Dantas-Torres et al. Parasites & Vectors 2013, 6:213
http://www.parasitesandvectors.com/content/6/1/213

Parasites
&Vectors

RESEARCH Open Access

Morphological and genetic diversity of
Rhipicephalus sanguineus sensu lato from the New

and Old Worlds

Filipe Dantas-Torres'*", Maria Stefania Latrofa?, Giada Annoscia’, Alessio Giannelli?, Antonio Parisi®

and Domenico Otranto?”

Abstract

currently under dispute.

12S rDNA, and cox1) gene sequences.

Background: The taxonomic status of the brown dog tick (Rhipicephalus sanguineus sensu stricto), which has long
been regarded as the most widespread tick worldwide and a vector of many pathogens to dogs and humans, is

Methods: We conducted a comprehensive morphological and genetic study of 278 representative specimens,
which belonged to different species (i.e., Rhipicephalus bursa, R. guilhoni, R. microplus, R. muhsamae, R. pusillus,

R. sanguineus sensu lato, and R. turanicus) collected from Europe, Asia, Americas, and Oceania. After detailed
morphological examination, ticks were molecularly processed for the analysis of partial mitochondrial (165 rDNA,

Results: In addition to R. sanguineus s.. and R. turanicus, three different operational taxonomic units (namely, R. sp. |,
R.sp. I, and R. sp. lll) were found on dogs. These operational taxonomical units were morphologically and genetically
different from R. sanguineus s.l. and R. turanicus. Ticks identified as R. sanguineus s.l., which corresponds to the so-called
“tropical species” (=northern lineage), were found in all continents and genetically it represents a sister group of

R. guilhoni. R. turanicus was found on a wide range of hosts in ltaly and also on dogs in Greece.

Conclusions: The tropical species and the temperate species (=southern lineage) are paraphyletic groups. The
occurrence of R. turanicus in the Mediterranean region is confirmed. A consensual re-description of R. sanguineus s.s.
and R. turanicus will be necessary to solve the taxonomic problems within the so-called R. sanguineus group.
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Background

“Sanguineus, punctatus, postice lineolis tribus impressus;
dorso antico macula nulla thoracica, distincta”, which
stands for “blood red, punctate, posteriorly with three
impressed lines; no distinct ‘thoracic’ spot anterodorsally”,
is all Pierre Andre Latreille provided in his original de-
scription of Rhipicephalus sanguineus (Latreille, 1806) [1].
This tick is accounted as the most widespread ectoparasite
of dogs and as a well-recognised vector of numerous path-
ogens to dogs and humans worldwide [2,3]. Latreille’s
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description was acceptable for that time, when tick tax-
onomy was in its infancy. However, from today’s perspec-
tive, it is a very poor description.

Originally described as ‘Ixodes sanguineus’, this tick
was reclassified as belonging to the genus Rhipicephalus
by Koch [4], being the type species of this genus. Later
on, several authors strove to study this species group
[5-16], whose taxonomy is still the subject of debate
[3,15]. According to Camicas and colleagues [15], the
so-called “R. sanguineus group” includes 17 species as
follows: Rhipicephalus aurantiacus Neumann, 1907; Rhi-
picephalus bergeoni Morel and Balis, 1976, Rhipicephalus
boueti Morel, 1957; Rhipicephalus camicasi Morel, Mouchet
and Rodhain, 1976; Rhipicephalus guilhoni Morel and
Vassiliades, 1963; Rhipicephalus leporis Pomerantzev,
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1946; Rhipicephalus moucheti Morel, 1965; Rhipicephalus
pumilio Schulze, 1935; Rhipicephalus pusillus Gil Collado,
1936; Rhipicephalus ramachandrai Dhanda, 1966;
Rhipicephalus rossicus Yakimov and Kol-Yakimova, 1911;
R. sanguineus sensu stricto (s.s.); Rhipicephalus schulzei
Olenev, 1929; Rhipicephalus sulcatus Neumann, 1908;
Rhipicephalus tetracornus Kitaoka and Suzuki, 1983;
Rhipicephalus turanicus Pomerantzev, 1940; and Rhipi-
cephalus ziemanni Neumann, 1904. However, there is no
consensus [3] and the morphological similarities among
ticks belonging to the R. sanguineus group make their
identification a difficult task, even for experienced taxono-
mists. Moreover, the absence and/or the difficulties in
assessing the type specimens of important species
further complicate the taxonomical situation within
the R sanguineus group.

Many genetic markers have been employed to elucidate
the phylogeny and the evolution of Rhipicephalus ticks. In
particular, the mitochondrial 16S and 12S (rDNA) ribo-
somal DNA target regions have been frequently used
[17-22] and, to a lesser extent, the cytochrome c oxi-
dase subunit 1 (cox1) and the internal transcribed spacer 2
(ITS-2) have been used [23-27]. Nonetheless, there is still
much discussion on the biosystematic status of tick
species belonging to this genus.

Over the last decade, several molecular investiga-
tions have attempted to assess the genetic variability of
R. sanguineus sensu lato (s.l.) and to differentiate closely re-
lated taxa within the R. sanguineus group from different
geographical localities [18-22]. These studies have claimed
the existence of two divergent lineages within R. sanguineus
s.l. According to a study, the so-called “southern lineage”
(=temperate species) included ticks from localities of
Argentina, Uruguay, Chile and Italy, whereas the northern
lineage (=tropical species) included ticks from Brazil,
Paraguay, Colombia, South Africa, Mozambique, and from
two localities of Northern Argentina [22]. Based on prelim-
inary genetic data, the authors suggested that the northern
lineage represents a different species from R. sanguineus
s.s., whereas the southern lineage probably represents the
true R. sanguineus s.s. However, it has been recognized that
further morphological and genetic studies of ticks belonging
to the R sanguineus complex from the Old World are
necessary to determine the phylogenetic relationship among
the taxa of this species group [22]. Importantly, even if most
available morphological descriptions of R. sanguineus s.s.
are somewhat convergent (e.g., [10,14,16,28]), there is no
consensual description for this species, especially consider-
ing that the type specimen does not exist. In this context,
we conducted a comprehensive morphological and genetic
study of brown dog ticks from Europe (France, Greece,
Italy, Portugal, Spain), Asia (India, Pakistan, Thailand,
Turkmenistan, and Vietnam), Africa (Nigeria, and South
Africa), the Americas (Brazil, Colombia, Costa Rica,
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Guatemala, and Honduras), and Oceania (Australia). Our
results reveal that the so-called northern lineage includes
ticks from all continents and that the southern lineage is
not monophyletic. The existence of distinct operational
taxonomic units (OTUs) in the Mediterranean region is
documented.

