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Abstract

indicating an allelic competition.

“one to many”.

Background: In China, large amounts of chemical insecticides are applied in fields or indoors every year, directly
or indirectly bringing selection pressure on vector mosquitoes. Culex pipiens complex has evolved to be resistant to
all types of chemical insecticides, especially organophosphates, through carboxylesterases. Six resistant
carboxylesterase alleles (Ester) were recorded previously and sometimes co-existed in one field population,
representing a complex situation for the evolution of Ester genes.

Results: In order to explore the evolutionary scenario, we analyzed the data from an historical record in 2003 and
a recent investigation on five Culex pipiens pallens populations sampled from north China in 2010. Insecticide
bioassays showed that these five populations had high resistance to pyrethroids, medium resistance to
organophosphates, and low resistance to carbamates. Six types of Ester alleles, Ester®’, Ester’, Ester®, Ester’, Ester®’”,
and Fster'" were identified, and the overall pattern of their frequencies in geographic distribution was consistent
with the report seven years prior to this study. Statistical correlation analysis indicated that Ester and Ester’
positively correlated with resistance to four insecticides, and Ester’’’ to one insecticide. The occurrences of these
three alleles were positively correlated, while the occurrence of Ester®” was negatively correlated with Ester”,

Conclusion: Our analysis suggests that one insecticide can select multiple Ester alleles and one Ester allele can
work on multiple insecticides. The evolutionary scenario of carboxylesterases under insecticide selection is possibly
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Background

Mosquitoes, due to their special behavior, physiology
and close relationship with humans, act as ideal trans-
mitters of a wide variety of human disease agents,
including filariasis, Japanese encephalitis, West Nile
virus, dengue and malaria [1]. Chemical insecticides
have been extensively used since the 1940s to control
mosquito vectors, and four major categories of insecti-
cides have been sequentially applied historically: organo-
chlorines, organophosphates, carbamates and
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pyrethroids [2-4]. In China, insecticide production is
over 3.9 x 10® kg and application is around 2.5 x 10® kg
annually since 1997; directly or indirectly bringing heavy
selection pressure on mosquitoes [5]. As one of seven
major species of vector mosquitoes in China, the Culex
pipiens complex has evolved to be resistant to all types
of chemical insecticides, except carbamates, in many
regions [5].

Three gene families of detoxification enzymes are
involved in metabolic resistance to chemical insecticides:
carboxylesterases, P450 monooxygenases, and glu-
tathione S-transferases [6]. Carboxylesterases often med-
iate resistance to organophosphates, carbamates, and to
a lesser extent, pyrethroids [1]. In mosquitoes, non-spe-
cific carboxylesterases sequester, rather than rapidly
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metabolize, the pesticide molecules [7]. Two gene loci,
Est-2 and Est-3, encode non-specific esterases through
gene amplification or up-regulation in the C. pipiens
complex [8,9]. These loci are always in complete linkage
disequilibrium and referred to as the Ester superlocus.
To date, twelve Ester alleles conferring OP resistance
have been identified at the Ester locus (the correspond-
ing overproduced esterases are named in parentheses):
Ester! (A1), Ester’ (A2-B2), Ester® (A4-B4), Ester® (A5-
B5), Ester® (A8-B8), Ester’ (A9-B9), Ester’! (A11-B11),
Ester® (B1), Ester®® (B6), Ester®” (B7), Ester®'° (B10)
and Ester®? (B12) [5,9-11].

An unusual diversity of Ester alleles was observed in
field populations from China, where Ester®’, Ester?,
Ester®, Ester””, Ester®, Ester’, Ester®'® and Ester'' were
reported, and as many as six Ester alleles co-existed in
one population [12]. This situation is atypical, and may
represent a complex situation for the evolution of insec-
ticide resistance genes in China. Accumulation and ana-
lysis of monitoring data will be helpful to understand
the evolution of insecticide resistance genes in field
mosquito populations.

In recent years, we monitored the resistance levels and
Ester phenotype frequencies of C. pipiens complex field
populations to organophosphates, carbamates, and pyre-
throids at either the large scale or locally in China [13].
In order to explore the evolutionary scenario of Ester
resistance alleles, we analyzed the data from five Culex
pipiens pallens populations sampled in north China, and
from an historical record from 2003 [12]. We investi-
gated the resistance levels of these five populations
towards three organophosphate, two pyrethroid, and
two carbamate insecticides. Esterase phenotype frequen-
cies of Ester locus were also quantified. Lastly, we com-
bined our data with that of a large scale investigation
from 2003 [12], and statistically analyzed the relation-
ship between resistance level and Ester phenotype fre-
quency for each insecticide, and among phenotype
frequencies of various Ester alleles.

