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Abstract

(L1014F, L1014S or L10140Q).

(L1014F), Nicaragua (L1014C) and Costa Rica (L1014Q).

Background: Anopheles albimanus is a key malaria vector in the northern neotropics. Current vector control
measures in the region are based on mass distributions of long-lasting insecticidal nets (LLINs) and focal indoor
residual spraying (IRS) with pyrethroids. Resistance to pyrethroid insecticides can be mediated by increased esterase
and/or multi-function oxidase activity and/or mutations in the voltage-gated sodium channel gene. The aim of this
work was to characterize the homologous kdr region of the voltage-gated sodium channel gene in An. albimanus
and to conduct a preliminary retrospective analysis of field samples collected in the 1990’s, coinciding with a time
of intense pyrethroid application related to agricultural and public health insect control in the region.

Methods: Degenerate primers were designed to amplify the homologous kdr region in a pyrethroid-susceptible
laboratory strain (Sanarate) of An. albimanus. Subsequently, a more specific primer pair was used to amplify and
sequence the region that contains the 1014 codon associated with pyrethroid resistance in other Anopheles spp.

Results: Direct sequencing of the PCR products confirmed the presence of the susceptible kdr allele in the Sanarate
strain (L1014) and the presence of homozygous-resistant kdr alleles in field-collected individuals from Mexico

Conclusions: For the first time, the kdr region in An. albimanus is described. Furthermore, molecular evidence
suggests the presence of kdr-type resistance in field-collected An. albimanus in Mesoamerica in the 1990s. Further
research is needed to conclusively determine an association between the genotypes and resistant phenotypes, and
to what extent they may compromise current vector control efforts.
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Background

Anopheles albimanus is one of the key malaria vectors
of Latin America and is widely distributed throughout
the region [1,2]. In recent years, insecticide resistance
has emerged in malaria vectors worldwide as a result of
increased intensity of insecticide use, principally via the
widespread use of indoor residual spraying (IRS) and
long-lasting insecticidal nets (LLINSs) in malaria endemic
areas [3-5]. Malaria control in the region currently relies
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heavily on the use of LLINs, which are treated with pyr-
ethroid insecticides [6]. The widespread use of insecti-
cide treated nets (ITNs) [7-11], LLINs [12-14] and both
the historical and ongoing use of DDT and pyrethroid
insecticides for IRS [13,15-17] elicit selection pressures
on local vector populations. As such, the routine surveil-
lance of insecticide resistance must be implemented in
the context of vector control programs to verify that con-
trol tools are maintaining their efficacy. The timely detec-
tion of insecticide resistance and the characterization of
the mechanisms underlying insecticide resistance in a vec-
tor population can provide valuable data regarding which
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insecticides should be used to maintain maximum vector
control impact.

Resistance to pyrethroid insecticides in malaria vectors
can be primarily mediated by either metabolic mecha-
nisms or target site insensitivity, such as mutations on the
voltage-gated sodium channel (VGSC) gene [3,18]. Despite
reports of pyrethroid resistance throughout the region,
none of these mechanisms have been well-described at the
molecular level for malaria vectors in Latin America [19].
Previous studies using biochemical assays and bioassays
with synergists on pyrethroid resistant An. albimanus
from Guatemala and Mexico suggest that an increase in
the activity levels of esterases and multi-function oxidases
are at least partially responsible for the resistance detected
in these populations [20-24]. Elevated oxidase activity has
been associated with cross-resistance to pyrethroids and
DDT in An. albimanus [23]. One previous study carried
out on An. albimanus from Mexico suggested that a
target-site mechanism may be involved in cross-resistance
between pyrethroids and DDT [25]. Knock-down resist-
ance (kdr) is a target-site mechanism reported in other
anopheline species that results in cross-resistance to both
pyrethroids and DDT [26,27]. In anophelines, kdr is linked
to single nucleotide polymorphisms on transmembrane
segment 6 of domain II of the VGSC gene. The mutations
previously reported for anophelines occur on codon 1014,
resulting in an amino acid change of leucine to phenyl-
alanine, serine or cysteine [28-34]. To date, similar muta-
tions have not been described in An. albimanus.

