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The origins of the trypanosome genome strains
Trypanosoma brucei brucei TREU 927, T. b.
gambiense DAL 972, T. vivax Y486 and T.
congolense IL3000
Wendy Gibson

Abstract

The genomes of several tsetse-transmitted African trypanosomes (Trypanosoma brucei brucei, T. b. gambiense, T.
vivax, T. congolense) have been sequenced and are available to search online. The trypanosome strains chosen for
the genome sequencing projects were selected because they had been well characterised in the laboratory, but all
were isolated several decades ago. The purpose of this short review is to provide some background information on
the origins and biological characterisation of these strains as a source of reference for future users of the genome
data. With high throughput sequencing of many more trypanosome genomes in prospect, it is important to
understand the phylogenetic relationships of the genome strains.
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Review
The genome sequence of Trypanosoma brucei brucei
TREU 927/4 was published in 2005 [1] and that of T. b.
gambiense Dal 972 clone 1 in 2010 [2]. Genome sequen-
cing projects for T. vivax Y486 and T. congolense IL3000
are also complete [3]. The trypanosome strains chosen
for sequencing were selected because they had been well
characterised in the laboratory, but all were isolated sev-
eral decades ago (Table 1). The purpose of this short
review is to provide some background information on
the origins and biological characterisation of these
strains as a source of reference for future users of the
genome data. The history of the discovery of these try-
panosome species has been recently reviewed [4].

Trypanosoma brucei brucei TREU 927/4
Isolation and phenotype
Trypanosoma brucei brucei clone TREU 927/4 was cho-
sen as the representative T. brucei for the genome pro-
ject, because it displays the full range of known
phenotypes for T. brucei, barring human infectivity.
TREU 927/4 is capable of complete cyclical development

within the tsetse fly, including mating [5] and produces
short stumpy forms during bloodstream infection in the
mammalian host [6]. TREU 927/4 is a clone derived
from the isolate GPAL/KE/70/EATRO 1534 [5] that ori-
ginates from Kiboko, Kenya, an area where human try-
panosomiasis is unknown [7]. Nevertheless, there is
some doubt about the status of TREU 927/4 with regard
to human infectivity, since it has a degree of resistance
to human serum [8], though it lacks the SRA gene that
is characteristic of the human infective subspecies T. b.
rhodesiense from East Africa [9].
The isolate GPAL/KE/70/EATRO 1534 was one of a

collection of 15 T. brucei subgroup isolates obtained
from wild caught tsetse flies of the species Glossina pal-
lidipes from Kiboko, Kenya [7,10,11]. Each isolate was
derived from the metacyclic population of a single
infected fly by inoculation of macerated salivary glands
into rodents; the bloodstream forms were subsequently
used to study the antigenic types circulating in wild-
caught flies [11]. Like other pleomorphic T. b. brucei
isolates, TREU 927/4 is easily grown as bloodstream
forms in rodents or procyclics in vitro; it has also been
adapted to the bloodstream form in in vitro culture [6]
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and has been transmitted via G. morsitans morsitans
and G. pallidipes in the laboratory.
Relationship to other T. brucei strains
TREU 927/4, together with other T. b. brucei isolates
from Kiboko, has been characterised by various molecu-
lar methods in a number of different studies. The con-
sensus from these analyses is that TREU 927/4
represents a subgroup of T. b. brucei that is widespread
in East Africa.
Initial studies of isoenzyme variation showed that the

Kiboko isolates had a high frequency of rare polymorph-
isms for several enzymes, notably threonine dehydrogen-
ase (TDH) and malate dehydrogenase (MDH), and that
these unusual isoenzyme patterns were shared by T.
brucei subgroup isolates from other areas with abundant
wild animals in Kenya (Kibwezi, Meru and Maasai
Mara), Zambia (Luangwa valley) and Tanzania (Seren-
geti) [12-14]. As a consequence, these isolates appeared
as a separate clade distinct from other T. brucei sub-
group isolates in cluster analysis [12-14]. The clade was
initially dubbed the kiboko group [12] and later split
into 2 groups: kiboko and kakumbi [13]. Only a minority
(estimated < 7%) of the many isolates of the T. brucei
subgroup that have been characterised belong to the
kiboko/kakumbi isoenzyme group [12,13]. The associa-
tion with areas of abundant wildlife in East Africa sug-
gests transmission cycles primarily involving wild
mammals and tsetse. However, some kiboko/kakumbi
strains have been isolated from domestic animals and
three came from humans in the Luangwa Valley, Zam-
bia [13].
The molecular karyotype of TREU 927/4 was deduced

