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Female Anopheles gambiae antennae: increased
transcript accumulation of the mosquito-specific
odorant-binding-protein OBP2
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Abstract

Background: New interventions are required to optimally and sustainably control the Anopheles sp. mosquitoes
that transmit malaria and filariasis. The mosquito olfactory system is important in host seeking (transmission) and
mate finding (reproduction). Understanding olfactory function could lead to development of control strategies
based on repelling parasite-carrying mosquitoes or attracting them into a fatal trap.

Findings: Our initial focus is on odorant binding proteins with differential transcript accumulation between female
and male mosquitoes. We report that the odorant binding protein, OBP2 (AGAP003306), had increased expression
in the antennae of female vs. male Anopheles gambiae sensu stricto (G3 strain). The increased expression in
antennae of females of this gene by quantitative RT-PCR was 4.2 to 32.3 fold in three independent biological
replicates and two technical replicate experiments using A. gambiae from two different laboratories. OBP2 is a
member of the vast OBP superfamily of insect odorant binding proteins and belongs to the predominantly
dipteran clade that includes the Culex oviposition kairomone-binding OBP1. Phylogenetic analysis indicates that its
orthologs are present across culicid mosquitoes and are likely to play a conserved role in recognizing a molecule
that might be critical for female behavior.

Conclusions: OBP2 has increased mRNA transcript accumulation in the antennae of female as compared to male
A. gambiae. This molecule and related molecules may play an important role in female mosquito feeding and
breeding behavior. This finding may be a step toward providing a foundation for understanding mosquito
olfactory requirements and developing control strategies based on reducing mosquito feeding and breeding
success.
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Findings
Research hypothesis
Factors that influence mosquito fitness, especially host
seeking and mate finding are complex and modulated
by multiple cues, of which olfactory cues are most
important [1-4]. Detection of odor molecules requires
odorant binding proteins (OBPs) that are abundant in
antennal chemosensilla [5,6]. OBPs are low molecular
weight soluble proteins that bind and transport odor
molecules from sensillae to G-protein-coupled receptors
in olfactory sensory neurons [6]. The finding of receptor

AgamOBP1 binding to its ligand indole demonstrated
the significance of OBPs in odor recognition [7]. Under-
standing olfactory function could lead to development
of malaria control strategies based on repelling Plasmo-
dium sp. carrying Anopheles mosquitoes or attracting
them into a fatal trap. A first step is assessment of
expression of olfactory system associated genes [7-10].
There is sexually dimorphic expression of OBPs in Ano-
pheles mosquitoes and Drosophila melanogaster [11-13].
We are focusing on identifying OBPs in antennae of
Anopheles gambiae, because in Africa A, gambiae is the
most important vector of Plasmodium falciparum [14],
a major vector of Wuchereria bancrofti, which causes
lymphatic filariasis [15], and a vector of O’nyong-nyong
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virus [16]. In this study, based on results of a screening
microarray (unpublished) and previous microarray stu-
dies [9,11], we hypothesized that the OBP, OBP2
(AGAP003306), would have increased transcript accu-
mulation by quantitative reverse transcription PCR
(qRT-PCR) in female as compared to male A. gambiae
antennae.

Methods
Collection and Processing of RNA
We studied AGAP003306, which had 2 fold greater
expression in RNA isolated from antennae of 4 day old
A. gambiae (Keele strain from Johns Hopkins) females
than males in a microarray experiment (unpublished). In
another microarray study of RNA from antennae of 5-7
day old Pink-eye A. gambiae, expression of
AGAP003306 (OBP2) was 1.4 times higher in females as
compared to males, but no qRT-PCR was done [9]. In
yet another microarray study of RNA isolated from 3
day old whole mosquitoes (Pink-eye strain A. gambiae)
there was approximately 3 fold increased expression in
females vs males [17].
In this study, A. gambiae sensu stricto (G3 strain) were