The present study describes for the first time the hom-
ologous kdr region of the VGSC gene in An. albimanus
where mutations in other anopheline species have been
detected that are associated with kdr-type resistance. Fur-
ther, we report molecular evidence of kdr resistant-type al-
leles in field mosquitoes collected in Mexico, Nicaragua
and Costa Rica in the 1990s.

Methods

Primer design

DNA and cDNA sequences of the VGSC gene of different
Anopheles spp. were retrieved from GenBank (Table 1).
Conserved regions were identified from a multiple align-
ment (MEGA 5.0 [35]) and degenerate primers were
designed based on conserved codons using An. punctipennis
as a basis [GenBank: AY283039-AY283041]. The strategy
used to design the primers to amplify the VGSC gene in An.
albimanus is presented in Figure 1A.

Mosquito population

The An. albimanus Sanarate laboratory strain, maintained
in the insectary of Center for Health Studies (CHS)
of Universidad del Valle de Guatemala (Guatemala,
Guatemala) was used to validate the designed primers.
The Sanarate strain is susceptible to DDT, deltamethrin,
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Table 1 DNA sequences of the VGSC gene from different
Anopheles spp. used in the primer design

Specie (subgenus) Sequence identification
GenBank: EU155388
GenBank: DQ026443
GenBank: DQ263749
GenBank: GQ279245
GenBank: GQ279246
GenBank: GQ279247
GenBank: DQ026439
GenBank: DQ026440
GenBank: DQ026441
GenBank: DQ026442
GenBank: EU155384
GenBank: DQ399296
GenBank: DQ399298
GenBank: Y13592
GenBank: DQ263748
GenBank: EU155387
GenBank: EU155389
GenBank: DQ026446
GenBank: DQ026445
GenBank: GU064930
GenBank: EU155386
GenBank: GQ225104
GenBank: GQ225106
GenBank: AY283041
GenBank: AY283039
GenBank: AY283040
GenBank: JN002364
GenBank: GQ225102
GenBank: JF304953
GenBank: EU155385
GenBank: DQ333331
GenBank: DQ075250
GenBank: GQ225100

Anopheles aconitus (Cellia)
An. annularis (Cellia)
An. arabiensis (Cellia)

An. culicifacies (Cellia)

An. dirus (Cellia)

An. epiroticus (Cellia)

An. funestus (Cellia)

An. gambiae (Cellia)

An. harrisoni (Cellia)
An. jeyporiensis (Cellia)
An. kochi (Cellia)

An. maculatus (Cellia)

An. minimus (Cellia)

An. paraliae (Anopheles)

An. peditaeniatus (Anopheles)

An. punctipennis (Anopheles)

An. sinensis (Anopheles)

An. stephensi (Cellia)
An. subpictus (Cellia)

An. tessellatus (Cellia)

An. vagus (Cellia)

permethrin, bendiocarb and malathion (unpublished ob-
servations) according to bottle bioassay susceptibility tests
[36]. Genomic DNA from individual mosquitoes was iso-
lated following the method described by Collins et al. [37].

Amplification, cloning and sequencing of the VGSC gene

The amplification of segment 6 of domain II of the VGSC
gene with degenerate primers was carried out in a 50 pl
reaction mixture containing 1X Colorless GoTaq® Flexi
Buffer, 1.5 mM MgCl,, 0.2 mM dNTPs, 2.5 pM of each
degenerate primer (AAKDRF and AAKDRR), 1 unit
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An. gambiae
An. punctipennis
An. albimanus

An. gambiae
An. punctipennis

An. albimanus
**k kK

A 57 AAKDRF ’% 57 AAKDRF2 ’é

rd rd
An. gambiae AGATGGAATTTTACAGATTTCATGCATTCCTTCATGATTGTGTTCCGTGT 50
An. punctipennis - --TGGAACTTCACCGACTTCATGCATTCCTTCATGATCGTGTTTCGTGT 47
An. albimanus = = 0—-------------------- ATGCATTCATTTATGATTGTGTTTCGTGT 29

khkhkkkhkhkkhkk Kkk Khhkkhkkk *hkhkkk *hkhkkxk

An. gambiae GCTATGCGGAGAATGGATTGAATCAATGTGGGATTGTATGCTTGTCGGTG 100
An. punctipennis GCTGTGTGGCGAGTGGATCGAATCGATGTGGGACTGCATGCTCGTTGGTG 97
An. albimanus ATTATGTGGAGAATGGATAGAATCAATGTGGGATTGTATGTTAGTTGGAG 79

