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Abstract

Background: With the successful implementation of integrated measures for schistosomiasis japonica control,
Jiangsu province has reached low-endemicity status. However, infected Oncomelania hupensis snails could still be
found in certain locations along the Yangtze river until 2009, and there is concern that they might spread again,
resulting in the possible re-emergence of infections among people and domestic animals alike. In order to establish
a robust surveillance system that is able to detect the spread of infected snails at an early stage, sensitive and
reliable methods to identify risk factors for the establishment of infected snails need to be developed.

Methods: A total of 107 villages reporting the persistent presence of infected snails were selected. Relevant data
on the distribution of infected snails, and human and livestock infection status information for the years 2003 to
2008 were collected. Spatio-temporal pattern analysis including spatial autocorrelation, directional distribution and
spatial error models were carried out to explore spatial correlations between infected snails and selected
explanatory factors.

Results: The area where infected snails were found, as well as their density, decreased significantly between 2003
and 2008. Changes in human and livestock prevalences were less pronounced. Three statistically significant spatial
autocorrelations for infected snails were identified. (i) The Moran’s I of infected snails increased from 2004 to 2007,
with the snail density increasing and the area with infected snails decreasing. (ii) The standard deviations of ellipses
around infected snails were decreasing and the central points of the ellipses moved from West to East. (iii) The
spatial error models indicated no significant correlation between the density of infected snails and selected risk
factors.

Conclusions: We conclude that the contribution of local infection sources including humans and livestock to the
distribution of infected snails might be relatively small and that snail control may limit infected snails to increasingly
small areas ecologically most suitable for transmission. We provide a method to identify these areas and risk factors
for persistent infected snail presence through spatio-temporal analysis, and a suggested framework, which could
assist in designing evidence based control strategies for schistosomiasis japonica elimination.
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Background
Schistosomiasis japonica is a zoonotic disease caused by
an infection with Schistosoma japonicum. Oncomelania
hupensis serves as the intermediate host snail of
S. japonicum [1,2]. Previous studies have shown that
O. hupensis in China is mainly distributed along the
Yangtze river valley and in southern China. The distri-
bution of S. japonicum is much more restricted [3].
Snails are infected when they are penetrated by mira-
cidia, the larval stage of S. japonicum hatching from
eggs when they reach water after being deposited with
feces from the mammalian definitive hosts [4,5]. In
the People’s Republic of China, approximately 65 mil-
lion individuals are currently at risk of infection with
S. japonicum [6-8].
Jiangsu province is located on the lower reaches of the

Yangtze river on the East coast of China (Figure 1).
Flooding caused by the Yangtze river continues to be a
prime risk factor for schistosomiasis in China [9,10]. It
impacts on local disease endemicity, the number of
acute cases and the geographic areas where infected
snails are found as it increases their habitat [11-14].
In Jiangsu province, more than 90% of all current snail
habitats are found along the shore of the Yangtze river.
By the end of 2004, a total of 213,000 ha of habitat
containing infected snails and 39 acute human schisto-
somiasis japonica cases were reported [10,15]. In 2005,
the provincial government strengthened the implemen-
tation of integrated measures that aimed to reduce the
transmission of S. japonicum [16]. In the wake of the
Figure 1 Location of the study area in Jiangsu province, China, and d
situation is described as transmission interruption (no snail is found) or tran
programme, the average prevalence among humans de-
creased from 0.70% in 2005 to 0.11% in 2008, and
among livestock from 0.019% to 0. Furthermore, no
infected snails were found in the province from 2009 on-
wards. The surveillance system put in place to monitor
the situation focuses mainly on humans and intermedi-
ate hosts. However, the determinants of infected snail
occurrence requires further study in order to identify
relevant risk factors and efficiently prevent the re-
emergence of infected snail populations. Several studies
have demonstrated that snails were always present in
clusters [17,18]. The application of spatial technology,
including geographical information systems (GIS), re-
mote sensing (RS) and spatial statistics for schistosomia-
sis research since the 1990s has resulted in important
advances in our understanding of the key factors deter-
mining schistosomiasis transmission [2,19-21]. Recently,
the application of directional distribution analysis be-
came more common in many study fields, for example
the mapping of crime hotspots where it might identify a
relationship between the distribution and trends of crim-
inal activity and particular physical attributes (e.g. a par-
ticular street section) [22].
In the study presented here, we analyze the relation-

