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Gene expression study using real-time PCR
identifies an NTR gene as a major marker of
resistance to benznidazole in Trypanosoma cruzi
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Abstract

probably in its mechanisms of action.

Background: Chagas disease is a neglected illness, with limited treatments, caused by the parasite Trypanosoma
cruzi. Two drugs are prescribed to treat the disease, nifurtimox and benznidazole, which have been previously
reported to have limited efficacy and the appearance of resistance by T. cruzi. Acquisition of drug-resistant
phenotypes is a complex physiological process based on single or multiple changes of the genes involved,

Results: The differential genes expression of a sensitive Trypanosoma cruzi strain and its induced in vitro
benznidazole-resistant phenotypes was studied. The stepwise increasing concentration of BZ in the parental strain
generated five different resistant populations assessed by the ICsq ranging from 1049 to 93.7 uM. The resistant
populations maintained their phenotype when the BZ was depleted from the culture for many passages.
Additionally, the benznidazole-resistant phenotypes presented a cross-resistance to nifurtimox but not to G418
sulfate. On the other hand, four of the five phenotypes resistant to different concentrations of drugs had different
expression levels for the 12 genes evaluated by real-time PCR. However, in the most resistant phenotype (TcR5x),
the levels of MRNA from these 12 genes and seven more were similar to the parental strain but not for NTR and
OYE genes, which were down-regulated and over-expressed, respectively. The number of copies for these two
genes was evaluated for the parental strain and the TcR5x phenotype, revealing that the NTR gene had lost a copy
in this last phenotype. No changes were found in the enzyme activity of CPR and SOD in the most resistant
population. Finally, there was no variability of genetic profiles among all the parasite populations evaluated by
performing low-stringency single-specific primer PCR (LSSP-PCR) and random amplified polymorphic DNA RAPD
techniques, indicating that no clonal selection or drastic genetic changes had occurred for the exposure to BZ.

Conclusion: Here, we propose NTR as the major marker of the appearance of resistance to BZ

Background

American trypanosomiasis, or Chagas disease, is a
neglected parasitic illness widely spread throughout the
Americas, from the Southern United States to Argentina
and Chile. Trypanosoma cruzi currently infects at least
7,694,500 individuals and between 60 and 80 million
remain at risk of 7. cruzi infection in endemic countries
[1,2]. There is no vaccine to prevent the infection and
chemotherapy is restricted to two nitroheterocyclic
compounds: nifurtimox (NFX (4[(5-nitrofurfurylidene)
amino]-3-methylthiomorpholine-1,1-dioxide) and
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benznidazole (BZ (N-benzyl-2-nitroimidazole-1-aceta-
mide) [3,4].

BZ is a nitroheterocyclic compound that contains a
nitro group linked to an imidazole ring. As a pro-drug,
BZ undergoes activation by enzymatic activity to have
cytotoxic effects within the parasite, which is catalyzed
by nitroreductases (NTRs) [5]. Because there are two
possible enzymes acting on it, there are two proposed
hypotheses for its toxic action. The first one postulates
the generation of reactive oxygen species (ROS) follow-
ing a one-electron reduction caused by NTR type II
enzymatic activity. Under aerobic conditions, this
induces the production of superoxide anions and causes
re-cycling of the drug [6]. However, it is now known
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that 7. cruzi possesses both enzymatic and non-enzy-
matic antioxidant defenses, making it unlikely that ROS
production affects the viability of the parasite, at least at
the doses used to treat the disease [7-11]. The second
hypothesis proposes a two-electron reduction of the
drug by NTR type I. This reaction goes through a
nitroso species, to a hydroxylamine derivative using
NADPH as a source of electron donors. Hydroxylamine
can react to produce a nitrenium cation, which induces
DNA strand breaks. Moreover, the high electrophilic
intermediaries may affect other molecules within the
cell [12]. There are two trypanosomal enzymes with this
type of activity: prostaglandin F2a synthase or old yel-
low enzyme (OYE), which mediates two-electron reduc-
tion in NFX under anaerobic conditions [13] and
nitroreductase I (NTR). This second enzyme has already
shown strong experimental evidence associated with
cross-resistance to NFX and BZ [5,12,14,15]. Despite the
great efforts made to understand BZ’s mode of action, it
is not yet completely clear; even less thoroughly studied
are the initially acquired mechanisms of resistance.

