration methods (e.g. Ritchie technique
or ether-concentration technique) were used.

Model validation
For S. haematobium, model validation based on the
MAE measure (Table 3) showed no difference between

disease risk modelling on individuals aged ≤ 20 years
(model A) and unaligned modelling of all three survey
types (model B), while the c2 measure led to improved
predictions. The introduction of regional alignment fac-
tors in spatial modelling based on all survey types
(model C) further enhanced model predictive ability
based on the MAE and c2 measures. Model D, including
country-specific alignment factors, showed similar pre-
dictive performance as model B. Validation based on
different BCIs demonstrated that the proportion of cor-
rectly predicted test locations was similar among all
models. Model A predicted most test locations correctly
within the 95% BCI, while model C was superior for
50% BCIs and model D for 70% BCIs. Regardless of the
model used, average BCI widths were comparable.
For S. mansoni, model predictive performance in

terms of MAE and c2 measures was best for model C,
followed by models B and D. The differences among the
models for the BCI method were small and not consis-
tent between the examined BCIs. For example, at 70%
BCI, model A included least of the test locations, while

Table 2 Overview of schistosomiasis surveys, stratified by survey year, diagnostic method, country and age group
(Continued)

3 30.7 (15) 71.7 (9) 23.6 (2) - 69.8 (12) 22.5 (14) 44.3 (26)

Malawi 1 19.4 (1) 37.5 (2) 20.3 (6) - 30.8 (7) 0.4 (2) 24.0 (9)

2 17.9 (6) 36.8 (6) - - 35.3 (8) - 27.3 (12)

3 - - - - - - 25.9 (21)

Rwanda 1 - - - - - - -

2 - 4.6 (4) - - - - 4.6 (4)

3 - - - - - - -

Somalia 1 0.0 (3) - - - - 0.0 (3) 0.0 (3)

2 0.0 (2) - - - - 0.0 (2) 0.0 (2)

3 0.0 (3) 0.0 (2) - - - 0.0 (5) 0.0 (5)

Sudan 1 61.7 (4) 61.5 (4) - - 61.9 (6) - 61.6 (8)

2 62.3 (4) 64.9 (8) 47.0 (1) 56.3 (3) 65.8 (15) 0.3 (1) 61.7 (16)

3 41.0 (2) 52.3 (4) - - 50.5 (5) - 48.5 (6)

Tanzania 1 20.3 (27) 25.3 (4) 30.8 (7) 8.9 (77) 39.6 (17) 21.7 (21) 13.5 (115)

2 22.2 (26) 12.0 (1) 25.6 (3) 38.6 (5) 46.4 (6) 26.3 (18) 24.8 (35)

3 27.3 (14) 11.6 (1) 44.1 (3) 44.4 (3) 49.8 (5) 27.3 (14) 31.4 (21)

Uganda 1 48.0 (5) 48.7 (3) 14.5 (6) 22.1 (263) 22.2 (272) 48.0 (5) 22.7 (277)

2 24.2 (17) 56.3 (3) 66.7 (5) 40.8 (12) 49.6 (20) 20.9 (12) 37.9 (37)

3 41.7 (7) 47.8 (4) 45.0 (5) 55.8 (12) 50.5 (21) 47.0 (6) 48.3 (28)

Zambia 1 2.9 (16) 5.7 (7) 71.0 (1) 33.2 (1) 36.1 (4) 4.3 (10) 7.7 (25)

2 8.4 (30) 0.0 (1) - 41.7 (1) 41.7 (1) 8.1 (31) 9.2 (32)

3 5.0 (2) 9.5 (1) 60.1 (1) 33.5 (1) 34.4 (3) 5.0 (2) 22.6 (5)

TOTAL 1 16.6 (135) 31.8 (64) 36.7 (92) 20.7 (360) 29.5 (433) 11.5 (120) 23.2 (651)

2 21.7 (108) 25.3 (142) 26.8 (52) 42.0 (29) 31.7 (185) 19.1 (121) 25.8 (331)

3 25.0 (54) 28.6 (243) 24.9 (75) 49.1 (20) 41.7 (84) 19.9 (98) 29.7 (186)

Overall and country-specific mean observed prevalence data (expressed in %) are given, along with number of survey locations (in brackets) for both S.
haematobium and S. mansoni.