Methods

Mosquito samples and strains

Five field populations of C. p. pallens were collected as
egg-rafts, larvae, or pupae in north China from July to
August of 2010 (Table 1). They were raised for several
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generations in the laboratory at 25 + 1° and a photoper-
iod of 14L : 10D. Several standard strains were used as
references in bioassays or starch gel electrophoresis: S-
LAB, an insecticide-susceptible strain without any
known resistance genes [14]; SB1 strain, homozygous
for Ester®!, displaying overproduced esterase B1; SA2
strain, homozygous for Ester?, displaying overproduced
esterases A2-B2 [15]; MAO2 strain, homozygous for
Ester®, displaying overproduced esterases A8-B8 [16];
LING strain, homozygous for Ester’, displaying overpro-
duced esterases A9-B9 [16]; KARA2 strain, homozygous
for Ester®?, displaying overproduced esterase B10 [5];
and WU strain, homozygous for Ester'’, displaying over-
produced esterases A11-B11 [5].

Insecticide bioassays

Resistance characteristics of larvae were determined by
bioassays on fourth-instar larvae, following the methods
described in Raymond and Marquine (1994) [17]. The
test insecticides were three organophosphates, dichlor-
vos, fenitrothion, malathion, two pyrethroids, deltame-
thrin, permethrin, and two carbamates, propoxur, BPMC
(2-sec-Butylphenyl methyl carbamate). Four or five doses
and four replicates (20 larvae per replicate) per dose were
performed with each insecticide. The mortalities of larvae
were recorded after 24 hours of treatment. Larvae from
S-LAB strain were tested at the same time as susceptible
controls. Based on Finney (1971) [18] data were analyzed
by the log-probit program of Raymond (1993) [19],
which provides LCs, slope for each mortality line, paralle-
lism between different mortality lines and resistance
ratios with 95% confidence intervals.

Starch gel electrophoresis

Ester allele phenotypes of individual adult mosquitoes
were revealed using starch gel electrophoresis (TME 7.4
buffer system) as described by Pasteur et al. (1981;
1988) [20,21]. Mosquitoes from six standard strains
(SB1, SA2, MAO2, LING, KARA2 and WU) were used
as markers in electrophoresis to indicate the esterase
phenotypes of field collected mosquitoes.

Statistical analysis of correlation
The data of 5 populations from this study and 20 popu-
lations from the investigation in 2003 [12] were

Table 1 Collection information of Culex pipiens pallens sampled in China.

Province Locality (latitude, longitude) Code Date Type of sites
Henan Weihe (35°02' N, 113°8' E) WHE 15/07/2010 sewage tank
Yuanyang (35°02" N, 113°58' E) 14/07/2010 cesspool
Shandong Taian (35°38' N, 116°2" E) TAA 24/07/2010 puddle
Beijing Beijing (39°54' N, 116°28' E) 29/07/2010 sewage
Liaoning Pulandian (39°23' N, 121°58' E) 20/07/2010 puddle
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combined for correlation analysis between resistance
levels of insecticides (dichlorvos, parathion, chlorpyrifos,
propoxur and BPMC) and Ester phenotype frequencies
and among phenotype frequencies of various Ester
alleles using SPSS 13.0.

Results

Insecticide resistance status of field populations

Five field populations of C. p. pallens, collected in north
China (Table 1), were tested for resistance levels
towards frequently applied organophosphate, pyrethroid,
and carbamate insecticides with larvae bioassays. The
tests were finished within three generations (F1-F3) after
the mosquitoes were brought back and raised in the lab.
Bioassay results indicate that the five populations
showed highest resistance levels towards pyrethroids,
followed by organophosphates, and last to carbamates
(Table 2). For the two pyrethroid insecticides, resistance
to permethrin was higher than to deltamethrin. Most of
the populations had a resistance ratio (RR) higher than
10 to permethrin, with the highest reaching 68 folds in
the population TAA, while lower than 10 to deltame-
thrin. For the three organophosphate insecticides, sev-
eral populations showed medium resistance (RR
between 10 and 20) to dichlorvos, while for fenitrothion
and malathion only lower than 4-fold resistance was
observed. All the populations had low resistance (RR
lower than 10) to the two carbamate insecticides, pro-
poxur and BPMC.