ship between infected snail populations and local infec-
tion sources, including people and livestock in Jiangsu
province based on spatio-temporal – including direc-
tional distribution – analysis, to identify the main source
of infection, and explore the environmental determi-
nants of O. hupensis infection.
istribution of study villages. The schistosomiasis japonica control
smission control (no acute case of schistosomiasis is found).
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Methods
Study area
The study focused on the marshland along the Yangtze
river in Jiangsu province where 107 villages (Figure 1)
were selected based on the following criterion: at least
one infected snail had been found around the village, in-
cluding in marshlands along the Yangtze river and on
beaches of the rivers connected to the Yangtze river, be-
tween 2003 and 2008. The geographical co-ordinates
(latitude/longitude) of each village were recorded by a
GPS unit (Garmin Map76).
Between 2003 and 2008, annual surveillance covering

both the human population and livestock had been car-
ried out within the study area. In each of the study
villages, all heads of livestock were examined using
the standard miracidia hatching method [23]. Among
humans, 90% of the individuals aged between 6 and 60
years were screened for schistosomiasis japonica infec-
tion using a serological test (Dipstick dye immunoassay,
DDIA) [24]. Stool samples were then collected from in-
dividuals with positive test results to conduct the Kato–
Katz thick smear test [23]. A single dose of praziquantel
at a dosage of 40 mg/kg body weight was offered to all
seropositive individuals, and a two-day course of prazi-
quantel at 60 mg/kg body weight was administered to
those with a positive Kato-Katz thick smear test.
Snail collection was conducted by systematically sam-

pling with a square frame of 0.11 m2 that was set every
30 meters in known snail habitats. All snails inside the
frame were collected. Additionally, environmental (pur-
poseful) sampling was employed in spring and autumn
of each year to detect snails in potential snail habitats in
grasslands and marshlands, e.g. where snails had been
detected over the last three years, in previously flooded
areas etc. Systematic sampling was then carried out if
any snails were found in these potential habitats. All
collected snails were counted, crushed and examined
by microscopy to detect sporocysts and cercariae. Vari-
ous outcome indices were considered, including the
S. japonicum prevalence among humans, the rate of
S. japonicum infection in snails, the density of living
snails, and the density of infected snails.

Statistical analysis
Descriptive analysis was performed using the statistical
software package SPSS (Version 11, SPSS Inc. Chicago,
IL, USA). The analysis focused on the yearly data for
S. japonicum infection among snails and the infection
status of the human and livestock populations.
The spatio-temporal pattern analysis was carried out

using the spatial analyst module of ArcGIS 10.0 (ESRI,
Redlands, CA, USA) and GeoDA 1.0.1 (The GeoDa
Center for Geospatial Analysis and Computation).
The global Moran’s I was used to measure spatial
autocorrelation in infected snail, human and livestock
populations in each year. The spatial autocorrelation was
used to evaluate whether the pattern was clustered,
dispersed, or random. A Z score was considered for
evaluating the significance of the Moran’s I value. The
differences of spatial autocorrelation in each year were
then used to explore spatio-temporal patterns.
Directional distribution, namely the Standard Devi-

ational Ellipse (SDE), was used to measure the direc-
tional trend each year, and to provide information
about dispersion of the infected snails, humans and
livestock in terms of compactness and orientation.
Employing the method was inspired by its wide applica-
tion in diverse studies [25]. For example, plotting ellip-
ses for a disease outbreak over time may be used to
model its spread [26]. The distributional trend analysis
can create an elliptical polygon; the attributed values
for these output ellipse polygons include two standard
distances (long and short axes) and the orientation of
the ellipse. We used one standard deviation to repre-
sent the distribution that covers approximately 68 per-
cent of all input variables for both the infected snails,
humans and livestock [27,28]. A series of additional
measurements and data including axial ratios, and co-
ordinates of each ellipse in each year were collected to
compare the spatial patterns of infected snails and local
infection sources.
We used a spatial autoregressive error model (a spatial

regression model including a spatial autoregressive error
term) implemented in GeoDA 1.0.1 to measure the rela-
tionships between the density of infected snails and the
serological or stool prevalence of people and livestock. Ini-
tially, we fit the data in an ordinary least squares (OLS)
regression model. As expected, the results suggested con-
siderable non-normality and heteroscedasticity, which did
not satisfy the basic hypothesis of standard linear regres-
sion, as well as high spatial correlation. Based on this re-
sult we concluded that a spatial error model was more
appropriate for this dataset.
Formally, this model is y = Xβ + ε, with ε = λW + μ,

where y is a vector of observations of the dependent
variable, W is the spatial weights matrix, X is a matrix of
observations of the explanatory variables, ε is a vector of
spatially auto correlated error terms, μ is a vector of i.i.d.
errors, and λ and β are parameters.

