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Abstract

Background: A fundamental understanding of the spatial distribution and ecology of mosquito larvae is essential
for effective vector control intervention strategies. In this study, data-driven decision tree models, generalized linear
models and ordination analysis were used to identify the most important biotic and abiotic factors that affect the
occurrence and abundance of mosquito larvae in Southwest Ethiopia.

Methods: In total, 220 samples were taken at 180 sampling locations during the years 2010 and 2012. Sampling
sites were characterized based on physical, chemical and biological attributes. The predictive performance of
decision tree models was evaluated based on correctly classified instances (CCI), Cohen’s kappa statistic (κ) and the
determination coefficient (R2). A conditional analysis was performed on the regression tree models to test the
relation between key environmental and biological parameters and the abundance of mosquito larvae.

Results: The decision tree model developed for anopheline larvae showed a good model performance (CCI = 84 ± 2%,
and κ = 0.66 ± 0.04), indicating that the genus has clear habitat requirements. Anopheline mosquito larvae showed a
widespread distribution and especially occurred in small human-made aquatic habitats. Water temperature, canopy
cover, emergent vegetation cover, and presence of predators and competitors were found to be the main variables
determining the abundance and distribution of anopheline larvae. In contrast, anopheline mosquito larvae were
found to be less prominently present in permanent larval habitats. This could be attributed to the high abundance
and diversity of natural predators and competitors suppressing the mosquito population densities.

Conclusions: The findings of this study suggest that targeting smaller human-made aquatic habitats could result in
effective larval control of anopheline mosquitoes in the study area. Controlling the occurrence of mosquito larvae via
drainage of permanent wetlands may not be a good management strategy as it negatively affects the occurrence and
abundance of mosquito predators and competitors and promotes an increase in anopheline population densities.
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Background
Mosquitoes are not only a nuisance, but are also respon-
sible for the spread of a wide range of diseases including
malaria, yellow fever, dengue, West Nile virus and Rift
Valley fever [1-3]. These mosquito borne diseases, infect-
ing more than 700 million people around the world each
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year, result in as many as two million deaths annually
[4]. One of these diseases, malaria, is transmitted be-
tween humans by adult female mosquitoes of the genus
Anopheles. Malaria is endemic in tropical and sub-
tropical regions where it causes over 300 million acute
illnesses and at least one million deaths each year [5]. In
spite of the recent scale-up of control programs, malaria
continues to be a major public health problem in most
tropical countries and its control is becoming increas-
ingly difficult due to the spread of resistance of the
Ltd. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:pieter.boets@ugent.be
http://creativecommons.org/licenses/by/2.0


Mereta et al. Parasites & Vectors 2013, 6:320 Page 2 of 16
http://www.parasitesandvectors.com/content/6/1/320
parasite to anti-malarial drugs, resistance of the vector
to insecticides and land-use changes [6,7].
Land-use and land-cover changes, such as deforest-

ation, agricultural expansion, infrastructure development,
urbanization and human population growth contribute to
the proliferation of breeding sites of mosquitoes [5,8].
These environmental or land-use modifications also affect
climate processes [9] that are likely to support rapid devel-
opment of mosquitoes and parasites in regions where
there has previously been a low-temperature restriction
on transmission. Current episodes of climate variability
in Africa are likely to intensify the transmission of mal-
aria in the eastern and southern highlands [10,11]. More-
over, dams and small irrigation projects also contribute
to an increase in the mosquito population by, increasing
the number of suitable larval habitats, prolonging the
breeding season and allowing the expansion of their dis-
tribution range. Small dams built for irrigation and mega
hydropower dams have been shown to favour malaria
transmission in Ethiopia due to habitat creation [12,13].
Several studies have examined the relationship between