from the same batch of eggs (each batch giving rise to a
mosquito lot) and were raised to adulthood under stan-
dard insectary conditions, and fed ad libitum with 10%
sugar water [18]. We studied the antennae under con-
trolled conditions of age and exposure to food. Adults of
both sexes were collected exactly 4 days after emergence.
The mosquitoes were immobilized by exposure to -20°C
for 15 minutes, males and females separated, and antennae
removed by manual dissection over dry ice, placed into
separate 1.5 mL centrifuge tubes and homogenized using a
pestle, each in 300 μL of Trizol reagent (Invitrogen, CA).
RNA was isolated following manufacturer’s instructions
and purified using RNeasy mini column (Qiagen). The
RNA was then assessed for quality and quantity using
NanoDrop (ND-1000). The mosquito antennae that gener-
ated the RNA for the qRT-PCR experiments were isolated
in July 2009 (mosquitoes from the University of Mary-
land), and January 2010 and June 2010 (mosquitoes from
the National Institutes of Health).

qRT-PCR Assay
As an endogenous control, and foundation for the qRT-
PCR analysis, we used the S7 ribosomal RNA gene of A.
gambiae [19]. As another control we analyzed

AGAP009629, which did not have differential expression
in antennae of females vs. males by microarray, but had
increased expression in antennae of unfed vs. blood-fed
females (unpublished).
The primer pairs synthesized and used (Table 1) were

designed using Primer 3[20]. The QuantiTect SYBR
Green RT-PCR kit (Qiagen) was used and reactions
conducted in 96 well plates for 40 cycles (Applied Bio-
systems StepOnePlus™ System). Each reaction con-
tained 12.5 μL Qiagen 2x Master Mix, 0.25 μL forward
and reverse primers (0.5 μM final concentration), 0.25
μL RT Mix (containing reverse transcriptase), 10.75 μL
DEPC water and 1.0 μL of RNA (0.05-1 μg/μL). The 96
well plate was sealed with adhesive film and centrifuged
at 3700 rpm for 1 minute at 4°C. The ribosomal S7
gene was used as an endogenous control and a reaction
without RT Mix (reverse transcriptase) was included for
all reactions as a negative control. Changes in threshold
cycles (ΔΔCT) analysis was done to assess the ratio of
RNA expression in females vs. males using previously
published methods for analysis (Step One Software,
v2.2, Applied Biosystems [21,22]).

Phylogenetic analysis
Multiple sequence alignments were built using the
KALIGN program [23], followed by manual adjustments
on the basis of profile-profile and structural alignments.
Phylogenetic analysis was conducted using an approxi-
mately-maximum-likelihood method implemented in
the FastTree 2.1 program under default parameters [24].

Results
qRT-PCR
RNA was extracted from paired antennae of approxi-
mately 100 female and 100 male A. gambiae derived
from the same batch of eggs and raised in the same
cage that had never been exposed to a blood meal. 80
ng RNA/mosquito to 560 ng RNA/mosquito (mean of
270 ng RNA/mosquito) was obtained. Approximately
double the RNA was obtained from female as compared
to male antennae. We isolated antennae on three sepa-
rate occasions from three separate batches of mosqui-
toes over a period of 2 years. The results of three assays
using RNA isolated from antennae (from three separate
lots of mosquitoes) at three different times and normal-
ized to the expression of the S7 ribosomal RNA gene
are shown in Table 2. In all experiments there was an

Table 1 Primers used in qRT-PCR

AGAP ID Forward primer Reverse primer

AGAP003306 CTGCACATGGGCAAGCTG CGTTCGCACACATCCTTG

AGAP009629 GCGCTCCCAAGTTCAAAGTA CGCAATGCACATCGTGTAG

Ribosomal S7 TGCGGCTTCAGATCCGAGTTC TTCGTTGTGAACCCAAATAAAAATC
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increase in accumulation of transcripts of AGAP003306
in female vs. male A. gambiae (5 to 25 fold). When
these data were integrated (Figure 1), there was a statis-
tically significant increase in transcript accumulation of
AGAP003306 in females vs. males (p = 0.037, paired
student’s t test). Furthermore, there was no significant
difference in transcript accumulation between females
and males of the control gene, AGAP009629 (p = 0.246,
paired student’s t test).
The relative increased accumulation of OBP2 tran-