Methods

Tick collection and identification

The majority of the ticks included in this study were
selected from >5,000 specimens examined during previous
investigations carried out from 2008 to 2012 in Brazil,
Italy, Portugal, Spain, and Greece [29-32]. The remaining
specimens were obtained from colleagues from all over
the world (see Acknowledgments). While most ticks
were collected from dogs, specimens from other hosts
(e.g., cats, horses, cattle, goats, and sheep) and from
the environment were also included (for details, see Table 1),
mainly for comparison purposes.

The species identity of each specimen was determined
based on morphology, following the keys and descriptions
provided by Walker and colleagues [16]. Original descrip-
tions and re-descriptions [5-14,28,33-36] were also used.
Furthermore, ticks identified as R sanguineus sensu
Walker and colleagues [16] collected from a dog in South
Africa (det. Prof. I. G. Horak) and R. turanicus sensu
Filippova [14] collected by flagging in Turkmenistan
(det. Dr. N. A. Filippova) were used as reference speci-
mens. While ticks identified herein as R. sanguineus s.l.
were compatible with R. sanguineus sensu Walker and
colleagues [16], they were referred to as R. sanguineus s.l.,
because of the absence of a type specimen and of a
consensual species description. Ticks that could not be
morphologically assigned to any known species were
defined as Rhipicephalus sp. and numbered in order of
identification as R. sp. I, R. sp. II, etc. In other words,
species defined as R. sp. were different from those de-
scribed in Ref. [16] and from each other, by one or more
morphological characters.

Although some of the examined ticks — ie., Rhipice-
Phalus bursa Canestrini and Fanzago, 1878, Rhipicephalus
microplus (Canestrini, 1888), Rhipicephalus muhsamae
Morel and Vassiliades, 1965 — are not included into the
R. sanguineus group, they were also analysed for compari-
SON purposes.

Morphological study

Out of >5,000 ticks examined, 278 representative speci-
mens of each species were selected and morphologically
studied in further detail (Table 1). Ticks were selected
based on conservation and feeding status (i.e., only spec-
imens with no obvious indication of engorgement were
measured). In some cases, all ticks of a given species
(e.g., R pusillus) or from a specific geographical origin
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Table 1 Rhipicephalus ticks (n = 278) included in this study, with data on hosts and geographical origin

Species® Hosts

Geographical origin

Rhipicephalus bursa (17/14) Cattle, goat, sheep

Rhipicephalus guilhoni (5/5) Cattle
Rhipicephalus microplus (1/0) Cattle
Rhipicephalus muhsamae (6/6) Cattle

Rhipicephalus pusillus (3/1) Rabbit (O. cuniculus)

Rhipicephalus sanguineus s.l. (86/65) Dog

Rhipicephalus turanicus (85/54) ®

Rhipicephalus sp. | (29/23) Dog
Rhipicephalus sp. Il (37/24) Dog
Rhipicephalus sp. Il (7/3) Dog

Rhipicephalus sp. IV (2/2) Cattle

Cattle, horse, goat, dog, cat,
Corsican hare (L. corsicanus)

Italy (Basilicata)
Nigeria (Plateau State)
Guatemala
Nigeria (Plateau State)
Italy (Sicily)

Australia (New South Wales), Brazil (Sdo Vicente Férrer),
Colombia (Cali, Medellin), Costa Rica (San Jose), France
(south), Guatemala, Honduras (San Pedro), India (Mumbai),
South Africa (Cape Province), Thailand (Bangkok), Vietnam
(Ho Chi Minh City)

ltaly (Basilicata, Puglia, Sicily), Greece (Xanthi), Turkmenistan

Italy (Puglia), Greece (Xanthi)
Spain (La Vera), Portugal, Italy (Sicily, Verona)
India (Mumbai), Pakistan (Punjab)
Nigeria (Plateau State)

@ Numbers within parentheses are the specimens studied morphologically / genetically.

P Also collected from vegetation.

(e.g., India) were used, due to the limited number of
specimens available. A total of 2,500 pictures were taken
from the 278 selected specimens and 31 characters (see
below), examined and/or measured, resulting in a data-
base containing over 8,600 entries. Photos were taken
using a stereomicroscope equipped with a digital camera
linked to a computer. Images were processed and mea-
surements taken (by FD-T) using Leica Application Suite
version 4.1 software (Leica Microsystems). Voucher
tick specimens are deposited in the Laboratory of
Parasitology and Parasitic Diseases of the University of
Bari, Italy.

All ticks were carefully observed under a light stereo-
microscope, and the following characters were examined
and/or measured: idiosoma (length and width); dorsal
scutum (length and width, punctuation pattern, and
shape of posterior margin in females); basis capituli
(length and width); angles of basis capituli (position and
shape); hypostomal dentition (number of rows); female
porose areas (shape and distance between the two areas);
female genital opening (shape); spiracular plates (shape),
dorsal tail of spiracular plates (width); first festoon
(width); lateral and postmediam grooves (shape); cervical
pits (shape); cervical fields (shape); internal and external
cervical grooves (shape and punctuation pattern); mar-
ginal lines (shape and punctuation pattern); male adanal
plates (length, width at base, and presence/absence of
median cusps on them); accessory plates (shape); male
caudal process (presence/absence); spur on trochanter I
(presence/absence); and body colour (pattern). The ratio
between the width dorsal tail of spiracular plates, and
the width of the adjacent festoon (ST/F1 ratio) was cal-
culated, as well as the ratio between the length and the

width (at base) of male adanal plates. These characters
are considered taxonomically relevant for Rhipicephalus
spp. differentiation (e.g., [14,16,17]). Other characters,
such as the perforation pattern of the spiracular plates
[14,17] were not considered in this study because they
may vary between populations [11] and seasonally [37].