Ethics statement
The study protocol was approved by the Ethics Review
Committee of the Jiangsu Institute of Parasitic Diseases,
Wuxi, China. Written informed consent had also been
obtained from each participant or a literate relative dur-
ing the screening for infections. No specific permits
were required for the field studies focusing on snails as
they did not involve endangered or protected species.



Table 2 The yearly Moran’s I value of S. japonicum-infected
snails, sero-prevalence and stool prevalence in the study
villages of Jiangsu province, China, from 2003 to 2008

Year Infected snails Human sero-
prevalence

Human stool
prevalence

2003 0.021 0.048 −0.052

2004 0.273 * −0.045 0.342 *

2005 0.168 −0.074 0.015

2006 0.055 0.069 0.025

2007 0.098 −0.075 0.064

2008 0.363 * 0.014 −0.048

* P<0.05.
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Results
Table 1 summarizes the data related to infected snails.
The area and density of infected snails were 1272.686 ha
and 0.015 per m2 in 2003, which then decreased to
97.186 ha and 0.003 per m2 in 2008, a decrease of 92.4%
and 76.3%, respectively. The human sero-prevalence was
1.649% and 1.304% in 2003 and 2008, respectively, a
non-significant decrease (χ2=7.538, df=1, P=0.06). The
stool prevalence was 4.290% and 4.977% in 2003 and
2008, respectively, again not significantly different
(χ2=1.138, df=1, P=0.710). Among 4714 heads of live-
stock examined, 21 were positive, translating into a
prevalence of 0.445% over the study period. No positive
livestock was found in 2008. However, the difference
was again not significant (χ2=0.556, df=1, P=0.273).
The results of the global autocorrelation statistics for

infected snails, human sero-prevalence, and human stool
prevalence in each year are summarized in Table 2. The
results of the global Moran’s I tests were statistically sig-
nificant (z-score greater than 1.96) and indicate spatial
heterogeneity. The global autocorrelation statistics for
infected snails in 2004 and 2008 and stool prevalence in
2004 were also statistically significant. The spatial auto-
correlation is graphically depicted in Figure 2. Results
show that the change in spatial autocorrelation of the
sero-prevalence was relatively stable with intervals be-
tween −0.075 and 0.069. Between 2004 and 2007, the
spatial correlation of the infected snail populations fell
dramatically from 0.272 to 0.098, and that of the stool
prevalence also decreased from 0.342 to 0.063. After
2007, a rapid increase was observed for the infected
snails and a further decrease for the stool prevalence.
Figure 3 shows the series of directional distributions of

the infected snails in each year. Their shapes are similar
from one year to another, and the ellipses are generally
oriented along the Yangtze river. From 2003 to 2008,
both the long and short axes became shorter, which
means that the standard deviations of the ellipses were
decreasing. The central points of the ellipse polygons
moved from West to East from 2003 to 2008.
Table 1 The characteristics of schistosomiasis japonica in the
2008

Year Area of infected
snail habitat (ha)

Density of infected
snails (/0.1m2)

Human sero-exam

No.
examined

Prev

2003 1272.686 0.849 18261 1

2004 1649.19 0.374 25750 4

2005 1110.31 0.438 27933 4

2006 758.051 0.616 42537 2

2007 516.948 0.263 43907 1

2008 97.186 0.268 16940 1
The serial comparisons of the directional distribution
from 2003 to 2008 are shown in Figure 4A-F. The ellipse
polygons of the sero-prevalence retained a relatively
stable shape while other polygons changed significantly.
The shapes of these ellipse polygons were heteroge-
neous, with ellipse polygons intersecting in some regions
but not in others. These patterns are not suggestive of a
significant spatial relationship between infected snails
and the investigated variables describing human infec-
tion status.
Table 3 presents the spatial error model estimates for

the density of infected snails. The spatial regression re-
sults show that there was no significant correlation be-
tween the density of infected snails and other study
factors (P>0.05).

Discussion
The control of schistosomiasis japonica, similar to the
control of any infectious disease, aims to interrupt the
parasite lifecycle through interventions intended to elim-
inate the intermediate host, eliminate the parasite from
the definitive host, prevent infection of the intermediate
or definitive host, etc. [29,30]. In highly endemic regions,
the provision of praziquantel to the local residents is ef-
fective at reducing the infection rate [31-33]. However, this
does not always interrupt transmission, as throughout
study villages of Jiangsu province, China, from 2003 to

ination Human stool examination Livestock examination

alence
(%)

No.
examined

Prevalence
(%)

No.
examined

Prevalence
(%)

