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Abstract

Background: Understanding the relationship between Plasmodium falciparum malaria transmission and health
outcomes requires accurate estimates of exposure to infectious mosquitoes. However, measures of exposure such
as mosquito density and entomological inoculation rate (EIR) are generally aggregated over large areas and time
periods, biasing the outcome-exposure relationship. There are few studies examining the extent and drivers of local
variation in malaria exposure in endemic areas.

Methods: We describe the spatio-temporal dynamics of malaria transmission intensity measured by mosquito
density and EIR in the KEMRI/CDC health and demographic surveillance system using entomological data collected
during 2002–2004. Geostatistical zero inflated binomial and negative binomial models were applied to obtain
location specific (house) estimates of sporozoite rates and mosquito densities respectively. Model-based predictions
were multiplied to estimate the spatial pattern of annual entomological inoculation rate, a measure of the number
of infective bites a person receive per unit of time. The models included environmental and climatic predictors
extracted from satellite data, harmonic seasonal trends and parameters describing space-time correlation.

Results: Anopheles gambiae s.l was the main vector species accounting for 86 % (n = 2309) of the total mosquitoes
collected with the remainder being Anopheles funestus. Sixty eight percent (757/1110) of the surveyed houses had
no mosquitoes. Distance to water bodies, vegetation and day temperature were strongly associated with mosquito
density. Overall annual point estimates of EIR were 6.7, 9.3 and 9.6 infectious bites per annum for 2002, 2003 and
2004 respectively. Monthly mosquito density and EIR varied over the study period peaking in May during the wet
season each year. The predicted and observed densities of mosquitoes and EIR showed a strong seasonal and
spatial pattern over the study area.

Conclusions: Spatio-temporal maps of malaria transmission intensity obtained in this study are not only useful in
understanding variability in malaria epidemiology over small areas but also provide a high resolution exposure
surface that can be used to analyse the impact of transmission on malaria related and all-cause morbidity and
mortality.
Background
Malaria parasites are transmitted from human to human
via the bite of an infected female anopheline mosquito.
The life cycle of the mosquito vector and the malaria para-
site are strongly influenced by climatic factors, primarily
rainfall, temperature and humidity. Suitable rainfall pro-
vides mosquito breeding sites and temperature influences
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both vector and parasite development. By understanding
the relations between environmental/climatic factors and
malaria transmission in space and time, transmission in-
tensity can be estimated in areas where data are otherwise
lacking and high risk areas can be identified. Understand-
ing spatial and temporal variation in vector density and
transmission intensity is useful in planning effective
malaria control programs and determining the optimal
allocation of limited resources.
Malaria transmission intensity is often assessed by the

entomological inoculation rate (EIR) which is the prod-
uct of the vector biting rate and the sporozoite rate (SR)
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which is the proportion of mosquitoes with sporozoites
in their salivary glands [1]. EIR estimates the number of
infective bites a person receives per unit time and thus
the level of exposure of an individual to malaria para-
sites. Studies have shown strong correlation between EIR
and malaria prevalence [2-4]. Furthermore, EIR is the
most accurate measure of transmission intensity [5]
particularly when efforts are made towards reducing
human-vector contact.
Mosquito population size and sporozoite rates fluctuate

between seasons and over years [6]. Shortly after the onset
of rainfall, mosquito populations increase to a peak. As the
dry season sets in, mosquito populations decline in num-
bers since no new recruits are added to the population [7].
A change in either mosquito density or sporozoite rate or
both affects the EIR. Similarly, mosquito population
distribution is heterogeneous [8-10] and even within a
defined geographical area mosquito densities vary widely
in space and time.
In the KEMRI/CDC Health and demographic surveil-

lance systems (HDSS), entomological data are collected
from randomly selected locations (houses) as part of
routine surveillance to assess the effects of interventions
aimed at reducing malaria transmission intensity. The
main characteristics of the data are the presence of spatio-
temporal correlation and the large number of locations
without mosquitoes (zeros). Spatial correlation arises
because neighbouring locations are influenced by similar
exposures such as climate and environment due to close
proximity of locations. Analyzing these data without
taking into account these specific characteristics result
in overestimation or underestimation of the statistical
significance of the covariates [11] and poor model fit
respectively.
Several studies have reported large spatio-temporal