* kk kk Kkk Khkkkk Khhkkkk *kxkkkkkkk *kk *kkk *x ¥k *k X

ATGTATCCTGCATACCATTTTTCTTGGCCACTGTAGTGATAGGAAAYTTA| 150
ATGTATCATGCATCCCATTCTTCTTAGCTACCGTAGTAATAGGAAAQTTG) 147

ATGTGTCGTGCATACCATTCTTCTTAGCAACTGTAGTTATAGGAAAQTTG] 129
kkkk kk khkkkk Kkhkkkk kkkkk kk kk Kkkkkk Kkkkkhkkkk kk

---------------------------------- 155
GTGGTAAGTATCCGGCACGGCC - - -AAATTACTTATTGGCCTCATAACTA 194
GTCGTAAGTGCATTTACTGATACGAACATTGCAAACATGCGTATATTGCT 179

An. gambiae
An. punctipennis
An. albimanus

7777777777 GCTTAACCTTTTCTTAGCCTTGC 178
TTCCCCTTTTCTACATTTTTGCAGGTTCTTAACCTTTTCTTAGCCTTGC 243
ATCTCTATTCTTTGCTTTTTCCAGGTA---------------------- 206

bp

1000

500

250

5: negative control of specific PCR (H,0).

Figure 1 Strategy to amplify segment 6 of domain Il of the VGSC gene in Anopheles albimanus. (A) Diagrammatic representation of the
design of degenerate and specific primers for An. albimanus [GenBank: KF137581] based on An. gambiae [GenBank: Y13592] and An.
punctipennis [GenBank: AY283041]. The identical positions are indicated by an asterisk and mutation site is enclosed by a box. Intron position is
indicated by a black line below the sequence. AAKDRF (5'-AGATGGAAYTTYACNGAYTTC-'3); AAKDRF2 (5'-CATTCATTTATGATTGTGTTTCGTG-'3);
AAKDRR (5’-GCAANGCTAAGAANAGRTTNAG-'3). (B) PCR products using degenerate and specific primers. The PCR products were separated on
a 2% agarose gel containing ethidium bromide. Lane 1: 50 bp DNA ladder (Novagen); Lane 2: degenerate PCR products (using AAKDRF and
AAKDRR primers); Lane 3: negative control of degenerate PCR (H,0); Lane 4: specific PCR product (using AAKDRF2 and AAKDRR primers); Lane

of GoTaq® HotStart Polymerase (Promega, Fitchburg,
Wisconsin) and 10 to 30 ng of genomic DNA. The degen-
erate PCR conditions were 95°C for 3 min, followed by
35 cycles of 95°C for 45 sec, 40.5°C for 45 sec and 72°C for
1 min with a final extension step at 72°C for 5 min in a
Px2 Thermal Cycler (Thermo Fisher Scientific, Waltham,
Massachusetts).

Non-specific amplification was obtained in An. al-
bimanus from the Sanarate strain using the degenerate
primers (Figure 1B). Four different-sized PCR products

were isolated for specific amplification using the band-
stab PCR technique [38]. These purified PCR products
were directly sequenced by Macrogen Inc. (Korea) using
AAKDRF and AAKDRR as sequencing primers. BLAST
analysis showed that a fragment of approximately 250 bp
corresponded to the VGSC gene in An. albimanus. To
confirm these findings and to obtain a high-quality DNA
sequence of this fragment, PCR products were cloned
using a TA Cloning® Kit (Invitrogen, Carlsbad, California)
according to the manufacturer’s instructions. The plasmids
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of the positive clones that contained the fragment of
VGSC gene were isolated with the PureLink™ HQ
Mini Plasmid Purification Kit (Invitrogen, Carlsbad,
California) according to the manufacturer’s instructions.
Plasmids were sequenced with M13 universal primers
using 3500XL Genetic Analyzer (Applied Biosystems,
Foster City, California) with BigDye® Terminator v1.1.

