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Abstract

Helminth infection may modulate the expression of Toll like receptors (TLR) in dendritic cells (DCs) and modify the
responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with
helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD).
Epidemiological and experimental data provide further evidence that reducing helminth infections increases the
incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable
for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators
from helminths or helminth products should be considered for the treatment of IBD.
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Background
Crohn’ s disease (CD) and ulcerative colitis (UC) are
two forms of inflammatory bowel disease (IBD) that are
autoimmune-like disorders characterized by chronic,
idiopathic inflammation of the intestinal mucosal tissue,
which causes a range of symptoms including abdominal
pain, severe diarrhoea, rectal bleeding and wasting [1,2].
Patients with UC and CD are at increased risk of devel-
oping colorectal cancer. Chronic inflammation is
believed to promote carcinogenesis [3].
CD and UC are distinguished by the tissues affected:

CD can affect any region of the gastrointestinal tract in
a discontinuous and transmural manner, whereas
pathology in UC is restricted to the surface mucosa of
the colon, in particular the rectum [4]. Current treat-
ment regimens, including anti-inflammatory and immu-
nosuppressive agents, are not curative and only reduce

the degree of intestinal inflammation associated with
disease [5].
Genetic studies have provided new evidence to suggest

that derangements in innate and adaptive immunity
result in human IBD [2]. In 1989, the “hygiene hypoth-
esis” was proposed by D.P. Strachan in an article that
claimed an inverse relationship between the occurrence
of hay fever and numbers of siblings [6]. According to
the hypothesis, atopic disorders are due to reduced
exposure to microorganisms in childhood [7]. IBD tends
to emerge in childhood, occurs primarily in immuno-
competent individuals and is most prevalent in wester-
nized regions of the world [8]. Weinstock [9] proposed
that the modern lifestyle lacking consistent exposure to
intestinal helminths is an important environmental fac-
tor contributing to IBD. Cross-sectional studies on the
relationship between skin prick tests and helminth infec-
tions suggested a general protective effect on the atopic
reaction [10]. Nowadays, the concept is becoming more
accepted, with accumulating evidence not only in atopic
diseases but also in autoimmune inflammatory diseases
[11]. Many studies have since demonstrated that hel-
minth infections lower the risk of autoimmunity or
allergy [12]. Thus, parasitic worms are important for
shaping, or tuning, the development and the function of
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the immune systems of human beings. Helminths
(nematodes, cestodes and trematodes) have been used in
ameliorating chemically induced colitis in different mod-
els [13,14].
Khan et al supported these results by infecting mice

with Trichinella spiralis and showed that mice were
protected from colitis induced by an intrarectal chal-
lenge using dinitrobenzene sulfate (DNBS) [15]. Reardon
et al. evidenced that mice infected with the tapeworm
Hymenolepis diminuta, ameliorated dextran sodium sul-
fate (DSS)-induced colitis [16]. Helminths can attenuate
experimentally induced IBD in animal models [17,18],
but the work of Summers et al. also shows promise in
that natural exposure to helminths, such as T. suis,
affords protection from immunological diseases like CD
[19,20]. Epidemiological and experimental data strongly
support the hypothesis that a reduction in helminth
infection is linked to a rise in the incidence rates of
autoimmune diseases [21].

Basic immunopathology of IBD
An important role for TLR signaling in the pathogen-
esis of IBD has been established through many studies
over the last decade [22-24]. In the IBD-susceptible
host, aberrant TLR signaling may contribute to
destructive host responses and chronic inflammation,
disturbing mucosal and commensal homeostasis and
leading to many different clinical phenotypes [25].
Hyperactivation of the adaptive immune system, sec-
ondary to TLR deficiency, may drive tissue damage
and progressive inflammation in IBD [26,27]. Charac-
terization of different IBD-associated gene defects have
highlighted fundamental, defining variability in TLR
regulation and function, dependent on disease pro-
cesses and predominant cell type involvement in the
intestinal mucosa [28,29]. TLRs and pattern recogni-
tion receptors (PRRs) may be central to future progress
in identifying novel approaches that may exploit innate
immune functions as a means to prevent and/or treat
IBD and related systemic manifestations.
It is now clear that the innate immune system com-