scripts in females vs. males in the three experimental
(biological) replicates varied (Table 2). The mosquito

antennae that generated the RNA for the qRT-PCR
experiments were isolated in July 2009 and were from
mosquitoes from the University of Maryland (experi-
ment 1), and in January 2010 (experiment 2) and in
June 2010 (experiment 3) both from the National Insti-
tutes of Health, Bethesda. Thus, the differences in rela-
tive transcript accumulation were likely due to
biological variability in gene expression from mosquitoes
from different laboratories studied at different times. To
determine if this was the case rather than variability of
the assay, we repeated the qRT-PCR assays using the
RNA of experiments 2 and 3. These technical replicates

Table 2 Expression of AGAP003306 (OBP2) and AGAP0099629 (control) relative to expression of S7 in antennae of
female and male A. gambiae in three biological replicates (experiments 1, 2 and 3).

Target Experiment Female Male Relative Expression

Cт Mean Cт SD ΔCт Mean Cт Mean Cт SD ΔCт Mean ΔΔCт RQ

1 35.55 0.105 36.51 0.257

Reference S7 2 33.31 0.335 35.04 0.125

3 33.57 0.565 32.05 0.188

1 29.77 0.208 -5.780 33.87 0.414 -2.634 -3.145 8.849

AGAP003306 2 29.77 0.168 -3.540 33.87 0.414 -1.170 -2.370 5.171

3 30.85 0.091 -2.721 33.99 0.309 1.941 -4.662 25.309

1 35.42 0.298 -0.130 36.06 0.353 -0.450 0.320 0.801

AGAP009629 2 35.55 0.105 2.239 36.56 0.390 1.518 0.721 0.607

3 36.46 0.478 2.894 34.95 0.686 2.894 0.000 1.000

Cт = (cycle threshold) number of cycles required for the fluorescent signal to reach threshold

Cт Mean = Average Cт from triplicate values on same sample in same PCR reaction

Cт SD = Standard Deviation of triplicate Cт

ΔCт Mean = Cт MeanTarget- Cт MeanReference (target=AGAP003306 or AGAP009629; reference=S7)

ΔΔCт = ΔCт MeanFemale - ΔCт MeanMale

RQ = Relative Quantification = 2-(ΔΔCт)
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Figure 1 Comparative expression of AGAP003306 in female and male A. gambiae. Columns show mean of ΔCт Mean values (normalized
amount of AGAP003306 RNA present) of the three experimental replicates shown in Table 1 multiplied by -1, error bars are standard errors. Data
are significantly different in a pair student’s t-test (p = 0.037, n = 3).
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showed similar results as the original experiments
(Table 3). In a recent publication, similar results for the
OBP2 gene were found in a single biological replicate of
RNA from 4-6 day old A. gambiae by RNA-seq [13].

Phylogenetic Analysis
OBP2 belongs to an OBP super family that includes the
insect pheromone binding proteins [6]. Another mem-
ber of this family, Agam OBP1, mediates indole recogni-
tion in antennae of female A. gambiae [7]. The olfactory
receptors of terrestrial animals exist in an aqueous
environment; yet detect odorants that are primarily
hydrophobic. The aqueous solubility of hydrophobic
odorants is thought to be greatly enhanced via OBPs,
which exist in the extracellular fluid surrounding odor-
ant receptors. This family includes proteins that specia-
lize in binding insect pheromones (PBPs) and others
that bind general odorants (GOBPs) [6]. Prior phyloge-
netic analysis has suggested that evolution of the OBP
superfamily has evolved primarily through the process
of lineage-specific expansion [25]. Thus, the majority of
the OBPs in a given lineage such as Diptera, Hymenop-
tera, Lepidoptera or Coleoptera tend to cluster with
others from the same lineage to the exclusion of those
from other lineages. The genome of A. gambiae itself
contains about 72 members of the OBP family.
We performed a phylogenetic analysis using over 100