Genetic study
After a detailed morphological study, 197 representative
tick specimens were selected for genetic analysis (for de-
tails on the number of ticks for each species, see Table 1).
DNA extraction was performed using a commercial kit
(DNeasy Blood & Tissue Kit, QiagenGmbH, Hilden,
Germany), in accordance with the manufacturer’s in-
structions. Partial mitochondrial 16S rDNA (~300 bp),
12S rDNA (~400 bp), and coxl (~600 bp) gene se-
quences were generated and analysed. Primers and PCR
conditions have been described elsewhere [18,25,38].

Each reaction consisted of 4 pl of tick genomic DNA
and 46 ul of PCR mix containing 2.5 mM MgCI2, 10
mM Tris—HCI (pH 8.3), and 50 mM KCI, 250 pM of
each AN'TP, 50 pmol of each primer and 1.25 U of Ampli
Taq Gold (Applied Biosystems). Approximately 100 ng
of genomic DNA (with the exception of the no-template
control) were added to each PCR. Amplicons were re-
solved in ethidium bromide-stained (2%) agarose gels
(Gellyphor, Italy) and sized by comparison with markers
in the Gene Ruler™ 100 bp DNA Ladder (MBI Fermentas,
Lithuania). Gels were photographed using a digital
documentation system (Gel Doc 2000, BioRad, UK).

PCR products (amplicons) were purified using Ultrafree-
DA columns (Amicon, Millipore) and sequenced directly
using Taq DyeDeoxyTerminator Cycle Sequencing Kit
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(v.2, Applied Biosystems) in an automated sequencer
(ABI-PRISM 377, Applied Biosystems). The nucleotide se-
quences obtained were aligned using BioEdit software
Version 7.1.3.0 [39] and manually edited. The cox1 nucleo-
tide sequences were conceptually translated into amino
acid sequences according to the invertebrate mitochon-
drial code using the MEGAS5 software [40].

Data analyses

All measurements are in millimetres and expressed as
mean * standard deviation. Data comparisons were
made considering the tick species for which more than
10 specimens were measured, while others (i.e., R guil-
honi, R. microplus, R. muhsamae, R. pusillus, R. sp. 111,
and R. sp. IV) were excluded from data analysis. Data
was initially assessed using the Lilliefors test for normality
and then compared using ANOVA (with Tukey’s post-hoc
tests) and a Kruskal-Wallis test (with Dunn’s post-hoc
tests), for normal and non-normal data, respectively.
Differences were considered significant when P<0.05.
Statistical analyses were performed using BioEstat 5.0 [41].

The percentage of nucleotide variation among sequences
of a given species was calculated by pairwise comparison
(Kimura 2-parameter model) [42] using the MEGA5 soft-
ware [40]. The pairwise comparison of sequence differ-
ences (D) among Rhipicephalus spp. consensus sequences
were calculated using the formula D = 1 — (M/L), where
M is the number of alignment positions at which the two
sequences have a base in common, and L is the total num-
ber of alignment positions over which the two sequences
are compared [43].

In order to investigate the phylogenetic relationships
among sequences generated from representative tick
specimens, we used the neighbour-joining (NJ) [44] and
maximum likelihood (ML) methods and the evolutionary
distances were computed using the Tajima-Nei and
Tamura-Nei models, respectively [45,46]. In addition, the
maximum-parsimony (MP) was also run using the close-
neighbour-interchange or the subtree-pruning-regrafting
algorithms [47]. Phylogenetic analyses were carried out
by MEGAS5 software [40] and bootstrap values based on
8,000 replicates.

Partial 12S rDNA and 16S rDNA sequences of Rhi-
picephalus spp. available in GenBank were also included.
We only used sequences published in reference studies
[19-22] or unpublished sequences for which information
on host and geographical origin were available. Sequences
of Ixodes ricinus (L., 1758) available in GenBank
(AF150029; JF928527) were used as outgroup. The nuc-
leotide sequences reported in this article have been
deposited in the GenBank database (12S rDNA: KC243
786-KC243834, KF145151; 16S rDNA: KC243835-KC24
3871, KF145150; coxl: KC243872-KC243931, KF145152,
KF145153).
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Results

Morphological identification

Seven species were identified: R bursa, R. guilhoni,
R. microplus, R. muhsamae, R. pusillus, R. sanguineus s.
1., and R turanicus (Table 1). Remarkably, four OTUs
(namely, R. sp. I to IV) presenting morphological charac-
ters differing from known species and from those above
were also found in Italy, Greece, Spain, Portugal, India,
Pakistan and Nigeria. These OTUs were closely related
to R turanicus and/or R. sanguineus s.l., albeit the punc-
tuation pattern on dorsal scutum, shape of spiracular
plates, adanal plates and accessory shields were distinct.
For instance, males of Rhipicephalus species found on
dogs could be differentiated by comparing the shape of
adanal plates, accessory shields, and spiracular plates
(Figure 1). Similarly, females of the same species could
be distinguished based on genital opening, dorsal
scutum, and spiracular plate shapes (Figure 2). Intraspe-
cific morphological variations among ticks identified as
R. sanguineus s.l. and R. turanicus were evident, mainly
in terms of colour, size, scutal punctuation pattern, fe-
male genital opening shape, spiracular plate shape
length, male adanal plate shape and male caudal process
(data not shown). However, combining the characteris-
tics mentioned above (Figures 1 and 3), both males and
females of R. sanguineus sl. could be separated from
R. turanicus.

Measurements for key structures of males and female
ticks examined in this study are summarized in Table 2.
Comparisons of key characteristics of males and females
of different species revealed significant differences be-
tween some species, as reported in Table 3. However, in
most instances, no significant differences were found
particularly for close related species (e.g., R. sanguineus
s.l. and R sp. II).

Molecular analysis
PCR amplification of each target region from individual
DNA samples resulted in amplicons of the expected size,
except for R microplus for which no PCR product was
obtained. A total of 547 sequences were generated and
analysed. The mean level of interspecific pairwise (Pwc)
distance (%) among Rhipicephalus species was of 10.8%
(range, 3.3-18.1%), 9.9% (range, 3.5-15.3%), and 13.3%
(range, 9.4—18.7%) for 16S rDNA, 12S rDNA, and cox1,
respectively (Table 4). Remarkably, a low value of nu-
cleotide difference (i.e., 3.3%, 3.5%, and 9.6%) was regis-
tered between R. guilhoni and R. sanguineus s.1. for 16S
rDNA, 12S rDNA and for cox1, respectively (Table 4).
The overall mean intraspecific variation calculated
within each species ranged from 0.3 to 1.2%, depending
on genetic target (Table 5). In particular, the mean intra-
specific difference for R sanguineus s.l. (from Australia,
Brazil, Colombia, Costa Rica, France, Guatemala, Honduras,
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R. sp. lll (m-o0).
.