from chromosome-separation gels and hybridisation
with a comprehensive set of gene probes [15]. The
nuclear genotype has been analysed by restriction frag-
ment length polymorphisms (RFLPs), mini- and micro-
satellites. Reinforcing the isoenzyme results, analysis of
T. brucei subgroup isolates using RFLP data from repeti-
tive DNA probes placed TREU 927/4 in a discrete clus-
ter with 2 other Kiboko tsetse isolates [16,17].
Minisatellite analysis of the original trypanosome popu-
lation from which TREU 927/4 was cloned showed it to
contain several genotypes [18]. Minisatellites are hyper-
variable and the Kiboko strains, like other collections of
trypanosome isolates from particular locations, show
population specific alleles [19]. A recent study using

STRUCTURE to analyse microsatellite genotype data
from a total of 142 T. brucei subgroup strains placed
TREU 927/4 in a cluster designated Kiboko B, including
18 other T. b. brucei isolates derived from wild animals
(mostly lions and hyenas) in Serengeti, Tanzania, and
other tsetse and livestock isolates from Kiboko and
Meru in Kenya [20]. In summary, there is agreement
from all genotyping analyses to date that TREU 927/4
belongs to a particular group of T. b. brucei isolates that
is found predominantly in wildlife areas of East Africa.
Complementary to these data from analyses of the

nuclear genome, are data on variation in the sequence
of kinetoplast DNA maxicircles, which constitute the
mitochondrial genome of trypanosomes. Initial analysis
of RFLPs showed that the maxicircles of kiboko/kakumbi
strains could be distinguished from those of other T.
brucei subgroup isolates by several polymorphisms [21].
Sequencing of the maxicircle COI (cytochrome c oxi-
dase subunit I) gene allowed detailed analysis of mito-
chondrial haplotypes and revealed that isolates of the
kiboko/kakumbi group, including TREU 927/4, share a
limited range of haplotypes not found among other T.
brucei subgroup isolates [20]. There was a particularly
striking correlation between maxicircle haplotypes and
the corresponding microsatellite data for the cluster of
19 T. b. brucei isolates designated Kiboko B, which
included TREU 927/4 [20]. This reinforces the distinc-
tive nature of this group of strains and also demon-
strates that genetic exchange between this group and
other T. brucei genotypes is not sufficiently frequent to
break up this association.

Trypanosoma brucei gambiense DAL 972 clone 1
Isolation and phenotype
T. b. gambiense is the causative organism of human try-
panosomiasis in West and Central Africa and has been
divided into two groups or types based on phenotypic
and genotypic characteristics [22]. Most isolates belong
to Tbg1, which conforms to the classical description of
T. b. gambiense as a pathogen that causes a chronic dis-
ease in human patients and manifests very low parasi-
taemia; it is typically slow growing in experimental
rodents and is better adapted to transmission by palpa-
lis than morsitans group tsetse flies [23]. Tbg1 is
responsible for most cases of human trypanosomiasis in
Africa. By contrast Tbg2 grows well in experimental

Table 1 Trypanosome genome strains

Species Strain Origin

T. b. brucei TREU 927/4 Isolated from tsetse Glossina pallidipes in 1970 in Kiboko, Kenya

T. b. gambiense DAL 972 Isolated from a patient in 1986 in Daloa, Ivory Coast

T. vivax Y486 Isolated from a bovine in 1976 in Zaria, Nigeria

T. congolense IL3000 Isolated from a bovine in 1966 in Transmara, Kenya
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rodents and is easily transmitted by morsitans group
tsetse [23]; it has rarely been isolated from patients and
has thus far been found only in Côte d’Ivoire (Ivory
Coast) and Burkina Faso (Upper Volta) [16,24]. Tbg2
isolates are genetically heterogeneous [16,24,25].
DAL 972 (MHOM/CI/86/DAL972) clone 1 was cho-