Acquisition of drug-resistant phenotypes is a complex
physiological process based on single or multiple
changes of genes involved in its mechanisms of action
[16-18]. Many studies have been based on differential
gene expression analysis in high concentrations of BZ in
resistant phenotypes [19-26], but the commencement of
this condition remains to be understood. For this rea-
son, the identification of genes that are differentially
expressed during progression through the susceptible
drug population to a resistant phenotype in T. cruzi
populations may help to further our grasp of acquired
stable resistance mechanisms, including the basis of the
drug’s mode of action. Additionally, it is also important
to identify gene expression and/or genetic alterations as
markers of either sensitivity or resistance responses,
which could be useful for treatment prognosis and as
potential new therapeutic targets. Therefore, the aim of
this study was to examine the initial expression changes
of parasites submitted to a stepwise concentration of
BZ. For this reason, we chose 19 genes suggested to be
involved in escaping BZ cytotoxic effects. Their RNA
expression was quantified by real-time PCR (RT-qPCR).
We also investigated other issues concerning drug resis-
tance, such as the stability of BZ-resistant phenotypes
without drug pressure over a long period of time as well
as the cross-resistance with other nitroheterocyclic and
non-nitroheterocyclic drugs.

Materials and methods

Reagents

BZ and NFX were purified by organic extraction from
Rochagan™ tablets (Roche, Brazil) and Lampit® (Bayer,
El Salvador), respectively. Stock solutions were dissolved
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in 100% dimethyl sulfoxide (DMSO) at a final concen-
tration of 10 mM. G418 sulfate was purchased from
AMRESCO and diluted in sterile water to a final con-
centration of 50 mg/ml.

Parasite cultures

T. cruzi epimastigotes were cultured in liver infusion
tryptose (LIT) medium supplemented with 10% (v/v)
heat-inactivated fetal bovine serum (FBS) at 28°C. Cul-
tures were maintained in exponential growth by pas-
sages every 7 days [27].

In vitro induction of BZ-resistant in T. cruzi parasites

In vitro resistance to BZ was induced in the susceptible
discrete typing unit (DTU) I strain M.RATTUS/CO/91/
GAL-61.SUC (named Gal61) using 3 x 107 epimasti-
gotes in the logarithmic growth phase. The parasites
were exposed to stepwise concentrations of BZ begin-
ning with its initial inhibitory concentration of 50%
(ICs0) (see Results). After this procedure, resistant para-
sites at different concentrations were obtained until
reaching a resistant population at BZ 50 uM, which cor-
responds to the concentration of BZ in plasma during a
chemotherapy course in humans [19,28].

MTT assays

ICs50 of BZ, NFX and G418 in the different phenotypes
was determined using an enzymatic micromethod 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) per triplicate in two independent experi-
ments [29]. T. cruzi epimastigotes were seeded in 96-
well plates (Falcon, Ref. 353072) at 1 x 10" ml™" in 200
ul of growth medium containing different concentra-
tions of BZ, NFX or G418. After incubation at 28°C for
96 hours, 10 pl of MTT/PMS (Sigma, USA) was added
to each well and the plates incubated again for 90 min
more. Cell density was determined by monitoring the
reduction of MTT to formazan crystals at 595 nm in an
enzyme-linked immunosorbent assay (ELISA) reader
(Bio-Rad). The drug concentration that inhibits parasite
growth by 50% (ICs) was calculated by a dose-response
curve using non-linear regression analysis carried out
with Prism 5.0 Software (GraphPad, San Diego, CA,
USA). Finally, the resistant 7. cruzi populations were
sub-cultured without BZ for 3 months and then the
ICso was determined as described above with the aim of
quantifying the stability in BZ-resistant phenotypes.

Study of gene expression in phenotypes resistant to
different concentrations of BZ

To evaluate the genetic expression in the different phe-
notypes, we looked for reported genes in drug response
in a variety of kinetoplastids including Leishmania spp.,
Plasmodium spp., T. brucei and T. cruzi. Afterward, the
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selected genes were considered potential markers of
resistance and grouped together according to their func-
tion (Table 1).

DNA and RNA preparations of T. cruzi

Genomic DNA and total RNA were isolated using the
GeneJET™ Purification Kits (Fermentas, USA) as
described by the manufacturers. DNA and RNA integ-
rity was analyzed by electrophoresis in 1% agarose gels
in 1x TBE (89 mM Tris borate, 2 mM EDTA [pH 8.3]),
stained with ethidium bromide and visualized under UV
light. Nucleic acid was quantified measuring the absor-
bance at 260 nm using nanodrop technology. Nucleic
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acid purity was assessed quantifying the A260 nm/
A280-nm ratio (acceptable when the ratio was > 1.8).

cDNA preparations

A total of 10 pg total RNA was treated with 1 U DNase
I (Promega) for 2 h at 37°C and then heat-inactivated at
65°C for 10 min before reverse transcription to eliminate
genomic DNA (gDNA) contamination. For first-strand
c¢DNA synthesis, the reverse transcription reaction con-
tained 2 pg of treated RNA, 50 uM oligo d(T), 500 ng/
pl hexamer primer, 5x buffer, 10 mM dNTP, 1 U Revert
Aid M-MLV (Fermentas) reverse transcriptase in a final
volume of 20 pl. The mixture was incubated at 42°C for

Table 1 Sequences of primers used to amplified T.cruzi genes using qPCR

Forward

Reverse

Function Genes/Genebank ID Size
Activation system Old Yellow enzyme (OYE)'/AB075599 146
bp