Figure 1 Distinctive characteristics of male dog-associated Rhipicephalus spp. Adanal plates and accessory shields (a, d, g, j, m), spiracular
plates (b, e, h, k, n) and dorsal projection of spiracular plates (c, f, i, I, 0) of R. turanicus (a-c), R. sanguineus s.l. (d-f), R. sp. | (g-i), R. sp. Il (j-1) and

India, South Africa, Thailand, and Vietnam) ranged from
0.6 to 1.2% (Table 5). Intraspecific differences among
sequences were lower than the range of interspecific
nucleotide differences (Tables 4 and 5). From one to 22
haplotypes were detected among different species and
genes analysed (Table 5).

Phylogenetic analysis
Phylogenetic trees (NJ, ML, and MP) of our sequence
dataset presented similar topological structures, with

high bootstrap values at their main branches (data not
shown). Figures 3, 4 and 5 show MP analysis for the
three genes examined. In particular, phylogenetic ana-
lyses were concordant in clustering R. sanguineus s.l.
collected from different geographic areas of the New
and Old Worlds. Moreover, R. sanguineus s.l. was well
separated from some of its closest congeners (e.g.,
R. turanicus) and formed a sister group to R. guilhoni.
Overall, our phylogenetic analyses supported the mor-
phological identification, showing that the four OTUs

Figure 2 Distinctive characteristics of female dog-associated Rhipicephalus spp. Genital opening (a, d, g, j, m), posterior margin of dorsal
scutum (b, e, h, k, n), and spiracular plates (c, f, i, I, 0) of R. turanicus (a-c), R. sanguineus s.I. (d-f), R. sp. | (g-i), R. sp. Il (j-1) and R. sp. Il (m-o).
.
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Haplotype 1 India
Haplotype 1 Vietnam (n = 6)
Haplotype 1 Australia (» = 50)
Haplotype 1 Honduras (n = 6)
’,‘J:llupl(xt)pc I Costa Rica (n = 7)
Haplotype 1 Colombia (n = 9)
Haplotype 4 Colombia
- Haplotype 1 South Africa (n = 4)
Haplotype 1 Thailand (n = 9)
Haplotype 1 France
Haplotype 2 Brazil (n = 10)
Haplotype 3 South Africa
Haplotype 1 Nigeria
mllaplmypc-i Nigenia (n = 2)
Haplotype 2 Nigeria
'Haplotype 3 Nigeria
Haplotype 1
Haplotype 2 Greece (n = 4)

Italy (Pugha) (n = 8)
29 Haplotype 3 Greece
Haplotype 1 Greece (n = 9)
Haplotype 4 Italy (Pugha)
”lllnplolypcl India
Haplotype 1 Pakistan (n = 2)

Haplotype 13 Turkmenistan (n = 2)
Haplotype 11 Greece
Haplotype 12 Greece

Haplotype 3 ltaly (Basilicata)
Haplotype 7 Ialy (Basilicata)
Haplotype 2 Ttaly (Basilicata) (n = 26)
Haplotype 5 laly (Basilicata)
Haplotype 2 ltaly (Sicily)
| 63 Haplotype 6 Italy (Basilicata)
Haplotype 9 laly (Pugha)
Haplotype 4 lialy (Basilicata)

| L Haplotype 8 Ialy (Basilicata)

Haplotype | laly (Basilicata) (n = 12)

56 Haplotype 2 Italy (Puglia) (n = 3)

Haplotype 10 Greece
99) Haplotype 1 Nigenia
Haplotype 2 Nigena
Haplotype 2 Ttaly (Veneto)
Led Haplotype 5 Portugal
Haplotype 2 Portugal (n = 3)
Haplotype 1 Spain (n = 10)
%Elap!mypcl Ttaly (Sicily) (n = 4)

Haplotype 3 Portugal (n = 2
Haplotype 1 Italy (Veneto)

Haplotype 4 Portugal (n = 2

Haplotype 1 ltaly (Sicily)
Haplotype 3 Nigenia (n = 2)
go— Haplotype 1 Nigeria (n = 2)

Haplotype 2 Nigenia (n = 2)

5

replicates and only bootstraps > 50% are indicated.

\

Haplotype 1 Italy (Basilicata) (n

19 |

R. sanguineus s.|.

R. guilhoni

R. sp. |

R. sp. lll

R. turanicus

R. sp. IV

R. sp. |l

R. pusillus

R. muhsamae

R. bursa

Figure 3 Phylogeny of Rhipicephalus spp. inferred from 16S rDNA. Maximum-Parsimony tree based on 165 rDNA sequences generated
herein. Haplotype, geographical origin and number of specimens from each haplotype are reported. Bootstrap values are based on 8000




Table 2 Measurements (mean * standard deviation) of key structures of Rhipicephalus ticks examined in this study