prised of TLRs and related molecules, plays a key role
in the regulation of intestinal inflammation and in the
recognition of invading pathogens [30]. TLRs comprise
the major innate immune surveillance, recognition and
response receptors central to efficient host defense and
homeostasis of the intestinal mucosa [31,32]. There are
currently 11 known mammalian TLRs. They are trans-
membrane receptors that are found either on the cell
membrane (TLR1, 2, 4, 5 and 9) or on intracellular
organelles (TLR3, 7 and 8) [33]. TLRs are expressed
throughout the gastrointestinal (GI) tract on intestinal
epithelial cells (IECs), myofibroblasts, enteroendocrine
cells, and on immune cells within the lamina propria,

such as T cells, and dendritic cells (DCs) [34-38]. Ligand
binding to TLRs initiates signaling cascades that activate
NF-�B, MAPK, and interferon response factors [39].
TLR molecules and their downstream signaling path-

ways play a crucial role in selected cell types in adaptive
immunity and in activating innate immune cells of the
immune system [40,41]. Given that this pathway is aber-
rantly expressed or activated in several diseases, it con-
stitutes a potential target for therapeutic intervention.
There is mounting evidence documenting that the inter-
ruption of this pathway at the level of TLR, myeloid dif-
ferentiation factor-88 (MyD88), or IL-I receptor-
associated kinase (IRAK) will improve therapeutic effi-
cacy in autoimmunity and auto-inflammatory diseases
[42-44]. On the contrary, the total abolition of these
pathways may compromise the immune defense against
invading infections and immune surveillance [45,46].
Actually, agonists of these pathways appear to be useful
in IBD development. Hence, there is a need to mindfully
select the therapeutic target in the TLR signaling cas-
cade and closely regulate the degree of pathway activity
so as to procure the ideal therapeutic end point [47].
In the intestine, the end result of TLR signaling is the

activation of nuclear factor kappa-B (NF-�B), triggering
off the induction of pro-inflammatory cytokines or
interferon (IFN) response factors (IRFs), depending on
the induction of type I interferons (Figure 1). TLR-
dependent activation of NF-�B plays an important role
in sustaining epithelial homeostasis as well as in regulat-
ing infections and inflammation, while the dysregulation
of TLR-signaling is associated with the pathogenesis of
IBD [48,49]. Recent findings on innate immunity-
mediated regulation of intestinal pathophysiology prove
that the development of new drugs targeting TLRs,
including antagonists of TLR-signaling and agonists of
their negative regulators, hold promise for new thera-
peutic strategies for intestinal inflammatory diseases
[50].

Helminth infection affects key aspects of gut
inflammatory biology
Negative regulation of TLRs reduces pro-inflammatory
cytokine production, protecting the host from autoim-
mune pathogenesis [51]. Helminths can both activate
and negatively regulate TLRs, which suggests that the
immune response to these infective helminths is under
tight control [52]. Zhao et al. [53] reported that Schisto-
soma japonicum eggs could alleviate TNBS-induced
colitis in mice. The mechanism for this action was
assumed to be due to the regulation of T-helper cell 1/2
balance and TLR4 expression. In brief, these reports
make a significant contribution in that helminths will
execute positive therapy in IBD by targeting the TLR
signaling pathway.
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The critical roles of TLRs are to sustain the integrity
of the epithelial barrier and to accelerate maturation of
the mucosal immune system. Mice deficient in TLRs
can develop intestinal inflammation [54]. IECs express
TLRs that recognize specific molecular signatures of hel-
minths, which can then trigger intracellular signaling
pathways inducing the production of pro-inflammatory
cytokines and chemokines (Figure 2). TLR responses are
tightly regulated in order to induce protective responses
while reducing excessive and detrimental inflammatory
responses for IEC [55,56].
Recent studies have demonstrated that TLR signals can

influence intestinal homeostasis [57]. One study proved
that the expression levels of TLR-2, TLR-4, TLR-9 and
TLR-11 were significantly raised in mouse IECs following
infection with Toxoplasma gondii on day 8 post-infection
[58]. Mucosal cells and consequent activation of signaling
cascades including activator protein 1 (AP1), mitogen-
activated protein kinases, NF-�B and IRFs can enhance
the production of pro-inflammatory cytokines and anti-
microbial peptides, as well as the maintenance of the
epithelial barrier function and epithelial cell proliferation
[59]. Hence, parasitic infection can maintain the epithe-
lial barrier function and epithelial cell proliferation
through TLR signaling pathways [60].