Nitroreductase | (NTR)‘/XM805552 195

bp

NADPH-cytochrome P450 reductase 140

(P450)'/DQ857724 bp

Detoxification system Trypanothione reductase (TRYT)'/M38051 191
of free radicals bp
Glutathionyl spermidine synthetase (GTS) 125

'/XM_815753.1 bp

Trypanothione synthetase (TS)'/ 130

XM_805507.1 bp

Cytosolic tryparedoxin peroxidase (CTXP)?/ 169

AJO12101 bp

Mitochondrial tryparedoxin peroxidase 137

(MTXP)%/AJ006226.1 bp

Superoxide dismutase-A (SOD)'/U90722 184

bp

Extracellular flow of Multi-drug resistant gene (MDR)'/ 188
drugs system XM_806226.1 bp
Folate metabolism pteridine reductase-1 (ptH)W/AF174398 157
system bp
Methionine adenosyltransferase (MAT)'/ 140

XM_799937 bp

Dihydrofolate reductase-thymidylate 164

synthase (DHFR-TS)'/XM_810234 bp

Spermidine putrescine transporter (EPT)?/ 152

XM_805310.1 bp

Celullar metabolism Histone H1 (H1)%/L27119.1 124
system bp

Zinc finger protein (ZN)>/XM_808517 132

bp

L-threonine dehydrogenase (TDH)?/ 166

XM_807811 bp

Glycoprotein gp82 (gp82)'/L14824 118

bp

Cruzipain (CZP)*/X54414 135

bp

5-ACTTTCGCTTGCCTATCTGC-3"

5-GCACGTGATTGGTATGGATG-3'

5'-GCATACCGGTTGGACACTTT-3'

5-CTCTACAAGAAGCGGGTTGC-3'

5-ACTTCCACCGGGTC CT-3

5-ATCCGTTGGAGGATGAAGTG-3'

5-AAGTGGCTGGTGCTCTTCTT-3'

5-TGCAACACCCTGCGACTTCTTA-3

5-GTTGAGACGTGCGGTGAATA-3'

5-ATCGCTTCTATGACCCTTCCTC-3

5-ACAGTATCGCTGTGCGTCTG-3"

5-CTACGCCGTAATGGGACACT-3'

5-GTGGCGGTAAATGGTGGACT-3

5-TGAATCCACCGTTGCGGGTCT-3'

5-GCAGCAGCCAAGAAGGCTGT-3'

5-TGCAGCACGTTCCATTGTGCC-3

5=

5-GTATTTGCTGGTCTGCCTCTTC-3

5-CTTTGTTGGGTCAAATCGCT-3

5-GCCTTCAGGAATGATACGGA-3'

5-CTGAGAGTGGTGCGATCAAA -3'

5-CTGCGGCATTCATCACATAC -3

5-TAAATGTCAGACGACGCAGC-3'

5-TTGCGCTCAATGCTTGTCCA-3'

5-GCCCTTGTAGTCATTCAAGCTG-3'

5-GCCTTGTGGTGTTTGGTGTA-3'

5-GGCTTCCTCCACTTCTTCGT-3"

5-AGAGAGCTGCCGAGACTGAG-3'

5-TGTTGGGCCGAGATAAGAAC-3

5-ATGGTGGTGCGGTAAATAGC-3'

5-CGCATTCTTGACGCTCTGCCT-3"

5-CGACAAAGCACGGTTGAGCCA-3'

5-CGCTGCCGCCCGTAGTTTAAT -3'

5=

TGAACCCCTCMACGGTKTACGGTGT-  GTACATRTGAATGGCGTAGTCYGTGG-

3
5-GCCAACGATAAAGGCAGTGT-3'

5-CATCGGTGAGGTCCTCTGTT-3'

3
5-GTGTGGAAGAAGCGGAGAAG-3'

5-CTGTGGTATGGCTGATAGCG-3"

1: Genes analyzed for all resistant phenotypes (TcR1x-TcR5x) and the parental sensitive strain

2: Genes analyzed only for the parental sensitive strain and the TcR5x resistant phenotype.
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1 h. RNA without DNase I treatment was used as a con-
trol to test gDNA contamination. After first-strand
synthesis, reactions were heat-inactivated at 70°C for 20
min and then diluted in nuclease- free water.