.659 303 4.29 1001 0.3

.726 1217 5.177 988 0.405

.493 1255 1.673 834 0.959

.591 1102 2.904 641 0.624

.635 718 3.9 708 0.282

.305 221 4.977 542 0



Figure 2 The dynamic change of Moran’s I value of S. japonicum-infected snails, human sero-prevalence and human stool prevalence
in the study villages of Jiangsu province, China, from 2003 to 2008.
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history, livestock such as cattle were the main source of
infection for schistosomiasis in many areas in China
[34,35]. The transmission patterns and spatial distribution
of the total and infected snails and the influences of envir-
onmental and socio-economic determinants have been
considered in a series of epidemiological studies supported
by spatial modeling [19].
In Jiangsu province, the area and density of infected

snails decreased significantly until 2008. The number of
livestock in endemic villages also decreased significantly,
to 542 in 2008 from 1001 in 2003. The prevalence in
livestock was very low, with no infected livestock found
in 2008. However, the prevalence in humans was stable,
with no significant difference between serological and
stool positive rates over the study period. This might
indicate that the contribution from livestock to human in-
fection is not as large anymore as it had been historically.
Figure 3 Directional distribution of S. japonicum-infected snails in Jia
Moran’s I (Spatial Statistics) measures spatial autocor-
relation based on both locations and attribute informa-
tion, and evaluates whether the pattern expressed is
clustered, dispersed, or random [36,37]. In general, a
Moran’s Index value near +1.0 indicates clustering while
an index value near −1.0 indicates dispersion. Figure 2
shows that the Moran’s I of the sero-prevalence was be-
tween −0.075 and 0.069, indicating that the distribution
was random and the sero-prevalence stable. The Moran’s
I of infected snails increased from 2004 to 2007, indicat-
ing that the distribution of infected snails become more
and more clustered in some regions. Indeed, the density
increased from 0.373 to 0.616 infected snails per 0.1 m2,
while the area with infected snails was decreasing dra-
matically. This suggests that schistosomiasis transmis-
sion is ongoing in certain areas and that control
measures may be forcing transmission into ever smaller
ngsu province, China, from 2003 to 2008.



Figure 4 Directional distribution of S. japonicum-infected snails and study factors in the study villages of Jiangsu province, China, in
each year from 2003 to 2008.
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refugia (areas ecologically or otherwise most suitable for
transmission). The variation curve of the stool preva-
lence also increased from 2004 to 2007. To determine
whether these cluster regions were stable, the directional
distribution analysis was carried out.
From 2003 to 2008, the standard deviations of ellipses

around infected snail areas were decreasing and the cen-
tral points of the ellipses moved from West to East, indi-
cating that the habitats of infected snails had become
smaller, and that clusters existed in special regions. The
serial ellipse polygons in Figure 3A-F indicate that these
spatial distributions were significantly different from
each other, but the spatial correlation between infected
snails and other study factors was not significant. The el-
lipse polygons overlap in some regions in each year, and
studied factors appear to contribute to the distribution
of infected snails in some regions. After integrating the
spatial error model, we found that the relationship



Table 3 Spatial error model estimations for the density of S. japonicum-infected snails in Jiangsu province, China, from
2003 to 2008

Variable 2003 2004 2005 2006 2007 2008

Constant 0.032* 0.025* 0.019* 0.045* 0.024* 0.015*

Human sero-prevalence −0.051 0.177 0.001 −0.444 −0.178 −0.195

Human stool prevalence −0.012 −0.143 −0.084 −0.123 −0.062 −0.013

Livestock prevalence −0.062 −0.609 0.034 −0.015 −0.215 -**

LAMBDA 0.026 0.423* 0.368* 0.008 0.167 0.002

* P<0.05.
** No infected livestock was found in 2008.
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between the study factors and the spatial distribution of
infected snails was not strong, confirming data from
field studies. For example, no infected livestock or wild
mice were detected in the infected snail habitats [38].
Limitations of the current study must also be recog-

nized. First, the considered explanatory factors for
infected snails were limited to the serological and para-
sitological status of the local human and livestock popu-
lation, while the spatial distribution of infected snails
may also depend on other factors, which consequently
should be taken into account to improve model accur-
acy. Second, we explored the risk factors using retro-
spective data. Third, the sensitivity and specificity of
serological and stool tests are not perfect [39,40].
Conclusions
In conclusion, the contribution of the local infection
sources including humans and livestock to the distribu-
tion of infected snails may not be significant, and exter-
nal factors need further study, e.g. temporal migration
from other endemic areas. It also appears that snail con-
trol may be restricting infected snails into smaller yet
ecologically more suitable areas for transmission. The
present study describes a way to identify risk factors
through retrospective study and spatio-temporal ana-
lysis, and such a framework could assist in designing
evidence-based control strategies in the process of schis-
tosomiasis elimination.
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