sen as the representative Tbg1 for the genome project,
because it was originally isolated from a patient in West
Africa (Daloa focus in Côte d’Ivoire) [26], and has the
phenotypic features typical of Tbg1. DAL 972 clone 1
has been very little passaged and has an extremely
chronic phenotype in normal experimental rodents, but
can be grown in immunosuppressed or immunodeficient
mice such as SCID (severe combined immunodeficiency)
mice. It has been transmitted via G. palpalis gambiensis,
G. m. morsitans and G. pallidipes in the laboratory, and
grows satisfactorily as procyclics in vitro in Cunning-
ham’s medium.
Relationship to other T. brucei strains
By biochemical characterisation, DAL 972 is a typical
Tbg1 with specific isoenzyme patterns for alanine and
aspartate aminotransferases [27], and has all three char-
acteristic Tbg1 genetic markers, namely genes for the
variant surface glycoproteins LiTat 1.3 and VSG AnTat
11.17, and the flagellar pocket glycoprotein, TgsGP
[28,29]. Note that TgsGP is not correctly annotated in
the DAL 972 genome, because this gene has been sub-
ject to a rearrangement relative to TREU 927 resulting
in lack of synteny for one homologue of chromosome 2
[30]. In addition, DAL 972 was shown to have the char-
acteristic Tbg1 RFLP pattern for VSG 117 (AnTat 1.8)
[31,32].
Tbg1 isolates typically have low DNA contents com-

pared to other members of the T. brucei subgroup
[33,34]. The DNA content of DAL 972 was at the high
end of the range for Tbg1, but lower than T. b. brucei
or T. b. rhodesiense [34]. In addition, the molecular kar-
yotypes of Tbg1 isolates typically have lower numbers of
minichromosomes than T. b. brucei or T. b. rhodesiense
[33] and this is also true for DAL 972 [34].

Trypanosoma vivax Y486
Isolation and phenotype
T. vivax is a major pathogen of ruminants both in
Africa, where it is transmitted cyclically by tsetse flies,
and in South America, where it is transmitted mechani-
cally by biting flies such as tabanids. Despite its impor-
tance as a livestock pathogen, T. vivax has received little
attention because it is difficult to cultivate in the labora-
tory. Unlike T. brucei, T. vivax is typically not infective
to laboratory rodents, but can be gradually adapted to
these hosts by for example co-injection with ruminant
serum or immunosuppression by sublethal irradiation
[35]. However, three strains of T. vivax (Y486, Y58,

V953) from naturally infected cattle in Zaria, Nigeria
were isolated directly into mice [36]. These sponta-
neously mouse infective strains grow to high parasitae-
mia in outbred mice and have been widely used in
laboratory studies. The ability to clone antigenic variants
of T. vivax Y486 [37] led to the purification and charac-
terization of T. vivax variant surface glycoproteins [38];
T. vivax Y486 is ILRAD Duttonella antigen repertoire 1,
ILDAR 1. As the most well characterized of the three
Zaria T. vivax strains, Y486 was chosen for the genome
project.
The Zaria T. vivax strains are infective to calves,