Species Sex (n) IL B SL SB CL CB BCL BCB APL APB AP ratio ST F1 ST/F1 ratio
R. bursa F (©) 6.4+0.2 38404 25402 27402 14+0.1 1.60.1 0.5+0.1 1.6+0.0 na. na. na. 0.1+0.0 0.5+0.1 0.3£0.1
M (11) 57+06 3.5+04 4.7+£0.5 3.1+£04 1.2£0.1 1.3+£0.1 0.5+0.1 1.2£0.1 1.7£03 0.9+0.2 1.9+£0.2 0.1£0.0 0.3+0.1 0.3+0.1
R. guilhoni F() 6.3 4.0 23 2.1 1.0 13 04 1.2 na. na na. 0.2 nd. nd.
M (4) 4.3+0.1 23£0.1 35401 2.1£0.1 0.940.1 1.0£0.0 04400 1.0+£00 1.2+0.1 0.5+0.0 2440, 02400 0.5+0.7 0.7+04
R. mushamae FQ 6.8+0.1 34+0.1 26+0.1 27200 1.4+0.1 14+0.0 0.5+0.0 1.5£0.0 na. na. na. 0.2+£0.0 0.5+0.0 0.5+0.1
M (4) 6.2+0.6 35+03 5.2+0.5 3303 1.2+0.1 1.2+0.1 0.5+0.0 1.2+0.1 1.6+0.3 0.7+0.2 2.2+0.2 0.2+0.0 04+0.0 0.6+0.1
R. pusillus FQ 23401 1.3+0.1 1.140.1 1.0+00 0.6+0.0 0.6+0.0 0.2+00 0.6+0.0 na. na. na. 0.1+£0.0 0.2+0.0 0.4+0.1
M (1) 19 1.1 15 1.0 04 0.5 0.1 05 04 0.2 20 0.0 0.1 04
R. sanguineus s.l. F 307 4.6+0.7 26104 1.940.2 1.8+0.2 1.0+0.2 1.1+0.2 0.3+0.1 1.0+0.2 na. na. na. 0.1£0.0 0.3£0.1 0.5+0.2
M (55) 42£10 24+0.7 34+0.8 2.0£05 0.8+0.2 0.9+0.2 0.3+0.1 09402 1.0+0.3 04+0.1 23402 0.1+0.0 02400 0.5+0.1
R. turanicus F (33)° 4.9+0.7 2.7+04 2.1+03 20+03 1.1£0.1 1.2£0.1 04+0.1 1.2£0.1 n.a. na. na. 0.2+£0.0 0.3+0.1 0.6+0.1
M (49) 4.7+13 26%0.8 38+1.0 23106 09403 1.0£0.3 04401 1.0+03 13104 0.5£0.2 25402 0.1£0.0 0.2+0.1 0.7£0.1
R.sp. | F (10) 5.5£0.5 32404 20402 2.0£0.2 1.2+0.1 12402 0440.1 1.2+0.1 na. na. na. 0.1+0.0 0.3£0.1 04+0.1
M (19) 49+0.6 29+04 3.9+05 24+03 1.0£0.1 1.0£0.1 04+0.1 1.0£0.1 1.3+03 0.5+0.1 24+0.2 0.1+£0.0 0.2+0.0 04+0.1
R.sp. i F©9) 49+1.1 2705 20+04  20£04 1.1+02 12403 04401 1.1+03 na. na. na. 0.1£0.0 0.3£0.1 0.5+0.2
M (28) 53+10 3.1+£06 43+08 2.7+05 1.1+0.2 1.2+£0.2 04+0.1 1.1+£0.2 14+0.3 0.6+0.1 2.3+0.2 0.1+£0.0 0.3+0.1 04+0.1
R.sp. Il F@3) 41£19 24+13 1.6+0.2 1.5+04 0.8+0.1 0.9+0.2 0.3£0.1 0.9+0.2 na. n.a. na. 0.1£0.0 0.2+0.0 0.5+0.3
M (4) 33402 2002 25402 1.6£0.1 0.7+£0.0 0.7£0.1 02+0.0 0.7+0.1 0.9+0.1 04+0.0 24+0.1 0.1+£0.0 0.1+0.1 1.0+£0.2
R.sp. IV F() 50 26 23 20 12 1.2 05 1.2 na. na. na. 03 03 08
M (1) 43 25 36 20 09 1.0 04 09 1.0 05 23 0.2 0.2 1.0

?An engorged female was excluded.
Abbreviations: IL: idiosomal length, IB: idiosomal breadth, SL: scutal length, SB: scutal breadth, CL: capitulum length, CB: capitulum breadth, BCL: basis capituli length, BCB: basis capitulum breadth, APL: adanal plate
length, APB: adanal plate breadth, AP: ratio adanal plate length/breadth ration, ST: dorsal tail of spiracular plate, F1: first festoon, ST/F1: dorsal tail of spiracular plate/first festoon ratio, n.a: not applied, n.d: not done.
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Table 3 Comparisons ? of key characters for tick species for which enough specimens were available

Species IL 1B DSC DSB CL CB BCL BCB APL APB APL/Bratio DPB FIB DP/Flratio
Rb vs. Rs M <005 <0.01 <0.01 <0.01 <005 <005 <005 <005 <005 <005 <0.01 ns <0.05 <0.05
Rb vs. Rt M ns <0.01 <0.05 <0.01 <005 <0.05 ns <0.05 ns <0.05 <0.01 ns <0.05 <0.05
Rb vs. Rspl M ns ns ns <0.01 <005 ns ns ns ns <0.05 <0.01 ns <0.05 ns
Rb vs. Rspll M ns ns ns ns ns ns ns ns ns ns <0.01 ns ns ns
Rs vs. Rt M ns ns ns <0.01 ns <005 <005 <005 <005 ns <0.01 <0.05 ns <0.05
Rs vs. Rspl M ns <0.05 ns <0.05 ns ns ns ns ns ns <0.01 ns ns ns
Rs vs. Rspll M <005 <0.01 <0.01 <0.01 <005 <005 <005 <005 <005 <005 ns ns <0.05 ns
Rt vs. Rspl M ns ns ns ns ns ns ns ns ns ns <0.01 <0.05 ns <0.05
Rt vs. Rspll M ns <0.05 ns <0.05 ns ns ns ns ns ns <0.01 <0.05 <005 <0.05
Rspl vs. Rspll M ns ns ns ns ns ns ns ns ns ns <0.01 ns ns ns
Rb vs. Rs F <005 <005 <005 <005 <005 <005 <005 <005 - - - ns <0.01 ns
Rb vs. Rt F <005 <0.05 ns <005 <005 <005 ns <0.05 - - - ns <0.01 <0.05
Rb vs. Rspl F ns ns ns ns ns ns ns ns - - - ns <0.01 ns
Rb vs. Rspll F ns ns ns ns ns <0.05 ns <0.05 - - - ns <0.01 ns
Rsvs. Rt F ns ns ns <0.05 ns <0.05 ns <0.05 - - - <0.05 ns <0.05
Rs vs. Rspl F ns ns ns ns ns ns ns <0.05 - - - ns ns ns
Rs vs. Rspll F ns ns ns ns ns ns ns ns - - - ns ns ns
Rt vs. Rspl F ns ns ns ns ns ns ns ns - - - <0.05 ns <0.05
Rt vs. Rspll F ns ns ns ns ns ns ns ns - - - ns ns ns
Rspl vs. Rspll F ns ns ns ns ns ns ns ns - - - ns ns ns

#Comparisons were made with a Kruskal-Wallis (with Dunn’s post-hoc tests) or ANOVA (with Tukey’s post-hoc; in bold).
Abbreviations: Rb: Rhipicephalus bursa, Rs: Rhipicephalus sanguineus sensu lato, Rt: Rhipicephalus turanicus, Rspl: Rhipicephalus sp. |, Rhipicephalus sp. Il, M: male,
F: female, ns: not significant, L: length, B: breadth, I: idiosoma, DS: dorsal scutum, C: capitulum, BC: basis capituli, AP: adanal plates, DP: dorsal projection of

spiracular plates, FI: first festoon.

identified herein belong to different lineages, which
are separated from R. sanguineus s.l. and R. turanicus
(Figures 3, 4 and 5).