Real-time PCR

The primers used to amplify the selected genes using
RT-qPCR were designed by PrimerExpress (Applied Bio-
systems, Foster City, CA, USA) (Table 1). Reactions
were set up in a total volume of 20 pl using 5 pl of
c¢DNA (diluted 1:100), 10 pl SYBRGreen I master mix
(Qiagen) and 1 pM each of gene-specific primer (Table
1) and performed in the Rotor-Gene-Q (Qiagen, USA)
machine. The cycling conditions were: 95°C for 15 s; 45
cycles of 95°C for 15 s, 60°C for 15 s and 72°C for 15 s
with a single fluorescence measurement; a final elonga-
tion step was carried out at 72°C for 10 min. Specificity
of the PCR products was confirmed by analysis of the
dissociation curve. The melting curve program consisted
of temperatures between 60 and 95°C with a heating
rate of 0.1°C/s and a continuous fluorescence measure-
ment. Additionally, the amplicons’ expected size and the
absence of nonspecific products were confirmed by ana-
lysis of the real-time PCR products in 1% agarose gels
in 1x TBE, stained with ethidium bromide and visua-
lized under UV light.

Analysis of the expression

As an initial attempt to study mRNA levels, 12 genes
were analyzed in the sensitive and resistant phenotypes.
Additionally, seven more genes were evaluated for the
parental and TcR5x parasites. We also performed a
kinetic study of mRNA expression levels for ten genes
in the parental population exposed to 50 uM BZ or
0.5% (v/v) DMSO. In this assay, mRNA levels were
determined for 0, 12, 24, 48 and 72 h after exposure to
BZ with the aim of evaluating which genes were up- or
down-regulated as a consequence of this treatment. To
analyze the differential expressions, the mRNA levels
obtained for each gene were compared in every resistant
phenotype with respect to the sensitive parental line or
with the 0 h time for the kinetic study. In all cases, we
used as a reference the expression of the hypoxanthine-
guanine phosphoribosyltransferase (HPGRT) gene (Gen-
bank: L07486) and a relative quantification defined with
the following formula:

. ACP target (average of sensitive - average resistant)
(EfﬁCIenCYIargel)

Relative Expression = jace reference (average of sensitive - average resistant)

(Efficiency egerence

All relative quantification was assessed using REST

software 2009, RG mode, using the pair-wise fixed rando-

mization test with 10,000 permutations [30,31], with PCR
efficiencies calculated by Rotor-Gene-Q software v.2.02.
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Number of gene copies

The NTR gene amplification and its analyses were done
as described previously. The number of gene copies was
determined using a relative method [31,32] and using
HGPRT as a reference gene that has one copy per hap-
loid genome in 7. cruzi [25].

Enzymatic activity assays
Total protein extracts
Fifty milliliters of epimastigote cultures in exponential
growth (50 x 10° parasites/ml) were harvested at 855 g
for 10 min at room temperature. The parasites were
washed three times with PBS 1x (NaCl 8 g/l, KC1 0.2 g/
I, Na,HPO, 1.44 g/1, KH,PO, 0.24 g/l, pH 7.4) and
resuspended in a protease inhibitor solution (2 mM
dithiothreitol, 2 mM n-aminocaproic acid, 2 mM
EDTA). This was followed by shock temperature lyses
for three freezing and thawing cycles. Finally, the lysed
cells were centrifuged at 2,380 g for 20 min at 4°C. The
integrity of proteins was confirmed using denaturizing
gels of (SDS-PAGE) at 10% (w/v) and the protein con-
centration was measured by BCA assay (Pierce, USA).
SOD enzymatic activity was performed as described by
Beyer et al. (1986) with slight modifications for a total
extract of proteins [33]. We also tested the enzymatic
activity for P-450 under the conditions published by
Portal et al. (2008) with a minor adjustment [34].

Statistical analysis

Statistical analyses were performed using the SPSS
v.14.0 software package for Windows (SPSS Inc., USA),
applying the one-way ANOVA test. Means were com-
pared using the Tukey-Kramer; when the p-value was
less than 0.05, the difference was regarded as statistically
significant.

Genetic characterization of the BZ-sensitive and BZ-
resistant T. cruzi populations

To determine clonal selection or mutation among sensi-
tive and resistant parasites, the genetic variability was
evaluated with different molecular markers as follows:

Amplification of T. cruzi kDNA 330-bp fragment using
PCR

The variable region of the minicircles of kinetoplast
DNA was amplified with the primers 121 (5-AAA-
TAATGTACGGG(T/G)GAGATGCATGA-3’) and 122
(5-GTTCGATTGGGGTTGGTGTAATATA-3’). PCR
was carried out at a final volume of 50 ul containing 50
mM KCl, 10 mM Tris-HCI, 0.1% Triton X-100, 25 ng of
DNA, 37 pmol of each primer, 200 uM of dNTP, 1.5
mM of MgCl, and 2.5 U of Taqg DNA polymerase. PCR
was performed at an initial temperature of 94°C for 3
min, followed by 35 cycles at 94°C for 45 s, 63°C for 45
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s, 72°C for 45 s and a final cycle at 72°C for 10 min. The
amplification products for each sample were analyzed by
electrophoresis in 1% agarose gel in 1x TBE, stained by
ethidium bromide and visualized under UV light.