variations in mosquito density, SR and EIR [8,10,12,13].
For instance Dery et al. [12] reported sporozoite rate of
1.5 % and 4.7 % for An. funestus and An.gambiae
respectively and annual EIR estimates of 267 and 231
infectious bites per person per year (ibpy) for first year
and second year respectively in a study in the forest-
savannah transitional belt of Ghana. Drakeley et al. [8]
also reported SRs of less than 1 % with EIRs ranging
from 4 to 108 in the cool and wet seasons respectively in
Ifakara, a semi-urban area in Tanzania. In the same study,
an EIR of 54 ibpy was reported in the eastern part of
Ifakara town compared to only 15 ibpy at the center of the
town. Smith et al. [10] mapped mosquito (An. funestus
and An.gambiae) densities in Namawala, a single village in
Morogoro region of south eastern of Tanzania. Overall,
the spatial pattern of mean log densities of both species
was similar with higher density of An. funestus in the
southern edge of the village adjacent to rice growing
fields. In the above studies, a large number of locations
had zero mosquitoes. However, appropriate statistical
methods taking into account zero inflation were not
used to assess variation in space and time. In addition,
sporozoite rate are binomial data, whereas mosquito
densities are count data which requires different modeling
approaches to obtain EIR.
In our previous work [14], we developed spatio-tem-

poral zero inflated models to analyze sparse sporozoite
rate data. These models have been used to obtain
spatially explicit estimates and maps of sporozoite rates
in the KEMRI/CDC HDSS. In this study we extend our
previous work by analyzing zero inflated mosquito
density data. Spatio-temporal model based-estimates of
mosquito density are combined with sporozoite rate
model based-estimates obtained by [14] to estimate the
space-time pattern of EIRs.

Methods
Study site
This study was carried out in the KEMRI/CDC HDSS site
located in Asembo (Rarieda Division, Bondo District),
Gem (Yala and Wagai Divisions, Siaya District) and
Karemo (Karemo Division, Siaya District) areas situated in
Nyanza Province, rural Western Kenya (Figure 1).
During the study period, the KEMRI/CDC HDSS was

only operating in Asembo, bordering Lake Victoria and
Gem, adjacent to and North of Asembo. The HDSS has
been described elsewhere in detail [15]. In brief, KEMRI/
CDC HDSS area is characterized by gentle hills/slopes
(elevation =1,147-1,388meters) that are drained by
several small streams and one permanent river in Gem.
Rainfall occurs year-round with heavy rains falling from
March through May and from November to December
(wet season). The remaining months of the year receive
only light showers (dry season). Most inhabitants reside
in traditional houses with mud walls and thatched roofs
clustered into compounds. The compounds consist of
clusters of one or more houses separated from other
such clusters by the surrounding agricultural fields. At
the time the data were collected, the study area covered
approximately 500 km2 with a population of 135,000
living in 33,990 households within 21,477 compounds.
Malaria is holoendemic in the KEMRI/CDC HDSS

area where it is transmitted by An.gambiae s.l. and An.
funestus [15,16]. A trial of insecticide-treated mosquito
nets (ITNs) trial conducted from 1996 to 2002 reduced
malaria transmission by 90 % [17,18]. However, despite
the continued use of ITNs and a relatively low EIR of
about seven ibpy [15], malaria prevalence remains high
and is still the main cause of child mortality [15].

Entomological data
The entomological data (2002–2004) used in this study
has been described elsewhere in detail [14,15]. In brief,



Figure 1 Location of the KEMRI/CDC HDSS site.
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Anopheles mosquitoes were collected monthly using
Centers for Disease Control (CDC) light traps from 10
randomly selected houses (locations) each month from
HDSS database along with four additional houses
neighboring each index house. In each house, a light
trap was placed next to the sleeping place of an indi-
vidual who was randomly chosen from the list of
household members and mosquitoes were collected for
two sequential nights. The sleeping place of the
selected individual was covered with an insecticide
treated net to protect the person from mosquito bites.
Captured mosquitoes were initially identified morpho-
logically while members of Anopheles gambiae complex
were further identified to species using polymerase
chain reaction (PCR) [19]. Female Anopheles mosqui-
toes were tested for the presence of circumsporozoite
antigens using an enzyme linked immunosorbent assay
method [20].