Populations from Henan (WHE and YUY) and Shan-
dong (TAA) provinces were more resistant to insecti-
cides than those from Beijing (BJI) and Liaoning (LPU)
province. BJI and LPU showed low levels of resistance
to all tested insecticides. Populations WHE, YUY, and
TAA had medium resistance to dichlorvos, and high
resistance (RR higher than 20) to permethrin.

Identification of esterase phenotypes

In order to detect the types of high active carboxyles-
terases, at least thirty individual adult mosquitoes of
each population were applied to starch gel electrophor-
esis. It has been reported that these high active carboxy-
lesterases are expressed in both adults and larvae
[22,23]. A total of 200 adult mosquitoes were checked
for the five populations (Table 3). Six types of overpro-
duced esterases were identified in this investigation, i.e.
B1, A2-B2, A8-B8, A9-B9, B10, and A11-B11. In the
populations from Henan province (WHE and YUY), all
six types of esterases were detected, and four esterases
co-existed in one population, WHE. In the other three
populations, only B1 and A2-B2 were detected (Figure
1). B1 was the predominant esterase, with frequencies
over 70 % in most populations. Although the frequen-
cies of A2-B2 were not as high as B1, it still had a
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distribution as broad as B1l. Esterases A8-B8, A9-B9,
B10 and A11-B11 were minor, with limited distribution
and low frequencies.

Correlation analysis

Correlation analyses between insecticide resistance levels
(dichlorvos, parathion, chlorpyrifos, propoxur and
BPMC) and Ester phenotype frequencies showed that
the frequencies of esterases A8-B8 and A9-B9 positively
correlated to the resistance levels of dichlorvos, para-
thion, chlorpyrifos and propoxur. Esterase B10 only
positively correlated to dichlorvos resistance, even
though the correlation coefficients (R*) were not high
(Figure 2). None of the six types of esterases displayed a
linear correlation to the BPMC resistance in mosquitoes.
Frequencies of esterases B1, A2-B2, and A11-B11 did
not linearly correlate to any resistance of the five insec-
ticides. For each insecticide, except for BPMC, multiple
types of esterases had a positive relationship with its
resistance in mosquitoes.

The correlation among phenotype frequencies of var-
ious Ester alleles was also checked. The results demon-
strate that there were positive correlations between
phenotype frequencies of A8-B8 and A9-B9, A8-B8 and
B10, A9-B9 and B10, and a negative correlation between
A8-B8 and Bl (Figure 3). The existence of A2-B2 or
A11-B11 had no linear relationship with other esterases.

Discussion
As a periodic investigation, we surveyed the resistance
levels of five field populations of C. p. pallens towards
seven insecticides commonly used in mosquito control
in China. High and medium resistance appeared to pyr-
ethroids and organophosphates, in some populations,
respectively, and only low resistance was observed for
carbamates in the five populations. Compared with pre-
vious investigations in 2003 [12] and 2006 [13], there is
no remarkable change in the organophosphate and car-
bamate resistance status in the 2010 survey. The resis-
tance to dichlorvos is still leading in organophosphate
resistance. Low resistance to the two carbamate insecti-
cides implies that there is still no target resistance
mediated by G119S mutation in the acetylcholinesterase
1. On the other hand, the pyrethroid resistance seems
elevated, especially the resistance to permethrin. Most
of the populations in this survey had the permethrin
resistance ratio higher than 10, including the Beijing
population BJI, while the other four Beijing populations
surveyed in 2006 were susceptible or only showed resis-
tance below 2 fold towards permethrin and tetramethrin
[13]. This is the aftermath of an increase of pyrethroid
insecticides applied in recent years in China.

In this study we observed six highly active carboxyles-
terases in these northern populations. The overall
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Table 2 Resistance observed in bioassays to seven insecticides in five populations of Culex pipiens pallens from China.