PCR amplification of the intergenic regions of the of
spliced-leader DNA genes (SL DNA)

PCR amplification was performed in 0.2-ml microcentri-
fuge tubes containing 25 pl of reaction mixture. Primers
for amplification of the intergenic region of T. cruzi SL
DNA genes were: 5-GTGTCCGCCACCTCCTTCG
GGCC-3 (TC1, group II-specific), 5-CCTGCAGGCA-
CACGTGTGTGTG-3" (TC2, group I-specific) and 5'-
CCCCCCTCCCAGGCCACACTG-3 (TC, common to
groups I and II). The reaction contained 25 ng of DNA,
50 mM KCI, 10 mM Tris-HCI (pH 8.0), 0.1% Triton X-
100, 200 pM of each deoxynucleotide triphosphate
(ANTP), 1.5 mM MgCl,, 12.5 pmol of each primer, and
0.625 U of Taq DNA polymerase. PCR was carried out
at an initial temperature of 94°C for 3 min, followed by
27 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for
30 s, with a final extension at 72°C for 10 min. The
amplification products were analyzed by electrophoresis
in 1% agarose gels in 1x TBE, stained with ethidium
bromide and detected by UV light.

LSSP-PCR and RAPDS

To obtain sequence-specific gene signatures of sensitive
and resistant parasites, the LSSP-PCR and RAPDs were
used. For LSSP-PCR, both minicircle variable regions
(kDNA) and intergenic regions of spliced-leader genes
(SL) were used as markers as described by Mejia et al.
(2009) [35]. RAPD analysis was achieved using a total of
three primers M13-40 (5-GTTTTCCCAGTCACGAC-
3’), L15996 (5-CTCCACCATTAGCACCCAAAGC-3))
and Igtll (5-GACTCCTGGAGCCCG-3’) in four differ-
ent reactions (all primers together and separately) as
described previously by Steindel et al. (1993) [36]. All of
the amplification products were analyzed in 3% agarose
gels stained with ethidium bromide and visualized under
UV light.

Results

Induction of in vitro BZ-resistant T. cruzi populations

To investigate the initial mechanisms of BZ response,
we used a susceptible Gal 61 T. cruzi as the parental
strain and five different phenotypes TcR1x, TcR2x,
TcR3x, TcR4x and TcR5x that were generated by in
vitro increasing concentrations of BZ by a long-term
procedure-25 passages-to reach the maximum concen-
tration of resistance in human plasma (50 uM). We
then determined the BZ doses required to inhibit 50%
(ICs0) for each available population, which ranged from
10.49 to 93.7 uM (Figure 1A, Table 2). We also found
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that the values obtained for the phenotypes from TcR2x
to TcR5x were considered to have clearly statistically
significant differences in contrast to the parental strain
(p < 0.05) (Figure 1A). Interestingly, the resistant pheno-
types also displayed a cross-resistance to NFX (Figure
1B) but did not show differences when exposed to a
non-nitroheterocyclic drug, G418 sulfate (Figure 1C).

Stability of BZ-resistant phenotypes

T. cruzi-resistant populations from TcR2x to TcR5x
were grown without drug treatment for 3 months (70
generations), then the IC5y, was determined to verify
that resistant phenotypes were stable. The results did
not show a statistically significant difference between
the IC5q values for parasite growth in BZ pressure and
those without drug treatment, indicating stability of BZ-
resistant phenotypes over the course of time (p < 0.05)
(Figure 1A).

Differential gene expression in BZ-resistant phenotypes

In an initial attempt to identify differential gene expres-
sion, 12 genes were selected and their expression level
was determined by RT-qPCR (Table 1). In this case,
there was not a regular pattern of expression for the
resistant TcR1x, TcR2x, TcR3x and TcR4x phenotypes,
except for the P450, TS and MDR genes showing a gra-
dual downregulation. However, TcR5x-resistant parasites
and the sensitive strain had almost the same expression
levels for all the genes evaluated, except by NTR and
OYE genes that were found to be downregulated and
upregulated, respectively (Figure 2). Given these results,
we additionally compared the expression levels of the
other seven genes involved in detoxification and other
metabolic pathways between sensitive and TcR5x-resis-
tant parasites (Table 1). Similarly, we found no differ-
ences between the two phenotypes (data not shown). To
analyze the early genetic expression in response to BZ,
we tested the mRNA expression levels for ten genes in a
sensitive phenotype exposed to 50 uM BZ (five times its
ICs) for different periods of time. The results indicated
that there were no significant differences between the dif-
ferent time periods. However, some genes showed differ-
ent levels of expression, especially the SOD-A gene at 24
h, but then the mRNA levels returned to the same levels
of the sensitive strain at 0 h (without BZ) (Figure 3).
Finally, the parasites exposed to DMSO as a control did
not show changes in their mRNA levels (data not shown).