The phylogenetic analysis based on edited 12S rDNA
and 16S rDNA sequences generated along with those
available from recent studies revealed well-defined groups
as well (Figures 6 and 7). Ticks identified herein as
R. sanguineus sl. fell within the “northern lineage” clade,
whereas those identified as R. sp. II within a clade that in-
cludes the “southern lineage”. The OTUs designated here as
R.sp. L, R. sp. III, and R. sp. IV formed independent lineages,
even with the inclusion of GenBank sequences (Figures 6
and 7). R turanicus 16S rDNA sequences from Italy
and Greece clustered with those from Israel, Switzerland,
and Turkmenistan (Figure 6). Remarkably, several 16S
rDNA and 12S rDNA sequences labelled as ‘R. turanicus’
from GenBank, formed independent lineages or groups
(e.g., 16S rDNA: GU553080; 12S rDNA: AF150013, FJ5
36578, FJ536579 and AF150017, DQ849231, DQ849232,
DQ901290) or even fell within the “southern lineage”
(i.e., 16S: KC018076; 12S rDNA: JX997393, GU553082)
(see Figures 6 and 7). Similarly, some sequences labelled as
‘R sanguineus formed independent, well-defined groups
(e.g, 16S: JF979377, JE979378).

Host range and geographical distribution

Ticks identified as R. sanguineus s.1. were exclusively found
on dogs, whereas R. turanicus presented the widest host
range, being found on six host species (cattle, goat, horse,
dog, cat, and Corsican hares) and also on vegetation.
Rhipicephalus bursa was found on ruminants (cattle, goat,
and sheep), whereas R. pusillus was found exclusively on
European rabbit. Dogs were found infested by at least five
species, i.e., R. sanguineus s.l, R turanicus and three (ie.,
R. sp. Lin Italy (south) and Greece, R. sp. II in Italy (north),
Spain and Portugal, and R. sp. III in India and Pakistan) of
the four aforementioned OTUs (Table 1).

Rhipicephalus sanguineus sl. was found in all conti-
nents, in at least 11 countries: Australia, Brazil, Colombia,
Costa Rica, France, Guatemala, Honduras, India, South
Africa, Thailand, and Vietnam.

Discussion

The general morphological similarity among some Rhipi-
cephalus species examined herein (e.g., R. sanguineus s.l.,
R. sp. I, and R. sp. II) was evident. However, a careful mor-
phological examination of key characters (e.g., female
genital opening shape, male adanal plate shape, scutal
punctuation pattern and spiracular plate shape in both
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Table 4 Interspecific pairwise (Pwc) distances (%) calculated among consensus sequences for 16S rDNA, 12S rDNA, and

cox1 haplotypes of each Rhipicephalus species examined

R. sanguineus sI. R.sp.l R.sp.ll R.sp.lll R.sp.IV R.guilhoni R. pusillus R.turanicus R. muhsamae R. bursa

165 rDNA

R. sanguineus s.. -

R. sp. | 5.1 -

R.sp. I 87 7 -

R.sp. Il 6.2 4 7 -

R.sp. IV 9 76 105 73 -

R. guilhoni 33 5.1 95 6.2 83 -

R. pusillus 94 94 1.6 10.2 126 10.2 -

R. turanicus 1.3 9.5 124 8 12 106 134 -

R. muhsamae 11.6 1.6 12.7 12.7 144 1.2 12 156 -

R. bursa 152 152 149 14.9 14.1 14.9 15.6 18.1 159 -
12S rDNA

R. sanguineus s.I. -

R.sp. | 10.1 -

R.sp. Il 10.5 104 -

R.sp. ll 73 9 76 -

R.sp. IV 87 9.8 93 6.1 -

R. guilhoni 35 9.6 9.6 6.7 8.2 -

R. pusillus 9.6 96 6.7 6.7 8.1 9.3 -

R. turanicus 10.2 1.3 102 85 7 9.6 9.9 -

R. muhsamae 1.9 1.3 9.1 8.5 84 114 79 10.7 -

R. bursa 144 153 13 12.7 133 136 136 138 13 -
cox1

R. sanguineus s.l. -

R.sp. | 123 -

R sp. I 15.7 125 -

R. sp. il 136 94 132 -

R.sp. IV 123 94 125 10 -

R. guilhoni 9.6 10 14 1.1 1.3 -

R. pusillus 13.8 1.1 14 115 9.8 109 -

R. turanicus 14.9 1.7 14.2 11.5 12.3 13.6 13.2 -

R. muhsamae 18.7 145 168 13.8 14.5 15.3 14.2 17 -

R. bursa 16.8 138 16.2 14.7 13.8 15.5 136 155 16.2 -

sexes) enabled us to separate these species. Importantly,
measurements of adults are known to be of limited use for
the differentiation of Rhipicephalus species [16]. However,
considering the differences found herein for some particu-
lar characters (e.g, adanal plate length/breadth ratio)
(Table 3), future studies should better assess the usefulness
of morphometrical analysis for the differentiation of
Rhipicephalus adults and immature stages.