* 1, individuals aged ≤ 20 years; 2, individuals aged > 20 years; 3, entire communities
† UC, urine concentration by sedimentation, filtration or centrifugation; RS, reagent strips; KK, Kato-Katz thick smear method; SC, stool concentration methods.
Results for surveys with missing diagnostic methods were omitted.
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at 95% BCI, this model correctly predicted most of the
test locations but the averaged width of the BCI was
widest.

Alignment factors
Regional and country-specific schistosomiasis risk align-
ment factors for S. haematobium and S. mansoni are
presented in Table 4. Some countries had insufficient
data, and hence country-wide alignment factors could
not be estimated. A mean regional alignment factor of
0.83 (95% BCI: 0.81-0.85) confirmed that the risk of S.
haematobium in individuals aged ≤ 20 years is greater
than in individuals > 20 years. S. haematobium risk esti-
mation from entire community survey was related to
the risk of individuals aged ≤ 20 years with 0.91 (95%
BCI: 0.90-0.93). Mean country-specific alignment factors
varied from 0.62 (Ethiopia) to 1.26 (Zambia) among
individuals > 20 years and from 0.79 (Ethiopia) to 1.06
(Zambia) in entire communities. In Ethiopia and Sudan,
the country-specific alignment factors were significantly
smaller than the overall alignment factor, whereas in
Somalia and Zambia, country-specific factors were sig-
nificantly larger.
For S. mansoni, the mean regional alignment factor

among individuals aged > 20 years was 0.94 (95% BCI:
0.92-0.96), while country-specific estimates varied from
0.64 (Zambia) to 1.18 (Tanzania). In community surveys,
the regional alignment factor was 0.96 (95% BCI: 0.95-
0.98) with country-specific alignment factors between
0.84 (Burundi) and 1.13 (Uganda). Significantly smaller
country-specific alignment factors compared to the
overall alignment factor were found in Burundi, Ethiopia

and Zambia, while significantly larger factors were
obtained for Kenya, Tanzania and Uganda.
The regional alignment factor estimates for S. haema-

tobium compared to S. mansoni are much lower, e.g.
17% risk reduction for individuals aged > 20 years vs.
6% risk reduction. This relation is also found in coun-
try-specific estimates, except for Zambia.

Discussion
In this study, we derived factors to align schistosomiasis
prevalence estimates from age-heterogeneous surveys
across an ensemble of 11 countries in eastern Africa.
We found correction factors that are significantly differ-
ent from 1. As a result, geostatistical model-based pre-
dictions from school-based and community-based
surveys are further enhanced. The estimates of the
regional alignment factors confirm that individuals aged
≤ 20 years are at a higher risk of a Schistosoma infection
than adults [7,8,20]. Interestingly, the alignment factor
estimates for S. haematobium were slightly lower than
those for S. mansoni. This finding might be explained
by differences in the age-prevalence curves between the
two species. S. haematobium prevalence usually peaks in
the age group 10-15 years [21], while the peak of S.
mansoni prevalence occurs somewhat later, up to the
age of 20 years [22]. Consequently, there is a larger dif-
ference in infection risk between children and adults for
S. haematobium compared to S. mansoni. Additionally,
the peak of S. mansoni prevalence might be further
shifted towards older age groups due to the so-called
peak shift. Indeed, it has been shown that the peak of
infection prevalence is more flat and reaches its

Table 3 Model validation results based on MAE, c2 measure and BCIs

Model A Model B Model C Model D

Age groups ≤ 20 years All All All

Alignment - - Regional Country

S. haematobium

MAE 16.4 16.7 15.5 16.5

c2 126.4 95.7 72.6 96.6

50% BCI (width of BCI) 39.7 (24.8) 41.1 (24.3) 42.1 (25.2) 38.1 (24.5)

70% BCI (width of BCI) 57.1 (36.9) 57.1 (36.3) 61.1 (37.7) 61.9 (36.5)