Insecticides Populations N LC50 (95% CI) (mg/L) Slope (SE) x2 RR (95% Cl) G
Dichlorvos S-LAB 300 0.19 (0.18-0.19) 138 (1.6) 1.7 1 F2
WHE 240 3.04 (2.86-3.17) 80 (1.3) 4.8 164 (12.3-21.7) F1
YUY 240 3.86 (3.22-4.07) 1(34) 0.5 20.8 (134-323) F1
TAA 300 291 (2.11- 327) 52 (1.4) 04 15.7 (10.2-24.3) F2
BJI 300 126 (1.19-1.33) 9.7 (1.3) 16 6.8 (4.9-94) F2
LPU 300 1.06 (0.88 14) 74 (2.3) 16 5.7 (3.9-83) F2
Fenitrothion S-LAB 300 0.0078 (0‘007670.0081) 15.8 (1.8) 52 1 F2
WHE 300 0.015 (0.014-0.016) 6.8 (1.6) 23 1.9 (14-2.6) F1
YUY 360 0.0099 (0.0084-0.011) 4.0 (0.9 04 1.3 (09-1.7) F1
TAA 240 0.020 (0.018-0.022) 6.6 (1.7) 15 2.5 (1.8-36) F1
BJI 300 0.0096 (0.0088-0.010) 56 (0.7) 08 12 (09-1.6) F2
LPU 300 0.015 (0.014-0.016) 6.9 (1.0) 0.6 1.9 (14-2.6) F2
Malathion S-LAB 240 0.025 (0.020-0.030) 120 (4.1) 73 1 F2
WHE 360 0.094 (0.089-0.099) 74(0.8) 22 3.8 (1.8-8.0) F2
YUY 360 0.073 (0.069-0.076) 6.8 (1.6) 23 30 (14-6.2) F1
TAA 300 0.080 (0.073-0.086) 6.9 (1.5) 3.0 33 (14-7.8) F1
BJI 300 0.073 (0.066-0.081) 4.1 (0.6) 39 30 (14-63) F2
LPU 240 0.052 (0.044-0.062) 3.7 (0.6) 14 2.1 (09-5.2) F2
Deltamethrin S-LAB 300 0.00039 (0.00036-0.00043) 53 (1) 03 1 F2
WHE 360 0.0026 (0.0021-0.0029) 4.1 (09) 6.0 6.6 (4.9-8.7) F2
YUY 360 0.0046 (0.0022-0.0054) 38(13) 0.05 11.7 (74-18.1) F1
TAA 240 0.0039 (0.0029-0.0046) 2.3 (0.5) 04 99 (74-12.9) F2
BJI 300 0.0023 (0.0020-0.0024) 58 (14) 0.004 5.8 (4.3-7.6) F2
LPU 240 0.0014 (0.0007-0.0017) 38 (1.1) 0.01 35 (2.1-59) F2
Permethrin S-LAB 300 0.0017 (0.0016-0.0019) 5.6 (0.6) 48 1 F2
WHE 300 0.038 (0.035-0.041) 94 (1.8) 04 9 (15.6-30.5) F2
YUY 300 0.055 (0.043-0.062) 38(09) 2.1 9 (22.9-43.9) F1
TAA 300 0.12 (0.04-0.17) 14 (04) 02 68.2 (46.9-99.0) F2
BJI 360 0.024 (0.023-0.025) 11.0 (1.8) 20 13.8 (10.3-18.5) F2
LPU 240 0.016 (0.011-0.021) 2.0 (06) 04 95 (6.9-12.9) F3
Propoxur S-LAB 300 0.13 (0.13-0.14) 9.7 (14) 0.6 1 F2
WHE 300 0.28 (0.26-0.31) 7.1 (1.6) 12 2.1 (1.5-29) F2
YUY 300 0.18 (0.09-0.21) 49 (1.6) 16 1.3 (0.8-2.3) F1
TAA 300 0.27 (0.25-0.28) 9.7 (14) 0.2 20 (1.5-27) F2
BJI 300 0.23 (0.21-0.25) 85 (2.1) 0.1 1.8 (1.3-2.5) F2
LPU 300 0.21 (0.19-0.23) 6.5 (2.0) 03 16 (1.2-2.1) F2
BPMC S-LAB 300 0.097 (0.025-0.35) 10.8 (3.8) 6.2 1 F2
WHE 360 0.39 (0.36-0.42) 7.7 (2.1) 35 4.0 (09-17.7) F2
YUY 240 0.23 (0.17-0.26) 35(0.7) 45 23(08-7.2) F1
TAA 240 042 (0.39-044) 12.7 (2.6) 02 43 (1.0-19.2) F2
BJI 300 0.34 (0.31-0.35) 89 (14) 04 34 (1.2-102) F2
LPU 300 0.21 (0.16-0.24) 39 (1.0) 02 2.1 (0.5-9.6) F3