sheep and goats, as well as mice, rats and rabbits, and
are readily transmissible by a wide range of tsetse spe-
cies (G. m. centralis, G. m. morsitans, G. pallidipes, G.
austeni, G. brevipalpis, G. tachinoides, G. palpalis pal-
palis, G. p. gambiensis, G. fuscipes fuscipes) [37,39-42].
Infection in these flies was typically found in the lab-
rum and hypopharynx and sometimes also in the
cibarium [41,42]. Unlike T. brucei and T. congolense,
T. vivax does not multiply in the tsetse midgut and
hence does not grow in vitro as procyclics. Although
culture systems to maintain T. vivax bloodstream
forms in vitro were developed by several groups
[43-45], none has come into general use. Likewise,
there are several published methods from the same era
for in vitro differentiation of bloodstream forms into
epimastigotes and subsequent development to infective
metacyclics [46-48]. Recently, a simple in vitro cultiva-
tion method for epimastigotes of IL 1392, a derivative
of Y486, has been described that is robust enough to
allow transfection and also gives rise to infective meta-
cyclics [49].
Relationship to other T. vivax strains
The Nigerian reference isolate, T. vivax Y486, is a repre-
sentative of the West African form of T. vivax. Before
the advent of the Polymerase chain reaction (PCR),
knowledge of genetic diversity in T. vivax was severely
limited because of the difficulty of obtaining enough try-
panosomes for analysis. However, differences in patho-
genicity were recognised between East and West African
T. vivax strains, the West African strains being generally
regarded as more pathogenic to cattle than East African
strains [50], although highly pathogenic haemorhaggic
T. vivax strains are also known in East Africa [51,52].
West African T. vivax strains can be identified by speci-
fic repetitive DNA sequences and are phylogenetically
distinct from East African strains [53-56]. South Ameri-
can T. vivax strains have been shown to have close
genetic similarity to West African strains [57], in agree-
ment with the historical evidence that T. vivax was
imported into the New World in cattle from West
Africa [58]. Thus, T. vivax Y486 also represents the
South American form of T. vivax.
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Trypanosoma congolense IL3000
Isolation and phenotype
IL 3000 is a derivative of strain Transmara I, which was
isolated from a bovine in the Transmara region of
Kenya in 1966 [59,60]. Antigenic variation has been stu-
died in this strain (designated ILRAD Nannomonas anti-
gen repertoire 2, ILNAR 2) and variant antigen genes
have been characterized from both bloodstream and
metacyclic IL 3000 trypanosomes [61,62]. Presumably
this was one of the deciding factors in choosing IL3000
for the genome project, although several other T. congo-
lense strains such as TREU 1457 have also been widely
used in experimental studies.
T. congolense generally grows well in laboratory

rodents and bloodstream forms of IL3000 have been
grown in mice as well as bloodstream form culture
[60,63]. T. congolense is transmissible by a range of
tsetse species and the life cycle is similar to that of T.
brucei with proliferation of procyclics in the midgut and
transmission of metacyclics in the saliva; for T. congo-
lense, production of metacyclics occurs in the proboscis
[58,64]. The tsetse developmental stages of T. congolense
are more amenable to in vitro culture than those of T.
brucei and methods for the in vitro production of
attached epimastigotes and metacyclics pioneered by
Gray and colleagues [65] have allowed the analysis of
epimastigote and metacyclic as well as procyclic and
bloodstream form populations. In this way epimastigote
and metacyclic populations of sufficient purity for EST
analysis were obtained from IL3000 [66] and recently
the complete life cycle of IL3000 has been reproduced
in vitro [63]. The ability to culture epimastigotes of
IL3000 led to the characterisation of an epimastigote-
specific, GPI-anchored surface glycoprotein called CESP
[67], adding to the list of surface molecules specific to
tsetse developmental forms of T. congolense, including
GARP (glutamic acid/alanine rich protein) [68,69], PRS
(protease-resistant surface molecule) [70] and T. congo-
lense procyclin [71]. It is possible to transfect T. congo-
lense procyclics fairly easily by electroporation
[63,72,73], but much more difficult to transfect blood-
stream forms [63].
Relationship to other T. congolense strains
Three genetically distinct subgroups are currently recog-
nized within T. congolense: savannah, forest and Kenya
Coast or kilifi [74]. The most abundant and widespread
is T. congolense savannah and IL3000 represents this
subgroup. The savannah and forest subgroups were ori-
ginally distinguished by different isoenzyme patterns
[75,76], and subsequently by unique repetitive DNA
sequences which provide targets for species-specific
PCR identification [77]. A further genetically distinct
subgroup was isolated from livestock on the Kenya
Coast [78] and appears to have a restricted distribution

in East Africa. Although phylogenetic analysis places
these three T. congolense subgroups in a single clade
[79,80], they are arguably sufficiently genetically diver-
gent to warrant recognition as separate species [81].

Conclusions
This short review has brought together background
information on the origins and biological characterisa-
tion of the four African tsetse-transmitted genome
strains as a source of reference for future users of the
genome data.
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