Number of gene copies

OYE and NTR genes were found to play an important
role in the therapeutic dose-resistant phenotype TcR5x,
possibly decreasing the activation of the pro-drug as a
first line of defense. The different regulation of tran-
scripts for NTR and OYE genes could be due to changes
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Figure 1 1C5o to BZ, NFX and G418 in the BZ-sensitive and -resistant T. cruzi populations. A. ICs to BZ of T. cruzi epimastigotes of
sensitive strain (P) and five resistant phenotypes (TcCR1x-TcR5x) induced by stepwise concentrations of BZ; the white bars represent the ICso with
BZ treatment and the black bars without drug pressure over the long term. B. ICs, to NFX of P and five BZ-resistant phenotypes C. ICso to G418
of P- and BZ-resistant lines. Statistically significant differences in ICso between the parental strain and the resistant phenotypes were tested with

TcR3x TcR4x TcR5x

in the number of gene copies. In this manner, this para-
meter was evaluated by qPCR. The results presented
here clearly show that the number of gene copies only
differed for NTR in TcR5x BZ-resistant parasites. This
gene had two copies per genome diploid in the parental
line, but only one was observed in the resistant pheno-
type (Figure 4). The OYE gene was found to have eight
copies in the sensitive phenotype and it was similar for
resistant parasites (Figure 4).

Enzymatic activities for SOD and P-450

Keeping in mind that P450 is a type II nitroreductase
and that SOD enzyme works on detoxification systems
once the BZ has been activated, we analyzed both

Table 2 BZ concentration of induction and inhibitory
concentration 50% reached (ICs,) for resistant

phenotypes of Gal61
Phenotype BZ pressure 1C50 BZ

(pM) (1M)
Galé1 0.00 9.60
TcR1x 9.60 1049
TcR2x 19.20 28.50
TcR3x 28.80 3397
TcR4x 3840 67.95
TcR5x 50.00 93.70




Mejia-Jaramillo et al. Parasites & Vectors 2011, 4:169 Page 7 of 12
http://www.parasitesandvectors.com/content/4/1/169

1.59

2 e 1

Relative expression

1

OYE NTR P450 DHFR-TS MAT PTR GTS TS TRYT SOD gps2 MDR

0.0-

Analysis by Real time PCR of the mRNA expression of resistant phenotypes to Bz

Figure 2 Relative quantification using RT-qPCR of mRNA expression of 12 genes in five resistant phenotypes (TcR1x-TcR5x) compared
with the sensitive strain. The mRNA levels were normalized using the expression of the reference gene (HGPRT). The relative quantification
results were obtained using the REST2009 program by randomization test with 10,000 permutations (p < 0.05). The graph shows the data of
each gene evaluated for each of the resistant phenotypes (white bars correspond to TcR1x-TcR4x; black bars represent TcR5x phenotype) in
triplicate and two independent experiments.
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sites were 18.708 and 18.912 U/mg, respectively, reason, the genetic profiling of resistant and susceptible
whereas P450 enzymatic activities were 8.1 x 10E-4 for  parasites was studied. The genetic characterization was
the parental strain and 8.9 x 10E-4 U/mg for TcR5x carried out by LSSP-PCR of kDNA and SL as well as

parasites. the RAPD approach. Genetic analyses did not show
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Figure 3 Relative quantification by RT-qPCR of mRNA expression levels of ten genes in sensitive parasites exposed to 50 uM of BZ
and evaluated at different times (12 h, 24 h, 48 h and 72 h) compared with 0 h and normalized with the expression of the reference
gene (HGPRT). The relative quantification results were obtained using the REST2009 program by randomization test with 10,000 permutations (p
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Figure 4 Number of copies of OYE and NTR genes using qPCR
for the sensitive parental (P) strain (white bars) and the
resistant phenotype TcR5x (black bars). The relative
quantification was normalized using the single copy gene HGPRT.
The results correspond to analyses in duplicate in two independent
assays.

evident genetic differences, which indicates a similar
genetic background throughout the parasite population
(data not shown). Therefore, the results showed that
there was no clonal selection or even marked changes of
DNA sequences from resistant parasites compared to
the parental sensitive line.

Discussion

Chagas disease is a public health problem in many tro-
pical countries resulting from the lack of effective treat-
ments and vaccines [37]. Two drugs are available to
treat the disease, NFX and BZ, which have been pre-
viously reported as being impaired treatments with 70%
of patients considered recovered in the acute stage and
only 20% in the chronic stage [37]. Additionally, use of
these drugs is usually followed by the appearance of
parasite resistance [5]. Consequently, this study focuses
on identifying markers of BZ resistance at different drug
concentrations.