Entomological inoculation rate (EIR)
The entomological inoculation rate (EIR) was calculated
as the product of light trap densities and the proportion
of infected mosquitoes (sporozoite rate). Mosquito density
in the light traps was calculated by dividing the number
of mosquitoes caught by the CDC light traps by the num-
ber of trap-nights. This estimate was then adjusted by
multiplying by 1.605 as described by Lines and colleagues
to calibrate the light trap estimates to those of human
landing catch [21]. The conversion factor adjusts for
vector collection bias between human bait catch technique
which is directly associated with mosquito feeding on
humans and light trap collection which tends to underesti-
mate the densities observed in human landing catches
[22]. High EIR resolution was obtained as a product of
predicted mosquito SR and density at locations where
mosquitoes were not collected. The former was extracted
from analysis in [14].

Climatic and Environmental data
The climatic and environmental predictors used in this
study are similar to the ones used by Amek et al. [14].
Land surface temperature, normalized difference vege-
tation index, rainfall, and elevation were extracted from
remote sensing data. Distance to the nearest water
source (the lake, streams and river) was obtained from
the KEMRI/CDC HDSS global positioning system
(GPS) database.
Land surface temperature for day and night (LST) and

Normalized Difference Vegetation Index (NDVI) were
extracted at 0.25 km by 0.25 km and 1 km by 1 km
spatial resolution respectively from Moderate Resolution
Imaging Spectroradiometer (MODIS). NDVI is a proxy
measure of vegetation cover ranging from 1 to −1.
Positive values indicate the presence of vegetation and
negative values and values close to zero represent barren
soil or water surfaces.
Elevation (distance above the sea level) data were

extracted at 1 km resolution from a Digital Elevation
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Model (DEM). MODIS and DEM were obtained from U.S
Geological Survey (USGS) EROS Data Center. Rainfall
estimate (RFE) data with an 8 km by 8 km spatial reso-
lution from Meteosat 7 satellite were also obtained from
the Africa Data Dissemination Service (ADDS).
All environmental factors were extracted for each

location and lags up to 3 months were created to account
for possible elapsing (lag) time, between the predictive
variables (rainfall, LST and NDVI) and the outcome
variable (mosquito density).

Statistical analysis
The lag time analysis was carried out in STATA (version
9.0) to determine the best combination of lags that
estimated the mosquito population density taking into ac-
count seasonality, distance to water bodies and elevation.
Seasonality was modeled by (i) trigonometric functions
with a cycle of 12 months [23] corresponding to two trans-
mission seasons (wet vs. dry) and (ii) a binary variable indi-
cating wet or dry season. The wet and dry seasons were
defined based on rainfall data, with the months of March
through May and November to December classified as the
wet season, and the remaining months classified as the dry
season. Trigonometric functions estimate the magnitude
and the exact peak point (e.g. month, week or day) of
the seasonal variation using the amplitude and the phase
parameters respectively.
The Akaike’s information criterion [24] was used to

select the best fitting model combining seasonality and
environmental factors. The best model included season-
ality with a cycle of 12 months, average NDVI and night
temperature (LSTN) during the month of mosquito
collection, average day temperature (LSTD) during the
current and previous month of mosquito collection and
total rainfall during the current and two previous
months of mosquito collection. A Bayesian geostatistical
version of the above model using a zero-inflation formu-
lation was further fitted to assess space time variation.
The model included year effect and an autoregressive
term to take into account temporal correlation. Bayesian
Kriging, similar to that used in our previous work [14]
was used to predict mosquito density at locations
(houses) where mosquitoes were not collected. Location
specific predictions of sporozoite rate obtained by [14]
and density were multiplied to obtain the EIR estimates
The assessment of model predictive ability was also simi-

lar to that carried out by [14]. We assessed model predictive
ability by fitting the models on a training set of 85 % (943)
of the randomly selected locations and compared the
model-based predictions with the observed data at the
remaining 15 % (167) test locations [25]. The best model
was one with the highest percentage of test locations falling
within the Bayesian credible interval of smallest coverage as
well as the model with the smallest mean square error.
The Bayesian model was fitted in OpenBUGS version
3.1.2 (Imperial College and Medical Research Council,
London, UK) and Kriging was carried out in a code
written by the authors in Fortan 95 (Digital Equipment
Corporation) using standard numerical libraries (Numerical
Algorithms Group Ltd). A description of the Bayesian
geostatistical formulation model fitted to mosquito count
data is given in the appendix.