Our genetic analyses further confirmed the differenti-
ation of all the rhipicephaline species herein examined by

supporting the existence of well-defined clades. A high
genetic convergence was detected within and among pop-
ulations of ticks identified as R. sanguineus s.l., irrespective
of their geographical origin. This was also inferred based
on intra- and interspecific nucleotide variations of mito-
chondrial DNA, which clearly defined the molecular iden-
tity of R. sanguineus s.. (see Tables 4 and 5). In particular,
the maximum nucleotide variation within each Rhipi-
cephalus species (from different geographical areas) was
2.2%, 2.5%, and 3.5% for 16S rDNA, 12S rDNA and cox1,
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Table 5 Number of specimens, haplotypes, and intraspecific variation retrieved among 16S rDNA, 12S rDNA, and cox1

sequences of each Rhipicephalus species examined

Species n 16S rDNA 12S rDNA cox1
Haplotypes Mean and min- Haplotypes Mean and Haplotypes Mean and min-
(no. of specimens) max intraspecific (no. of specimens) min-max  (no. of specimens) max intraspecific
variation (%) intraspecific variation (%)
variation (%)
R. sanguineus s.l. 65 1 (53); 11 (10); Il (1); 0.6 (04-1.1) | (50); 11 (C10); 1 (1); IV (1); 0.8 (0.3-1.2) ( 5); 116); 11 (1); 1.2 (0.2-3.0)
vV (1) Q) V (6); V (1); VI (3);
\/II (1); VI 3); IX (1)
R.sp. | 23 1(7); 1 @); () 0.5 (04-0.7) FQ); Q) Q) IV (4); V (7); 09 (0.0-25) ) Q) (), 0.8 (0.2-1.5)
IV (1) VIE(2); VIEQD); VIIE(1); 1X(1); IV (5)
X (1); X1 (2)
R.sp. Il 24 1 (15); 11 (4); ), 0.7 (0.4-1.1) 1 (15); 10(); 1E(2); IV (2); 06 (03-1.2) 1@®); 11 (1); 11 (2); 0.6 (0.2-1.1)
V(2 V(1) V(2); VI(T) V. (3); vV (1); VI(2);
VI (6); VI (1)
R.sp. il 3 I (3) - F(; 112 03 HORNORING! 0.3 (04-1.1)
R.sp. IV 2 (1) () 0.7 I (1) 12 -
R. guilhoni 5 ;1 Q; ey, 0.5 (04-0.9) ;1 Q); E(1); 1V (1) 0.7 (0.3-1.2) FC; Q) ey, 1.0 (0.2-1.7)
IV (2) IV (2)
R. pusillus 1 (1) - I (1) (1) -
R. turanicus 54 | (12); 11.G30); 1 (1); 1.0 (04-2.2) 136); 11 (1); 1 (1); IV (1); 1.0 (03-2.2) 1@5); 1EQ; ey, 1.2 (0.2-3.5)
vV (1); V(1) VEQT); V(1); VEQD; VIEQD; VIIE(2); IV-(1); v (1); VIE(T);
\/H (1); VIIE(T); 1X (1), IX(1); X (1); XEQ; XIEQ1y; VILE(1); VI (2); 1X (2);
X (1) XE(1); XIE(T); XIE(1); XIV (2) X (1) XE(1); XIE(T);
Xl (2) Xl ( ), XIV (1):XV (1)
VI (3); XVIE(1);
XVIII( ); XIX (1);
XX (2); XXI(1); XX (1)
R. muhsamae 6 F2); 11(2); (2 0.7 (0.4-1.1) () 100, 1E@3); IV (1) 0.5 (0.3-0.9) FQ; 1, m(ny; 12 (04-1.7)
IV (1)
R. bursa 14 I (14) - 1 (13); 11 (1) 0.3 F3); 11(); 11 (1); 0.3 (0.2-04)
IV (2); V(1)
respectively. These percentages are lower than those that some of the taxa currently identified as

reported in a previous study (i.e., up to 2.7% and 6.6% for
16S and 12S rDNA, respectively) using Brazilian ticks
identified as R. sanguineus [19]. Furthermore, an overall
intraspecific variation ranging from 7.8% to 8% was
recorded for 12S rDNA sequences by other authors
[17,18], which indicates that these authors were dealing
with more than one species. In fact, the existence of differ-
ent species under the name ‘R. sanguineus has recently
been confirmed by studies carried out in South America,
United States and China [18-22,27,48].

Recent assessments of the genetic variability of differ-
ent R. sanguineus s.1. populations have provided new in-
sights into the biosystematic status of this tick group
and revealed the existence of at least two divergent pop-
ulations [19-22,27]. Sequences of R. sanguineus s.l.
herein obtained clustered within the so-called northern
lineage whereas those of R. sp. II corresponded well to
the southern lineage. Interestingly, the other three OTUs
identified herein formed independent lineages, sug-
gesting that they may represent separate species. As a
corollary, crossbreeding studies have provided evidence

R. sanguineus s.]. may actually represent separate species
[12,18,21]. Moreover, a recent comparison between the
complete mitochondrial genome of ‘R sanguineus’ from
China and USA revealed a nucleotide sequence differ-
ence in the whole mitochondrial genome of 11.23%
between them [27]. This demonstrates that the two
aforementioned populations represent two separate spe-
cies. Nonetheless, without a type specimen and a con-
sensual description, it is difficult to ascertain which one
represents the true R. sanguineus s.s.

The widespread use of mitochondrial DNA in phylo-
genetic and population genetic studies results from a
relatively high mutation rate and the apparent simplicity
of mitochondrial maternal inheritance compared to the
nuclear DNA [49]. However, paternal leakage, hete-
roplasmy and recombination have now been docu-
mented in multiple systems [49]. These exceptions to
the key principles of mitochondrial inheritance may
affect phylogenetic and population genetic analyses
and should be taken into account while examining
the results. Importantly, knowledge of mitochondrial
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Haplotype 1 Honduras (n = 5)
Haplotype 4 France
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10 Haplotype 5 South Africa
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r— Haplotype 7 Greece
|Haplotype 9 Greece
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98,
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86/ Haplotype 6 Greece (1 = 2)
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Haplotype 5 Greece (n = 2)
99— Haplotype | India
Haplotype 2 India (n = 2)
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“I Haplotype 12 Greece

Haplotype 11 Greece

86 Haplotype 6 Italy (Basilicata)
1 Haplotype 14 Turkmenistan (n = 2)
Haplotype | Italy (Basilicata) (n = 35)
Haplotype 4 ltaly (Basilicata)
Haplotype 9 Italy (Puglia)
Haplotype 3 ltaly (Sicily)
Haplotype 13 laly (Basilicata)
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o
L]

Haplotype 7 ltaly (Basilicata)
Haplotype | Italy (Puglia)
Haplotype 2 Italy (Puglia)
Haplotype 8 ltaly (Basilicata) (n = 2)
| Haplotype 2 Ttaly (Vencto)
99| | Haplotype 5 Portugal (n = 2)
Haplotype 6 Portugal
Haplotype 4 Portugal (n = 2)
52) “~1_|Haplotype 3 Portugal (n = 2)
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Haplotype 1 Italy (Sicily)
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100 Haplotype 2 Nigeria

{69 Haplotype 3 Nigeria (n = 3)
Haplotype 4 Nigena

Haplotype 2 haly (Basilicata)

5

replicates and only bootstraps > 50% are indicated.