In recent years, many studies have been primarily con-
cerned with the development of new treatments [38,39],
with a growing tendency toward reports trying to under-
stand how BZ and NFX work within the parasite and
less toward the study of early establishment of resistance
markers at different drug concentrations. For this rea-
son, we used a high-BZ-sensitivity Gal61 strain origin-
ally isolated from a wild reservoir, and we then induced
in vitro BZ resistance by increasing concentrations of
BZ. Next, five different resistant populations were estab-
lished (Table 2, Figure 1A). The BZ response is consid-
ered a complex multifactorial trait, which involves many
genes of different biochemical pathways because its
mode of action is not expected to implicate a specific
therapeutic target [5,6]. Therefore, this study initially
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selected 12 genes and later seven more genes for a total
of 19 genes, all of which were regarded as potential new
markers of BZ-resistance phenotypes.

We found that OYE and NTR were the only two
genes that showed differential expression in all the phe-
notypes including the TcR5x BZ-resistant population
(Figure 3). Interestingly, Kubata et al. (2002) found that
the OYE enzyme does not metabolize BZ, although it
can metabolize naftoquinones and NFX under anaerobic
conditions [13]. However, Hall et al. (2011) recently
showed that the artificial overexpression of this gene in
T. brucei did not induce NFX resistance [12]. Therefore,
we believe that increased OYE levels could be a conse-
quence of metabolic changes occurring for the down-
regulation of the NTR gene without altering the resis-
tance to BZ according to previous reports by Kubata et
al. (2002) [13]. Murta et al. (2006) reported the OYE
enzyme was associated with BZ resistance in induced in
vitro T. cruzi-resistant lines due to the loss of three of
its four gene copies. In this case, these authors asso-
ciated its function with downstream steps after activa-
tion of the drug [25]. Here, we found that the OYE gene
was overexpressed in resistant parasites. However, the
BZ resistance level reached by the parasites could
explain these differences in the transcription profiles
found for Murta et al. (2006) and in the present study,
where the maximum ICs, obtained was lower (50 uM).
Recently, Boiani et al. (2010) found that only concentra-
tions higher than 400 uM of NFX generated reactive
oxygen species (ROS) [40]. Although this generation of
ROS by BZ has not been supported by many authors
[6,41], it is possible that a high concentration of the
drugs has a different mode of action within the parasite,
resulting in different biochemical pathways acting on it
[21,26].

There have been many nitroreductase enzymes
reported in several organisms, such as bacteria and pro-
tozoans, that play a role in the activation of a wide spec-
trum of nitro-compounds such as pro-drugs [42-45].
Members of this protein family from Escherichia coli,
Helicobacter pylori and Entamoeba histolytica have
shown several alterations such as frameshift mutations,
decreased expression, deletions, etc., and these altera-
tions were correlated to nitrofurazone and metronida-
zole resistance [46-51]. Furthermore, experimental
evidence suggests that NTR is the most important
enzyme in the activation of NFX, and it is also thought
that T. cruzi uses the disruption of this enzymatic cata-
bolism to prevent its therapeutic action through a
decreased generation of toxic nitro derivatives [12,15].
Furthermore, a similar observation was made by knock-
down silencing through iRNA in 7. brucei [52]. Thus,
the present results showing the downregulation of NTR
are not surprising and are supported by previous
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findings reported by Wilkinson et al. (2008), who pro-
posed that the loss of a single gene copy favors the
development of resistance for many heterocyclic com-
pounds in T. cruzi [15]. Recently, it was found that the
metabolites generated through reduction of NFX by
NTR in T. brucei induce parasite and host cell death;
however, if the activation is performed by the host cell
it will show no cytotoxic effects [12]. In other words,
the loss of cell viability determined only by NTR activa-
tion highlights the importance of this enzyme in the
mechanism of action of both nitroheterocyclic drugs, BZ
as shown here and NFX as reported previously [15].

Surprisingly, the other genes evaluated did not change
expression in the TcR5x phenotype, despite regulated
changes in expression in the other resistant phenotypes.
This could be explained as follows: the decrease of BZ
activation caused by the NTR gene losing a copy in the
most resistant population could prevent the formation
of toxic products that altered expression of enzymes
such as TS, P450 and MDR in other phenotypes. This
could explain the same levels of expression found for
the parental strain and the TcR5x phenotype for at least
17 other genes evaluated.

Approximately 93 genes have been reported to be
involved in BZ response with different biological func-
tions such as drug activation, transport, defense of ROS
and metabolism, among others [19-23,25,26]. These
genes are thought to act in molecular resistance path-
ways in in vitro-induced parasites, possibly as transitory
and/or stable mechanisms to resist and survive the BZ-
trypanocidal action. However, less than 5% of these
genes have been confirmed in their role in the resistance
mechanism and only one, the NTR gene, has been
found to be directly involved in the NFX-induced resis-
tance T. cruzi [12,15,52]. Interestingly, we found the
same result in the BZ-induced resistance parasites.