Intestinal parasitic infections also activate mucin hyper-
secretion, which is a key response of the innate immune
system for intestinal homeostasis [61]. One study suggests
that Gymnophalloides seoi antigen can induce mucin-
related 2 (MUC2) expression by the activation of the TLR
pathways in human IECs [62]. The expression and regula-
tion of MUC genes were reported in rodents infected with
intestinal nematodes, including Trichinella spiralis and
Nippostrongylus brasiliensis [63]. These results suggest the
possibility that the expression of the MUC2 gene may be
closely associated with TLR pathways [64,65]. Conse-
quently, helminthes, or their products, may promote the
physical barrier function of IECs by TLR activation.
Thus, the fine control of inflammation by helminths in

the TLR pathway is highly feasible for effective host
defense via TLR-dependent pro-inflammatory cascades
triggered by parasitic infections, which must be tightly
regulated to avoid severe pathology or even mortality in
IBD patients [51].

Bioactive helminths or helminth products
TLRs trigger an intracellular signaling cascade through
the toll/IL-1 receptor (TIR) [66] and through the
recruitment of adaptor molecules, such as TIR domain-
containing adaptor molecule-1 (TICAM-1), MyD88 and

Figure 1 TLR induction of inflammation by parasitic infection. MyD88, TLRs and toll/IL-1 receptor domain-containing adaptor protein
inducing interferon (TRIF) signal transduction is activated by helminth infection, which results in the activation of NF-�B, IRF7 and IRF3 for the
induction of type I interferons (TRIF-dependent pathway). Activation of NF-�B is required for the induction of inflammatory cytokines.
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TRIF, and TRIF-related adaptor molecule (TRAM)
[67,68]. These adaptor molecules act independently, or
in combination, based on the TLRs and trigger NF-�B,
c-Jun-N-terminal kinase (JNK), mitogen-activated pro-
tein kinases (MAPK), p38, extracellular signal-regulated
kinase (ERK) and NF-�B leading to the transcription of
inflammatory and immunomodulatory genes including
co-stimulatory molecules, cytokines and chemokines
[69,70] (Figure 3). In IBD therapy by helminths or hel-
minth products, negative regulation of TLR signaling is
critical for the down regulation of gene activation in
controlling overwhelming inflammation and pro-inflam-
matory cytokine production.
A recent report indicates that helminth infection may

alter TLR4 expression in mucosal T cells [37]. Schisto-
soma derived lysophosphatidyl-serine contains a hel-
minth-specific acyl chain that, through influence on
TLR2, promotes the differentiation of DCs that induce
regulatory T cells, which secrete the anti-inflammatory
cytokine interleukin-10 (IL-10) [71]. Studies conducted
by Meyer et al. [72] suggest that the soluble fractions
from Schistosoma mansoni eggs may alter TLR ligand-
induced activation of DCs. The broad effect of excre-
tory-secretory products (ESP) of Fasciola hepatica on
different TLR signaling regulation could be an immedi-
ate action of these antigens (Ags) on TLR expression.

Falcón demonstrated that ESP was also able to affect
the MyD88-dependent signaling pathway [73]. These
results indicate that different helminths may modulate
the TLR expression of DCs and responsiveness of DCs
to TLR ligands and finally stimulate cell-mediated
immunity (Figure 4). Nevertheless, characterization of
the signals induced by these immunomodulators suggest
overturn of the normal TLR-induced MAPK and that
NF-�Β pathways lead to antigen presentation of an
immature phenotype to antigen-presenting cells (APCs)
that subsequently reduce levels of proinflammatory cyto-
kines [74,75]. Logically, the biological characteristics of
helminths should be considered for IBD therapy.