PCR assay to detect kdr-type resistance

A second, non-degenerate forward primer (AAKDRF2)
was designed based on the sequence of the VGSC gene of
An. albimanus (GenBank: KF137581) obtained with the
degenerate primers (Figure 1A). The amplification with the
specific forward (AAKDRF2) and AAKDRR primer was
performed using the same reaction specifications as in the
degenerate PCR, except that 0.5 pM of each primer were
used. The PCR conditions consisted of an initial denatur-
ation at 95°C for 3 min, followed by 40 cycles at 95°C for
45 sec, 51.5°C for 45 sec and 72°C for 1 min, with a final
extension step at 72°C for 5 min in an iCycler (BioRad,
Hercules, California). The PCR assay with AAKDRF2 and
AAKDRR primers amplified a single band of 225 bp in An.
albimanus from the Sanarate strain (Figure 1B), which cor-
responds to the VGSC gene of An. albimanus. These
primers were used to amplify the VGSC gene in DNA
samples of An. albimanus from Guatemala (collected in
1995), Mexico (collected in 1991), Nicaragua (collected
in 1995), Costa Rica (collected in 1995), Ecuador (col-
lected in 1991) and Colombia (collected in 1992) previ-
ously used in population genetic studies [39,40]. The
PCR products were sequenced by Macrogen Inc.
(Korea) using AAKDRF2 and AAKDRR primers.

Results and discussion

Sequence analysis showed that segment 6 of domain II
of the VGSC gene (excluding the intron sequence) of
An. albimanus has a sequence identity of 92% with An.
gambiae and 83% with An. punctipennis at the nucleo-
tide level. Variations in the nucleotide sequence of
An. albimanus did not produce changes in the amino
acid sequence (100% identity with An. gambiae and An.
punctipennis, Figure 2). The position of intron II was
established through comparison with the VGSC ¢cDNA
sequence from An. gambiae [GenBank: Y13592]. The
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size of intron II in An. albimanus (71 bp) was greater
than in An. gambiae (57 bp) and An. punctipennis (68 bp).
Variation in the size of intron II has been detected in An.
vestitipennis and An. pseudopunctipennis (unpublished ob-
servations), and may potentially be used for taxonomic
identification of malaria vectors from Latin America, as
proposed for other anopheline species [41].

Sequence results from the Sanarate strain of An. al-
bimanus showed that the individuals contained the sus-
ceptible/wild type kdr allele, TTG (L1014), previously
reported in An. sacharovi, An. sinensis and other anoph-
eline species from the Mekong region [34,42,43]. In the
field-collected mosquitoes from Latin America, poly-
morphisms at codon 1014 were detected in several
of the samples (Figure 3A). The field samples from
Guatemala, Ecuador and Colombia also contained the
susceptible TTG (L1014) allele. A non-synonymous ho-
mozygous mutation, TGT (cysteine, L1014C), was
detected in field samples from Mexico and Nicaragua.
This mutation has previously been associated with per-
methrin, deltamethrin and beta-cypermethrin resistance
in An. sinensis [34,44,45]. A field sample from Costa Rica
contained a homozygous TTC polymorphism (phenylalan-
ine, L1014F), previously reported in populations of An.
gambiae resistant to permethrin and DDT, An. sinensis re-
sistant to deltamethrin and An. peditaeniatus resistant to
DDT, permethrin, alpha-cypermethrin, lambda-cyhalothrin
and etofenprox [28,43,45]. With the exception of certain in-
dividuals from Nicaragua and Guatemala, all kdr alleles
were found to be homozygous (Figure 3B). The heterozy-
gote alleles from Nicaragua were TKY and from Guatemala
were TKK. Interestingly, the kdr allele reported in An.
gambiae from East Africa (L1014S) [29] was not detected.