90% BCI (width of BCI) 75.4 (54.1) 75.4 (53.5) 75.4 (54.7) 75.4 (53.9)

95% BCI (width of BCI) 84.9 (61.0) 81.0 (60.4) 79.4 (61.2) 80.2 (60.6)

S. mansoni

MAE 11.5 11.3 11.0 11.5

c2 48.3 46.8 39.7 43.1

50% BCI (width of BCI) 41.5 (18.5) 34.6 (16.1) 36.9 (15.2) 40.0 (16.4)

70% BCI (width of BCI) 57.7 (29.0) 60.8 (25.4) 60.8 (24.7) 60.8 (26.0)

90% BCI (width of BCI) 80.0 (47.6) 79.2 (41.3) 80.0 (41.6) 81.5 (44.0)

95% BCI (width of BCI) 88.5 (56.5) 84.6 (49.6) 83.8 (50.2) 83.8 (52.7)

BCI, Bayesian credible interval; MAE, mean absolute error.
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maximum in older age groups if transmission is low-to-
moderate, while prevalence peaks are higher and they
are observed at a younger mean age if transmission is
high [7]. Several African countries have implemented
large-scale preventive chemotherapy programmes
against schistosomiasis [3,23]. These programmes
reduced schistosomiasis-related morbidity [24] and
might have had some impact on transmission [25,26]. It
is therefore conceivable that the peak of Schistosoma
infection might slightly shift to older age groups. It

should also be noted that, disparities in the spatial risk
distribution of the two Schistosoma species and in the
implementation of control strategies in these areas
could have led to differences in the alignment factors.
Considerable differences between country-specific

alignment factors and prevalence ratios based on the
raw data were found for Ethiopia, Tanzania, Uganda and
Zambia in S. haematobium, and for Burundi and Zam-
bia in S. mansoni. These differences are mainly due to
the spatial distribution of the survey locations, which

Table 4 Overview of observed data and alignment factor results, stratified by country, Schistosoma species and age
group

S. haematobium S. mansoni

Age* N p Alignment factor N p Alignment factor

Burundi 1 0 - 1.00 15 20.8 1.00

2 0 - - 21 23.0 0.78 (0.71, 0.87)

3 0 - - 10 25.9 0.84 (0.76, 0.93)

Eritrea 1 4 0.0 1.00 4 12.5 1.00

2 1 0.0 - 1 10.0 -

3 2 0.0 - 2 41.7 -

Ethiopia 1 31 24.4 1.00 105 22.2 1.00

2 23 18.5 0.62 (0.55, 0.68) 151 20.3 0.71 (0.70, 0.73)

3 8 37.1 0.79 (0.72, 0.87) 83 19.5 0.85 (0.83, 0.88)

Kenya 1 112 34.5 1.00 90 41.0 1.00

2 16 35.9 0.84 (0.79, 0.89) 20 54.2 1.09 (1.05, 1.13)

3 40 23.2 0.86 (0.83, 0.89) 26 44.3 1.02 (0.99, 1.05)

Malawi 1 42 53.9 1.00 9 24.0 1.00

2 21 40.2 0.86 (0.82, 0.92) 12 27.3 -

3 1 31.4 - 0 - -

Rwanda 1 0 - 1.00 0 - 1.00

2 0 - - 4 4.6 -

3 0 - - 0 - -

Somalia 1 11 39.4 1.00 3 0.0 1.00

2 23 56.9 1.05 (0.95, 1.18) 2 0.0 -

3 21 53.1 1.02 (0.94, 1.12) 5 0.0 -

Sudan 1 4 35.2 1.00 8 61.6 1.00

2 10 17.2 0.69 (0.64, 0.74) 16 61.7 1.02 (0.94, 1.10)

3 4 11.2 - 6 48.5 1.00 (0.95, 1.06)

Tanzania 1 317 34.5 1.00 115 13.5 1.00

2 60 38.5 0.84 (0.82, 0.86) 35 24.8 1.18 (1.12, 1.24)

3 22 42.3 0.94 (0.91, 0.96) 21 31.4 1.13 (1.08, 1.17)