Results
Abundance/density of vector species
A total of 2309 anopheline mosquitoes were collected
from 3850 catches in 1110 unique locations during the
study period. About 68 % of these locations had no mos-
quitoes. An. gambiae s.l. mosquito was the predominant
vector species accounting for 86 % of the total Anopheles
mosquitoes collected. The remaining 14 % were An.
funestus. Average monthly abundance of Anopheles
mosquitoes varied over the study period. Each year, the
peak collecting period for An. gambiae was May, during
the rainy season (Figure 2). An. funestus was very low
throughout the study period except in the months of
April and December in the year 2004. PCR tests on the
An. gambiae s.l. samples indicated that the majority
(72 %) were An. gambiae s.s with An. arabiensis account-
ing for the rest of the tested mosquitoes.
Figure 3 shows the monthly pattern of observed, fitted

and location-specific predicted density of An. gambiae. It
should be noted that the observed density has a similar
pattern to the location-specific predicted and fitted dens-
ities throughout the study period. An. gambiae density
varied over the months with peaks in May of each year.
However, the absolute density during the peak month
(May) significantly decreased over the 3 years of the
study. Comparison between wet and dry months indi-
cated that density was higher in wet months.
Model validation showed that 83 % and 66 % of the test

locations had mosquito densities which were within the
95 % credible intervals estimated from the zero inflated
spatio-temporal negative binomial model and zero inflated
spatial negative binomial model respectively. Furthermore,
the zero inflated spatio-temporal negative binomial
model consistently included the highest proportion of
test locations in all the credible intervals compared to
spatial negative binomial model (Figure 4). Similar
results were obtained using the mean square error
measure (data not shown).
The best fitting zero-inflated spatiotemporal model

included the following parameters: distance to water
bodies, elevation, average value of NDVI and LSTN during
the month of mosquito collection, average LSTD during
the current and the previous month of mosquito
collection, total rainfall during the current and the two
previous months of mosquito collection, year trend,
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Figure 2 Monthly pattern of average number of Anopheles gambiae and funestus species in relation to total Rainfall.
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trigonometric seasonality, spatial and temporal varia-
tions. The results of bivariate non-spatial and spatio-
temporal zero-inflated negative binomial models are
shown in Table 1 below.
Distance to water bodies, mean value of NDVI during

the month of collection and average day temperature
during the current and the previous month of collection
were associated with mosquito density. In particular,
distance to water bodies and average day temperature
(LSTD) during the current and the previous month of
mosquito collection were negatively related with mos-
quito density. Mean value of NDVI during the month of
collection was positively associated with mosquito dens-
ity. The average of the total rainfall during the current
and the two previous months of mosquito collection,
mean night temperature (LSTN) during the month of
collection and elevation were not associated with mos-
quito density. The minimum distance at which the spatial
correlation was significant at 5 % was 3.0 km (95 % cred-
ible interval: 1.337, 6.482).
The 95 % credible interval of the amplitude parameter

revealed a strong monthly variation in mosquito density.
The phase of 0.28 radials indicated that the maximum
density occured in the months of May and the minimum
in November. However, the average mosquito density
during the second and third year was not strongly differ-
ent than that of the first year.
Entomological inoculation rate
The overall point estimates of annual EIR were 6.7, 9.3
and 9.6 ibpy for the years 2002, 2003 and 2004 respect-
ively. The estimates of EIR for this study were obtained
exclusively from the An. gambiae mosquitoes because
none of the An. funestus mosquitoes tested positive for
the presence of Plasmodium falciparum sporozoite anti-
gens. The estimates of EIR for 2002 are based on data
from Asembo only since mosquito collection started in
Gem in 2003. Gem had high EIR in both wet and dry
seasons throughout the study period (Table 2 below).
Figure 5 depicts the temporal pattern of observed

and predicted EIR in relation to total monthly rainfall.
Overall observed and predicted EIR display a similar
trend during the study period. However, our model
over-predicted EIR in May 2002, May 2003 and June
2003. Monthly point estimates of EIR varied over the
study period with the highest inoculation rate of 4
ibpm (infectious bites per person month) occurring in
May 2004 and the lowest in October 2002. Comparison
between wet and dry months indicated that both the