With the aim of detecting genes with an early
response to BZ and determining the possible che-
motherapeutic targets of the drug, the levels of mRNA
expression of the sensitive phenotype were examined
when exposed to BZ at five times its IC5, for different
periods of time. However, a specific profile of expression
in the ten genes studied was not found compared to the
strain without drugs. In L. amazonensis exposed to
arsenic, major changes in the expression of proteins
involved in tryparedoxin pathways were detected in the
first 7 h [53]. Therefore, shorter-term assessment may
be necessary to detect changes related to the genes
involved in detoxification. However, it is possible that
other genes that were not studied in this research are
affected with relation to other pathways such as heat
shock proteins.

Additionally, we investigated the specific activity of
two proteins, CPR and SOD. These proteins were
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chosen because they could participate in the BZ’s meta-
bolism role [6], and there is some evidence of their role
in resistance to BZ [26,34]. Our results indicate that
enzymatic activities for both enzymes were similar
among the parental strain and the TcR5x resistant phe-
notype in accordance with the mRNA level. Thus,
recently the overexpression of two different CPRs did
not confer resistance to NFX in T. brucei [12]. In con-
clusion, the level of BZ-resistant phenotypes obtained in
this investigation did not support the ROS generation
hypothesis.

After the down-regulated expression was found for
both NTR and OYE genes, the number of gene copies
was calculated using the qPCR approach. The NTR
gene had two copies per diploid genome in the paren-
tal strain and just one in the TcR5x phenotype as a
consequence of the loss of one copy in the acquisition
of resistance to BZ, as shown in other studies of NFX
conferring resistance to different nitroheterocyclic
compounds [15]. These results are in accordance not
only with the mRNA expression, but also with pre-
vious reports, showing that this technique is capable of
detecting changes in the number of copies in an easier
and less time-consuming way than other traditional
techniques such as Southern blot or pulsed field elec-
trophoresis. For the OYE gene, there were no changes
in the number of gene copies, contrary to previous stu-
dies that found a loss of three gene copies out of four
present in the haploid genome [25]. Therefore, it is
also probable that high transcription levels are the
result of physiological changes in the resistant parasites
and not related to the resistant condition, as discussed
above [12].

On the other hand, we found that BZ-resistance para-
sites presented cross-resistance to NFX (Figure 1B),
based upon previous experimental evidence where it
was confirmed that resistance could be shared among
similar nitroheterocyclic compounds of induced and
natural resistance parasites [15,54-56]. However, G418
susceptibility did not show differences within all the
phenotypes (Figure 1C). In fact, the molecular mode of
action of G418 is different from both NFX and BZ [57].
This means that the resistance or the susceptibility trait
shares pathways between both NFX and BZ. Therefore,
in the event of clinical resistance, BZ cannot be changed
alternatively for NFX. As a consequence of cross-resis-
tance among nitroheterocyclic compounds, it is neces-
sary to search for promising new compounds.

In addition to our early drug resistance model of 7.
cruzi, we also clearly demonstrate that BZ resistance in
these parasitic populations did not necessarily depend
on a constant presence of the drug, which can continue
over the course of time (Figure 1A). The stability of the
resistant phenotype has been confirmed in many in vitro
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and in vivo models through different parasite species
[19,54]. This condition is the result of many cases of
stable genetic alterations such as mutations, amplifica-
tions and deletions [16,18,58].

Alves et al. (1994) observed alterations in the restric-
tion fragment length polymorphism of the kDNA in T.
cruzi submitted to a number of passages during expo-
nential growth phase or after subcloning. This phe-
nomenon was called transkinetoplastid [59] and it
consists of fast changes in the kDNA minicircle popu-
lation leading to different restriction profiles. Thus,
LSSP-PCR based on the kDNA variable region can
reveal not only changes in the kDNA, but also the pro-
files of different clones. In this manner, LSSP-PCR and
RAPDs analysis have been shown to be good tools in
evaluating the genetic variability within the clones
belonging to the same strain. These approaches are
able to identify multiple or simple variations on the
DNA sequence and genetic characterization of T. cruzi
[35,60-62]. Furthermore, the high variability of kDNA
markers has been extensively used to identify many
clones within a strain [63]. We induced resistance
using a susceptible Gal61 strain as a parental line,
which was also genetically stable through different
induced BZ-resistant phenotypes using kDNA and SL
genes as well as the RAPD approach. Therefore, there
was no evidence of clonal selection of resistant para-
sites or even drastic changes in DNA sequences from
resistant parasites compared to the parental sensitive
line.

Finally, these results indicate that exposure to BZ
leads to early irregular expression of different genes pos-
sibly involved in response to cell stress, but the loss of
one copy of the NTR gene could be responsible for the
acquisition and maintenance of a BZ-resistant line.
However, it is necessary to study whether NTR is
involved in natural resistance and to use other tools
such as next generation sequencing to know whether or
not there are other genes affected.

Conclusion

Diminished mRNA levels of NTR and a loss of one copy
of this gene in the BZ-resistant phenotype of T. cruzi
were documented. Therefore, we propose that the NTR
gene is involved in the emergence of resistance to BZ
and could be used as a reliable marker of resistance in
patients treated for 7. cruzi infection.
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