Uganda 1 38 2.8 1.00 277 22.7 1.00

2 17 8.2 0.89 (0.77, 1.03) 37 37.9 1.06 (1.01, 1.11)

3 4 18.1 - 28 48.3 1.01 (0.96, 1.04)

Zambia 1 69 30.5 1.00 25 7.7 1.00

2 42 17.9 1.26 (1.08, 1.43) 32 9.2 0.64 (0.49, 0.89)

3 10 37.1 1.06 (0.99, 1.13) 5 22.6 -

TOTAL 1 628 32.8 1.00 651 23.2 1.00

2 213 30.6 0.83 (0.81, 0.85) 331 25.8 0.94 (0.92, 0.96)

3 112 33.8 0.91 (0.90, 0.93) 186 29.7 0.96 (0.95, 0.98)

Overall and country-specific number of survey locations (N), mean observed prevalence (p) and alignment factor results (with 95% BCI given in brackets) per age
group and Schistosoma species.

* 1, individuals aged ≤ 20 years; 2, individuals aged > 20 years; 3, entire communities.
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vary between age groups. For example, surveys focussing
on individuals aged ≤ 20 years are located in central and
eastern Zambia, while surveys on individuals > 20 years
in Zambia are mainly located in the north of the coun-
try. The north is characterised by lower schistosomiasis
transmission risk. Therefore, the crude prevalence ratio
between the two groups is artificially small, while the
alignment factor, which is based on the predicted preva-
lence risk in this area, is much higher.
Model validation showed that regional alignment fac-

tors improved predictive performance of the models for
both Schistosoma species, however, country-specific
alignment factors did not further improve the models.
The predictive performance of the model with regional
factors was good, as 79.4% and 83.8% of the test loca-
tions were correctly predicted within 95% BCIs for S.
haematobium and S. mansoni, respectively. All models
estimated relatively wide BCIs, indicating large variation
in the data that could not be explained by the model
covariates. Socioeconomic and health system factors
might play a role in the spatial distribution of schistoso-
miasis, however these data do not exist at high spatial
distribution for the entire study area, and hence could
not be used for model fit and prediction. Part of the
variation might have arisen by the model assumptions
of stationarity and isotropy and the heterogeneity in the
diagnostic methods.
The proposed alignment factor approach is scaling the

predicted prevalence of schistosomiasis and leads to an
easy interpretation of the parameters. In addition, it
allows defining meaningful prior distributions, and
hence resulting in better model convergence. An alter-
native way to include age in the models is to introduce
age as a covariate. This approach is scaling the odds
instead of the prevalence. Preliminary analyses pre-
formed by the authors, on the same data using age as
covariate, resulted in serious model convergence pro-
blems, leading to the implementation of age alignment
factors as proposed in this manuscript.
A limitation of our work is the assumption of con-

stant disease risk within each age group. This is not
true especially for school-aged children for whom the
schistosomiasis risk reaches a maximum at around 11-
14 years. A more rigorous model formulation should
take into account the age-prevalence curve and stan-
dardise the surveys using a mathematical description
of this curve. Raso et al. [27] derived a Bayesian for-
mulation of the immigration-death model to obtain
age-specific prevalence of S. mansoni from age-preva-
lence curves. We are currently exploring geostatistical
models, coupled with mathematical immigration-death
models, to fully consider the age-dependence of the
schistosomiasis risk.

Conclusions
We have shown that age-alignment factors should be
included to improve prevalence estimates of population-
based risk of schistosomiasis, especially for large-scale
modelling and prediction efforts. Indeed, large-scale
modelling cannot be achieved without compilation of
primarily historical survey data assembled over large
study areas using different study designs and age groups.
The proposed alignment factor approach can be used to
relate the most frequent survey types, i.e. studies focuss-
ing on individuals aged ≤ 20 years (mainly school sur-
veys) with studies on individuals aged > 20 years and
entire communities. Un-aligned survey compilation
leads to imprecise disease risk estimates and potentially
wrong recommendations to decision makers for the
implementation of control activities and subsequent
monitoring and evaluation.
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