100 Haplotype 1 Ttaly (Basilicata) (n

R. sanguineus s.|.

R. guilhoni

R. sp. |

R. sp. Il
| R.sp. IV

R. turanicus

R.sp. |l

| R. pusillus

R. muhsamae

Y R. bursa

Figure 4 Phylogeny of Rhipicephalus spp. inferred from 12S rDNA. Maximum-Parsimony tree based on 12S rDNA sequences generated
herein. Haplotype, geographical origin and number of specimens from each haplotype are reported. Bootstrap values are based on 8000




Dantas-Torres et al. Parasites & Vectors 2013, 6:213
http://www.parasitesandvectors.com/content/6/1/213

Page 12 of 17
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"~ Haplotype 2 laly (Basilicata) (n = 2)
~ Haplotype 5 Italy (Basilicata)

10

only bootstraps > 50% are indicated.
A\

R. sanguineus s.l.

R. guilhoni

R. sp. |

R. turanicus

R. sp. Il

R.sp. Il

R. sp. IV
R. pusillus

R. muhsamae

R. bursa

Figure 5 Phylogeny of Rhipicephalus spp. inferred from cox1. Maximum-Parsimony tree based on cox1 sequences generated herein.
Haplotype, geographical origin and number of specimens from each haplotype are reported. Bootstrap values are based on 8,000 replicates and
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Figure 7 Phylogeny of Rhipicephalus spp. inferred from 12S rDNA (including those available in Genbank). Maximum-Parsimony tree
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inheritance in ticks is incipient and therefore coupling ruled out, mainly in areas where closely related species
genetic and morphological data becomes pivotal for a  occur together (sympatrically).

better definition of species. Furthermore, different species The usefulness of combining different methodologies
may potentially mate in the field and the existence of towards defining integrated operational taxonomic units
hybrids among field-collected tick specimens cannot be  (IOTUs) has recently been exemplified elsewhere [50].
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Our combined analyses provided evidence for the exist-
ence of at least four IOTUs among ticks examined in
this study. Indeed, besides the morphological differences,
the interspecific nucleotide variations for each genetic
target analysed between R. sanguineus sl. and these
IOTUs were higher than between R. sanguineus s.l. and
R. guilhoni (see Table 4).

Taxonomy is a fundamental part of science, without
which human beings would not be able to recognize them-
selves as Homo sapiens. However, besides the taxonomic
implications of data generated herein, our results will also
raise new questions regarding the biology, ecology, vector
competence and capacity of R. sanguineus s.l. to different
pathogens worldwide [51-53]. For instance, it is widely be-
lieved that R sanguineus s.l. is the vector of Anaplasma
platys, but the only attempt to prove this hypothesis failed,
which led to the conclusion that this tick may not act as a
vector of this bacterium [54]. However, additional studies
are needed to evaluate the vector competence of
R. sanguineus sl. and related species to transmit different
pathogens (e.g., A. platys, Babesia gibsoni, Ehrlichia canis,
and Hepatozoon canis) to dogs. These studies would also
help decipher the relationship between Rhipicephalus spp.
and the epidemiology of Mediterranean spotted fever [55].

Comparisons with the type specimens of R. sanguineus
s.s. and R. turamicus were not possible. The types of
R. sanguineus s.s. do not exist, whereas the male lecto-
type and the female paralectotype of R. turanicus are de-
posited in the tick collection of the Zoological Institute
of the Russian Academy of Sciences, in St. Petersburg
[56], being difficult to assess. Two of us (FD-T and DO)
have recently visited the aforementioned collection and
examined specimens labelled as ‘R. turanicus’ collected
in Turkmenistan and determined by Dr. N. A. Filippova,
a leading taxonomist that dedicated much of her life to
the study of Rhipicephalus ticks. These specimens were
morphologically and genetically compatible with our
R. turanicus specimens from Italy and Greece, thereby
allowing us to confirm the presence of this species in
the Mediterranean region. Remarkably, our phylogenetic
analyses pointed out the existence of different species
under the name ‘R. turanicus’. For instance, 12S rDNA
sequences from Zambia (DQ849231, DQ849232, DQ90
1290) and Zimbabwe (AF150017) labelled as ‘R. turanicus’
are closer to R. sanguineus sl. than to R turanicus sensu
Filippova [14] (Figure 7). Similarly, some 12S rDNA se-
quences from Israel (AF150013), Kyrgyzstan (FJ536578),
and Uzbekistan (F]J536579) labelled as ‘R. turanicus’ are
most likely distinct species, as also inferred by pairwise
comparisons of nucleotide sequences (data not shown).
Finally, our ticks designated as R. sp. III (India and
Pakistan) and R. sp. IV (Nigeria) were morphologica-
lly and genetically related to, but different from
R. turanicus.
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Conclusions

The present study, along with recent morphological, bio-
logical, and genetic data produced by distinct research
groups, irrefutably point out the existence of different spe-
cies under the names ‘R. sanguineus and ‘R turanicus.
Certainly, a re-description of R. sanguineus s.s. based on
detailed morphological, biological and genetic data is fun-
damental. This will also allow us to re-examine ticks cur-
rently placed in synonym with R sanguineus ss. (e.g.,
Rhipicephalus siculus Koch 1844), some of which may
need to be resurrected. Indeed, some of the four IOTUs
described herein may actually represent species that have
already been described and placed in synonym with R
sanguineus s.s. or, eventually, new species. Definitely, until
the species is re-described based on a consensus among
taxonomists, the use of the name R. sanguineus s.s. should
be avoided.
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