Figure 4 Proportion of test locations with none-zero
mosquitoes falling in between 5 % to 95 % credible intervals of
the posterior predictive distribution.
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Figure 3 Monthly pattern of observed, fitted and predicted density of Anopheles gambiae mosquito.
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predicted and observed EIR are higher during the wet
months (data not shown).
Smooth maps of monthly predicted malaria transmis-

sion are shown in Figures 6, 7 and 8. These predicted
maps depict spatial variation within and between months
with areas of high predicted EIRs occurring in the north-
ern part of the study area with a few locations with high
predicted EIRs occurring during wet months in the
southern part of the study area. Prediction error maps
(not shown) were also produced.

Discussion
In this study, we described and estimated malaria trans-
mission patterns in the KEMRI/CDC HDSS site using
mosquito density and entomological inoculation rate as
measures of malaria transmission intensity. Malaria
transmission fluctuated over the months (see Figure 2)
in the HDSS with the highest mosquito density/abun-
dance and EIR occurring in May each year. Transmission
intensity measured by EIR showed that residents in the
HDSS were exposed to a range of 0–4 infective bites per
month (see Figure 4). The results also showed that An.
gambiae is the main species driving transmission because
the density and infectivity of An. funestus were very low.



Table 2 Distribution of EIR by area in relation to wet and
dry months during study period

Area 2002 2003 2004

Wet dry Wet Dry Wet dry

Asembo 4.9 1.8 4.3 2.8 4.9 1.2

Gem - - 6.6 4.9 8.5 4.6

Table 1 Posterior estimates of zero inflated geostatistical
density models

Covariates Bivariate non-spatial Spatiotemporal model

Mean (95 % CI) Median (95 % CI)

Intercept - 4.634 (0.005,7.098)

Distance to
water body

−0.003 (−0.006,0.001) −0.007 (−0.013,-0.002)

Elevation 0.002 (−0.001,0.003) −0.008 (−0.041,0.020)

Rainfall *** 0.006 (0.005,0.008) 0.040 (−0.041,0.113)

NDVI* 4.837 (3.589,6.086) 4.170 (1.308,6.725)

LSTD** −0.139 (−0.182,-0.096) −0.246 (−0.3752,-0.153)

LSTN* −0.010 (−0.065,0.085) 0.124 (−0.031,0.234)

Year2 −0.276 (−0.538,-0.013) 0.242 (−0.356,0.852)

Year3 −0.404 (−0.673,-0.135) 0.441 (−0.244,1.122)

Cosine 0.642 (0.477,0.807) 1.75 (0.570,2.913)

Sine 0.533 (0.364,0.701) 0.522 (−0.597,1.590)

Amplitude - 1.922 (0.941,3.016)

Shift/phase - 0.280 (−0.291,1.033)

Over dispersion value - 0.705 (0.502,1.135)

Spatial Variation - 0.874 (0.516,1.417)

Temporal variation - 0.322 (0.140,0.898)

Range(3/(�)a - 3.039 (1.337,6.482)

Zero-Inflated
proportion

- 0.074 (0.004,0.200)

a: minimum distance in kilometers at which spatial correlation is significant at
5 %,*: environmental average value of the current month of mosquito
collection, **: environmental average value of the current and previous month
of mosquito collection, ***: environmental total value of the current and two
previous month of mosquito collection.
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An. gambiae prefers temporary breeding sites which are
common in the study area during the rainy seasons as
opposed to An. funestus which is mainly found in
permanent water bodies. A study [26] on the impact of
ITNs on entomological indices in the same area also
found a similar result (high density of An. gambiae
compared to An. funestus).
The negative association between distance to water

bodies and mosquito density in our results implies that
many mosquitoes tend to be found close to the water
bodies that act as the breeding sites. This probably
applies to both newly emerged mosquitoes and adult
mosquitoes that have limited dispersal ability. A study of
the geographic distribution of adult mosquitoes in the
same area also found a significant relationship with water
bodies identified in a GIS database during the dry season
[9]. Although elevation was negatively associated with
mosquito density, the relationship was not strong.
Temperature is an important factor related to mos-