An. albimanus populations are panmictic over at least
600 km in Central America, West of Panama [46]. In this
region, insecticide resistance in An. albimanus has been
reported and the main source of its selection has been the
extensive use of pesticides in large scale agricultural activ-
ities [47-50]. During the nineties, populations in the area
in continued exposure to agricultural insecticides plus
pressures from the use of insecticides for vector control
could have maintained a constant selection pressure on
Mesoamerican An. albimanus populations, possibly ex-
plaining the finding of three homozygous kdr variants in

An. gambiae
An. albimanus
An. punctipennis

MHSFMIVFRVLCGEWIESMWDCMLVGDVSCIPFFLATVVIG

MHSFMIVFRVLCGEWIESMWDCMLVGDVSCIPFFLATVVIG
hokkkkkhkhkhkhkhkkkkkhhhkkkkkkkhkhkhkkkkhkhkkkkkkkkk*

MHSFMIVFRVLCGEWIESMWDCMLVGDVSCI PFFLATWIGm 45

Figure 2 Amino acid sequence comparison of kdr region of Anopheles albimanus with other anopheline species. The sequence of the
segment 6 of domain I of the VGSC gene of An. albimanus was compared to An. gambiae [GenBank: CAA73920] and An. punctipennis [GenBank:
AAP60053]. Identical positions are indicated by an asterisk and mutation site (codon 1014) is enclosed by a red box. The amino acid at the
mutation site corresponds to the pyrethroid and DDT susceptible (wild-type) genotypes.

45
45
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A
Guatemala 1
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Costa Rica 1
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Nicaragua 1
Guatemala 2
Nicaragua 2
B
Guatemala 1 Guatemala 2 Nicaragua 1 Nicaragua 2
TTG TKK TGT TKY
e f i i
L1014 1014C
Susceptible Resistant

CATACCATTCTTCTTAGCAACTGTAGTTATAGGAAALTTGHETCGTAAGTG 50
CATACCATTCTTCTTAGCAACTGTAGTTATAGGAAALTTGETCGTAAGTG 50
CATACCATTCTTCTTAGCAACTGTAGTTATAGGAAALTTGETCGTAAGTG 50
CATACCATTCTTCTTAGCAACTGTAGTTATAGGAAALTTCETCGTAAGTG 50
CATACCATTCTTCTTAGCAACTGTAGTTATAGGAAALTGTETCGTAAGTG 50
CATACCATTCTTCTTAGCAACTGTAGTTATAGGAAALTGTGTCGTAAGTG 50
CATACCATTCTTCTTAGCAACTGTAGTTATAGGAAALTKKETCGTAAGTG 50
CATACCATTCTTCTTAGCAACTGTAGTTATAGGAAALTKYETCGTAAGTG 50

Rk Ik b R R R S R R R kS

*hkkkhkkkkkhk*k

Mexico 1 Ecuador 1 Colombia 1
TTG

Costa Rica 1

TTC TGT

TTG

\

1014C L1014 L1014
Resistant Susceptible Susceptible

1014F
Resistant

Figure 3 Kdr alleles detected on the segment 6 of domain Il of the VGSC gene of Anopheles albimanus. (A) DNA alignment of the VGSC
gene of An. albimanus from different regions of Latin America. The identical positions are indicated by an asterisk and polymorphic site
(codon 1014) is enclosed by a red box. (B) Electropherograms for kdr alleles detected on the VGSC gene of An. albimanus.

Mexico, Nicaragua and Costa Rica with mutations that
have been associated with pyrethroid and DDT resist-
ance in other anopheline species. Even though to date
the role of kdr has not been directly implicated in the
insecticide resistance documented in the region, it is
highly likely that kdr is an important resistance mech-
anism in Latin American malaria vectors.

Conclusions

Our findings describe for the first time the kdr region
in An. albimanus, including the presence of polymor-
phisms associated with insecticide resistance in other
anopheline species. We have documented the presence
of homozygous kdr alleles associated with resistance in
other anopheline species in An. albimanus individuals
collected across Mesoamerica at a time of intense agri-
cultural and public health insecticide use. This suggests
that pyrethroid and DDT resistance in the region could
have been mediated in the past by a kdr mechanism.
Future work will endeavor to link resistant phenotypes
with the kdr polymorphisms described here, as well as
lead to the development of allele-specific diagnostic
assays for An. albimanus and other malaria vectors
across the region.
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