representative OBPs from dipterans, hymenopterans and
coleopterans with completely sequenced genomes. OBP2
is lodged within a predominantly dipteran lineage-speci-
fic expansion of OBPs that are particularly well repre-
sented in the culicid mosquitoes (Figure 2). This clade
of OBPs includes the Culex (e.g. CquiOBP1) OBP that

binds the oviposition kairomones (5R, 6S)-6-acetoxy-5-
hexadecanolide [26] (marked red, Figure 2). This analy-
sis also showed that orthologs of A. gambiae OBP2 are
conserved across Culex, Aedes, and Anopheles genera
but are absent in Drosophila (blue box, Figure 2), point-
ing to a function for this protein in potentially binding a
conserved odorant molecule in culicid mosquitoes. The
up regulation of OBP2 observed in females as compared
to males, suggests it could possibly bind a molecule
comparable to the oviposition kairomone bound by
OBP1. However, such a kairomone could also have an
alternative role in guiding female feeding behavior. On
the other hand it is also possible that OBP2 binds a
pheromone that males express. The focus of future stu-
dies would be to pinpoint the role of this protein by
determining the impact of knocking it down vis-a-vis
feeding behavior and fitness of females.
New interventions are needed to control the mosqui-

toes that transmit the parasites that cause malaria
[27,28] and lymphatic filariasis. Despite exciting scien-
tific advances during the past few decades, no new
approaches to mosquito vector control have been
translated into widely used effective interventions.
Sequencing the A. gambiae genome [29] and transcrip-
tomics have provided a foundation for an approach to
developing new interventions based on identifying
genes and gene products that are important in trans-
mission and mate-seeking. Stable genetic knockouts
have not been generated in A. gambiae. However, tran-
sient knockdown by injection of sRNAi can be done
and used to confirm the functional importance of
OBP2 and other genes. This will be one of the next
steps in our work.

Table 3 Expression of AGAP003306 (OBP2) relative to expression of S7 in antennae of female and male A. gambiae in
two technical replicates.

Target Technical replicate Female Male Relative Expression

Cт Mean Cт SD ΔCт Mean Cт Mean Cт SD ΔCт Mean ΔΔCт RQ

Experiment 2 33.314 0.335 35.043 0.125

Reference 35.553 0.105 36.507 0.257

S7 Experiment 3 33.565 0.565 32.053 0.188

36.502 0.309 31.034 0.400

Experiment 2 29.774 0.168 -3.540 33.873 0.414 -1.170 -2.371 5.172

AGAP 31.725 0.376 -3.828 34.759 0.191 -1.749 -2.079 4.226

003306 Experiment 3 30.845 0.091 -2.721 33.994 0.309 1.941 -4.662 25.309

33.167 0.384 -3.335 32.711 0.562 1.678 -5.013 32.293

Cт = (cycle threshold) number of cycles required for the fluorescent signal to reach threshold

Cт Mean = Average Cт from triplicate values on same sample in same PCR reaction

Cт SD = Standard Deviation of triplicate Cт

ΔCт Mean = Cт MeanTarget- Cт MeanReference (target=AGAP003306 or AGAP009629; reference=S7)

ΔΔCт = ΔCт MeanFemale - ΔCт MeanMale

RQ = Relative Quantification = 2-(ΔΔCт)
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Figure 2 Phylogenetic analysis. Phylogenetic analysis was done using over 100 representative OBPs from dipterans (magenta), hymenopterans
(turquoise) and coleopterans (yellow). The light blue box shows that orthologs of A. gambiae OBP2 are conserved across Culex, Aedes, and
Anopheles genera, but are absent in Drosophila. The orange box shows that this clade of OBPs includes the Culex (e.g. CquiOBP1) OBP that binds
the oviposition kairomones (5R, 6S)-6-acetoxy-5-hexadecanolide. The lineage-specfic expansions in various insect lineages other than the OBP1
and OBP2 clades, which are discussed in the paper have been collapsed and the branch lengths equalized for simplicity of viewing.
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