quito development and survival and to the duration of
the sporogonic cycle of the parasite [27]. Temperatures
above 22o C are suitable for stable malaria transmission
[28] and in our study area, the average daily maximum
temperature is about 29o C. In our study, the average
day temperature during the current and the previous
month of mosquito collection had a strong negative effect
on mosquito density.
NDVI, a proxy measure of vegetation was positively

associated with mosquito density. The higher the NDVI
value the greener the vegetation which is suitable for
mosquito development.
The spatial correlation in mosquito density was strong

at distances up to about 4 km (95 % credible interval:
2.044, 11.370). However, a study by Midega and collea-
gues found a maximum distance of mosquito dispersal
of only 0.7 km using a capture-recapture technique at
the Kenyan coastal region [29]. Mosquito dispersal is
unlikely to explain this rather long distance correlation,
which is probably due to unobserved/unmeasured
spatially-correlated factors such as the spatial pattern of
breeding sites and possibly socioeconomic status.
The smooth maps generated in this study show that

malaria transmission intensity in the HDSS varies over
space and time, with high transmission occurring in a
few pockets (hot spots). EIR peaks shortly after the onset
of the long rains in May of each year. Comparison
between the study regions shows that EIR is consistently
higher in Gem than Asembo which may be attributable
to the occurrence of more rivers and streams in Gem
that contribute to the creation of large numbers of mos-
quito breeding sites. Similarly, substantial differences in
the overall EIR between 2002 and 2003 could be due to
earlier interventions in some parts of Asembo [26].
Most analyses of mosquito sporozoite rate, density and

EIR in relation to environmental/climatic factors and/or
malaria incidence have been based on the assumption of
independence between observations. However, mosquito
data are usually collected repeatedly over time at fixed
geographical locations thus are spatially correlated due
to common exposures. Similarly, mosquito density data
are count data which are commonly analysed using the
Poisson distribution. However, the Poisson distribution
assumes that the mosquito average equals the variance
which is not always the case with entomological data
which usually has a large number of locations with zero
mosquitoes even in areas of high transmission. Our
proposed Bayesian geostatistical zero-inflation model for
assessing the relationship between mosquito density and
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Figure 5 Temporal pattern of observed and predicted entomological inoculation rate in relation to rainfall during the study period.

Appendix
Negative binomial and Zero-Inflated negative binomial
models
Mosquito density data are typical overdispersed count
data, thus modeled using the negative binomial model:
Let Yit be the number of mosquitoes at location i at time
t , arising from a negative binomial distribution; Yit �
NB μit ; rð Þ with mean μit and parameter r measuring the
extra variation (overdispersion) in our data. To capture
the excess zero values that cannot be accounted for by
the overdispersion parameter r, we used the zero-inflated
negative binomial (ZINB) model which is a mixture
model with two components: one arising from the nega-
tive binomial distribution and the other corresponds to
the excess zeros. That is

f Yit ¼ yitð Þ � 0 with probability pit
NB μit ; rð Þ withprobability1� pit

�
. The

ZINB density is given by f yitð Þ ¼ 1� pitð Þ yitþr�1ð Þ!
yit ! r�1ð Þ!

r
rþμi t

� �r
μi t

rþμi t

� �yit
; r> 0;and yit > 0 with the mean equal

to 1� pitð Þμit and the variance given by var Yitð Þ ¼
1� pitð Þ 1þ μi t

r þ pitμit
� �

μit . The term pit is the mixing
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environmental/climatic factors takes into account the
underlying spatial processes and overdispersion asso-
ciated with observed “excess zeros”. The model has a
large number of parameters. However, simulation-based
Bayesian computation allows simultaneous estimation of
all parameters including the error of the location-specific
predictions, a feature missing in the maximum likelihood
based framework.
Our work used variable selection method based on

standard models. Geostatistical variable selection has
been applied in malaria epidemiology [30]. However, this
method could not be employed in our data which was
collected over large number of locations. We are currently
developing methodology to address this problem.