S-LAB, the susceptible reference strain. N, number of larvae tested. Cl, confidence interval. RR, resistance ratio (LCso of the population/LCs, of S-LAB). G, the

generation considered in bioassays.

pattern of their frequencies in geographic distribution is
consistent with the reports seven years prior to this
study [5,12]. Henan province still has impressive diver-
sity of Ester alleles. Shandong and Liaoning provinces
also only have Ester®” and Ester”. This means the Ester
alleles did not extend their geographic range during the

seven years in these areas. In the Beijing population,
where four Ester alleles were recorded previously, only
Ester®” and Ester” were observed. One possible reason
for this difference could be that our sample size in the
Beijing region was not large enough. More attention
should be given to this region in future.
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Table 3 Frequency* of mosquitoes displaying a given
overproduced esterase in field populations of Culex
pipiens pallens in China

Population N B1 A2- A8 A9- B10 A1l1l- SS
code B2 B8 B9 B11

WHE 35 083 0 0 009 006 003 0.06
YUYy 41 088 02 005 0 0 0 0.17
TAA 45 098 004 O 0 0 0 0.02
BJI 36 072 003 O 0 0 0 0.25
LPU 43 056 014 0 0 0 0 033

* The sum of phenotypic frequency in each population is not necessarily
equal to 1, considering some individuals are heterozygous with two
overproduced esterases.

N, the sample size analyzed. SS, the non-overproduced esterase phenotype.
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Among the six types of Ester alleles, Ester® and Ester’
have linear correlation with resistance to four organo-
phosphate or carbamate insecticides and Ester®’’ to one
organophosphate insecticide in field populations. These
three alleles are adaptive to the selection pressure ende-
mic to China, and the occurrences of these alleles are
positively correlated at a certain coefficient. In contrast,
two ubiquitously distributed alleles around the world,
Ester”" and Ester®, do not show linear correlation with
resistance to any one of the five insecticides, implying
that they play a general role in organophosphate and
carbamate resistance. Although the endemic allele
Ester'! did not linearly correlate with resistance to the
five insecticides, this can not rule out the possible
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Figure 1 High-activity esterases in single adult mosquitoes from the five populations analyzed in starch electrophoresis. High-activity
esterases in single adult mosquitoes from the five populations analyzed in starch electrophoresis. Only part of the gel for each population was
shown. SB1 and SA2 were the standard strains displaying overproduced esterase B1 and A2-B2, respectively. SS means susceptible individuals.
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correlation of Ester'’ with resistance to malathion, feni-
trothion, or other insecticides used in China.

Our results suggest that one insecticide can select
multiple Ester alleles and one Ester allele can work on

multiple insecticides. So the evolutionary scenario of
carboxylesterases under insecticide selection in the field
is most likely “one to many”, not “one to one”. The rela-
tionship of Ester®’ and Ester® is very interesting. Their
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Figure 3 Correlations among frequencies of various esterases. Correlations among frequencies of various esterases. (a) between A8-B8 and
A9-B9, A8-B8 and B10, and A8-B8 and B1; (b) between A9-B9 and B10.
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occurrence seems to contradict each other. This allelic
competition was illustrated by the situation in southern
France, where Ester’ had been replaced by Ester” over a
10 year period [24], and then followed by the local
occurrence of Ester’ [25]. It is likely that, in the future,
as the result of the allelic competition, Ester®’ will be
eliminated from regions predominated by Ester®, such as
the Guangdong province, and Ester® will be prevented
from invading, or eliminated from, regions predomi-
nated by Ester” such as Beijing, and the Shandong pro-
vince. Future work is needed to identify the parameters
driving the competition between these two alleles.

Conclusion

Our analysis suggests that one insecticide can select
multiple Ester alleles and one Ester allele can work on
multiple insecticides. The evolutionary scenario of car-
boxylesterases under insecticide selection is possibly
“one to many”. This study will shed light on the under-
standing of the evolution of insecticide resistance genes
in field populations and guide the management of insec-
ticide resistance.
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