Ameliorating the inflammation strategy
The intestinal tract is the largest and most complex
immune environment in the human body. Successful
therapy for these tissues will require accurate timing
and targeting the optimal location. The number of ther-
apeutics being developed for IBD has increased dramati-
cally over the last 2 decades because of rapid gains in
our understanding of the mechanisms of inflammation
[76].
Disturbing TLR signaling by helminths or helminth

products is expected to be a promising strategy in IBD
treatment because TLR signaling can inhibit

Figure 2 Contribution of TLRs to mucous membrane immunity. Pattern-recognition receptors, including toll-like receptors (TLRs) and
nucleotide-binding oligomerization domain- (NOD)-like receptors (NLRs), are expressed by most IEC. TLR ligation leads to the recruitment of
adaptor proteins, such as TIR domain-containing adaptor protein inducing interferon (TRIF), MyD88 (myeloid differentiation primary-response
gene 88) and subsequent activation of several signaling modules, including mitogen-activated protein (MAP) kinase pathways NF-�B. Activation
of PRRs by helminth infection advances a cascade of signaling events that results in the expression of pro-inflammatory cytokines and
chemokines.
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inflammatory responses in innate immune cells [77]. van
Stijn et al. [78] demonstrate that TLR4 activation by
worm glycolipids may elicit Th1 immune responses in
Schistosoma infection. Donnelly et al. [79] showed that
parasite proteases specifically degrade TLR3 within the
endosome, which reduces macrophage activation in
response to both TLR3 and TLR4 stimulation. Maintain-
ing the epithelial barrier function and IEC proliferation
by TLR signals[80] is another strategy of IBD therapy by
the parasite or products derived from the parasite. In
report of Lee et al [65], the intestinal trematode G. seoi
was employed in inducing the expression of TLR4,
TLR2 and the MUC2 gene in a human IEC. MUC2 has
been used in alleviating ulcerative colitis of the IBD
model mouse [81].
Cysteine proteases, excretory-secretory (ES) produc-

tion and antigens from helminths with potential TLR
ligands that may obtain more effective agonists or
antagonists of a targeted function of TLRs signaling

need to be considered in IBD treatment. One study
showed that the major cysteine proteases secreted from
F. hepatica and S. mansoni specifically disturb the
MyD88-independent, TRIF-dependent signaling path-
ways of TLR4 and TLR3 for the modulation of the
innate immune responses of their hosts [79]. These
results clearly show the benefits of local treatment with
helminth antigens for experimental colitis and prompt
consideration of helminth antigen-based therapy for
IBD, in lieu of infection with live parasites.

Conclusions
Epidemiological, experimental and clinical data support
the idea that helminths could provide protection against
IBD. Correale and Farez [82] evidenced that a soluble egg
Ag (SEA) obtained from Schistosoma mansoni exerts
potent regulatory effects on both DCs and B cells through
TLR2 regulation in patients with the autoimmune disease,
multiple sclerosis. Summers et al. [19] demonstrated that

Figure 3 TLR regulation of pro-inflammatory cytokines. Activation of toll-like receptors and type I IL-1 receptors evoke inflammation in
immune cells by sharing signaling cascades. TLRs expressed on professional immune cells (macrophages, dendritic, monocytes and microglia
cells) discern and respond to helminth infection. TLRs are triggered by helminth or helminth products containing pathogen-associated molecular
patterns (PAMPs). All TLR family members and the type I interleukin-1 receptor (IL-1RI) have specific intracellular TIR signaling domains. In
response to activation by the corresponding ligands, TIR domains react with the TIR domains of the signaling adaptor MyD88, which convey the
signal to a family of IL-1 receptor-associated kinases (IRAKs). Phosphorylation of IRAK, a serine-threonine kinase, by other IRAK family members
provoke cascades of signaling through tumor necrosis factor receptor-associated factor 6 (TRAF6). TRAF6 relays a signal to I kappa B kinase (IKK)
and to mitogen-activated protein kinase kinase (MAP3K). This signaling leads to transcriptional responses, mediated primarily by ERK, NF-�B and
stress-activated protein kinases, for example JNK and p38, result in the expression of pro-inflammatory cytokines.
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it is safe to administer eggs from the porcine whipworm,
Trichuris suis, to patients with CD and UC. The study sug-
gests that it is possible to down-regulate aberrant intestinal
inflammation in humans with helminthes. Local treatment
using antagonists of TLR-signaling and agonists of their
negative regulators from helminthes or helminth products
ought to prompt consideration for treatment of IBD
instead of infection with live parasites.
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