Conclusions
The maps of EIR produced in this study provide a high
resolution exposure surface which is useful in analyzing
the impact of transmission on malaria related and all-cause
morbidity and mortality. At the same time, these maps
help us understand the variability in malaria epidemiology
over small areas.



Figure 6 Predicted EIR maps for 2002.

Amek et al. Parasites & Vectors 2012, 5:86 Page 9 of 13
http://www.parasitesandvectors.com/content/5/1/86



Figure 7 Predicted EIR maps for 2003.
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Figure 8 Predicted EIR maps for 2004.
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proportion. The above model reduces to zero inflated
Poisson distribution as r ! 1 . The environmental and
seasonality factors,

�
X
it

were modeled on the log μitð Þ
scale of the mean of the outcome, that is log μitð Þ=

�
XT

it �
β ,

where
�
β is the vector of regression coefficients.

Geostatistical zero inflated negative binomial model
Mosquito data used in our analysis are collected at fixed
geographical locations, sharing common exposures such
as environmental and climatic factors thus correlated in
space. To take into account the spatial correlation, we
introduce spatial correlation parameter by adding loca-
tion-specific random effect ’i on the mean structure of

the above model: log μitð Þ=
�
XT

it �
βþ’i . We further assume

that random effects are parameters from a latent Gauss-
ian spatial process with covariance matrix and model
spatial correlation between any pair of locations as a
function of their distance irrespective of the direction.

We used an exponential correlation function, that is
�
ϕ ¼

ϕ1; ::::::::;ϕn

� �T � N 0;Σð Þ , Σij ¼ σ12 corr dij; �
� �

where

σ1
2 is the spatial variation, dij is the distance between lo-

cation i and j, and � is the smoothing parameter, measur-
ing the rate of correlation decay with increasing distance.
The value 3=� estimates the minimum distance at which
spatial correlation is less than 5 % [31].
In addition to the above spatial correlation, mosquitoes

were collected monthly in different locations during the
study period and thus correlated in time too. We model
temporal correlation by introducing monthly random
effects (Et ) to the above model: log μitð Þ ¼

�
XT

it �
βþ’i þ Eit

and modeled by autoregressive (AR) process of various
orders. The deviance information criterion (DIC) [32]
was used to identify the best fitting order of the process,
which was found to be one. Thus we considered that
Et � N γEt�1; σ22

� �
and E1 � N 0; σ22

�
1�γ

� �
. The terms σ2

2

and γ are the temporal variance and autocorrelation
parameters respectively with γ 2 �1; 1ð Þ:

Model fit
Prior distributions of the above model parameters were
adopted to complete the Bayesian model specification
above. In particular, we choose non-informative Normal
prior distribution for the

�
β parameters with large variance,

an inverse gamma priors for σ1
2 and σ2

2, a gamma prior for
� and a Uniform prior for γ , that is σ1

2; σ22 �
IG 2:01; 1:01ð Þ, γ � U �1; 1ð Þ and� � G 0:1; 0:1ð Þ. We fur-
ther consider a constant zero-inflated mixing proportion
across the area and time with a Uniform prior distribution

π � U 0; 1ð Þ . To estimate the model parameters, we
employed Markov Chain Monte Carlo (MCMC)
simulation algorithm [33] and starting with some
initial values about the parameters, we ran two
chains sampler discarding the first 5000 iterations.
Convergence was assessed by Gelman-Rubin diag-
nostic [34]. Using Bayesian Kriging [35] method that
is for each sample of the parameters from the pos-
terior distribution, a random effect is simulated
from the Gaussian spatial process conditional on the
random effects estimated at the observed locations.
This is added on the regression term relating the
covariates at the new location with the regression
coefficients estimated during the model fit. The
resulting equation estimates the mosquito density on
the logit scale at the new location as a sample from
the posterior predictive distribution. A grid of 7726
pixels with 250 meters by 250meters spatial reso-
lution covering the entire study area was used to
predict density.

The Bayesian model was fitted in OpenBUGS version
3.1.2 (Imperial College and Medical Research Council,
London, UK). Bayesian Kriging was carried out in a code
written by the authors in Fortan 95 (Digital Equipment
Corporation) using standard numerical libraries (Numer-
ical Algorithms Group Ltd).
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