habitat characteristics and mosquito larval abundance and
distribution in Africa [14-18]. Anopheles arabiensis, the
principal malaria vector in Sub-Saharan Africa, prefers
shallow clean water and sunlit temporary habitats such as
sand pools, brick pits and rain pools [15,16]. The presence
of An. arabiensis immature stages in aquatic habitats is
mainly influenced by water temperature, emergent plant
cover, water current, turbidity, canopy cover, substrate type,
and presence of predators and competitors [15-17]. Shililu
et al. [15] indicated that in low-and highlands in Eritrea,
water temperature was positively correlated with larval
density. Higher temperatures encourage better develop-
ment of eggs or allow the development of more microor-
ganisms that are used as food by the larvae [14]. On the
other hand, high emergent plant cover of aquatic habitats
is likely to reduce mosquito larvae by obstructing gravid fe-
males from ovipositing and supporting a high diversity of
predators [17]. The occurrence of predators and competi-
tors is also a key determinant for the presence of An.
arabiensis larvae. Muturi et al. [17] indicated that gravid
females of An. arabiensis would avoid ovipositing in habi-
tats where members of the family Heptageniidae are
present, presumably to avoid direct competition. Further-
more, An. arabiensis is virtually absent or present at low
abundance in habitats where there are predators such as
fish (Tilapia, Oreochromis sp.), dragonfly larvae, water bugs
and water beetles [19].
Malaria vector control has been largely dependent on

the use of chemical insecticides. Only 12 insecticides be-
longing to four insecticide classes are recommended for
public health use either for indoor residual spraying or
to treat mosquito nets [20]. Unfortunately, resistance to
insecticides has been reported from many malaria vector
species. Resistance spreads rapidly, which constitutes
a serious threat to malaria control initiatives [20]. In
Ethiopia, populations of An. arabiensis, the major mal-
aria vector in the country, developed resistance to three
(organochlorines, organophosphates and pyrethroids)
out of the four insecticide families commonly used for
public health use [21,22]. Therefore, alternative malaria
vector control tools, targeting mosquito immatures ei-
ther alone or as part of integrated vector management,
should be envisaged to reduce human-vector contact
and hence malaria transmission intensity.
Adult mosquitoes are difficult to control since they

can fly relatively long distances and survive in a wide
range of microhabitats, including the soil and in holes in
rocks and trees [23]. Effective mosquito larval control can
be achieved through larval habitat management [14,24].
Larval control through environmental management has
gained a lot of attention during the last decades [25,26].
Environmental management involves changes in potential
mosquito breeding areas to prevent, eliminate or reduce
the vector’s habitat [26]. Techniques include draining
man-made and natural wetlands, land levelling, filling
small ponds or water collecting depressions and changing
banks of water impoundments [25]. However, draining
natural water bodies such as wetlands may affect the com-
position and structure of mosquito predators and species
diversity in general more than they do reduce mosquito
breeding sites [27]. Even after a wetland has been drained,
it may often still hold enough water after a rain event to
serve as a breeding site for mosquitoes [28]. In addition,
drainage of wetlands often reduces important regulating
ecosystem services such as mitigating floods, recharging
aquifers, micro-climate stabilization and improving water
quality [29]. So, draining wetlands does not seem to be a
good strategy to reduce the habitat of mosquito vectors.
In order to include mosquito larval habitat manage-

ment as part of an integrated vector management pro-
gram, detailed knowledge on the ecology of the aquatic
immature stages is crucial [30]. To this end, habitat suit-
ability modelling has been increasingly used to deter-
mine the presence of malaria vectors and estimating
their population levels. Such information is the basis
for risk assessment of mosquito-borne diseases [31,32].
Habitat suitability models take into consideration the oc-
currence and/or abundance of species in relation to bi-
otic and abiotic environmental factors, evaluating the
habitat quality or predicting its effect on species occur-
rences as a result of environmental changes within the
habitat [33]. However, species-habitat relationships are
influenced by regional conditions and hence, the general-
ity of these models needs to be tested [34]. Therefore, we
developed data-driven models using decision trees and
generalized linear models in order to assess the rela-
tionship between abiotic and biotic environmental factors
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and the occurrence and abundance of anopheline mos-
quito larvae in Southwest Ethiopia. This could help deci-
sion makers to identify priority habitats to be targeted for
the control of anopheline mosquito larvae. We specifically
addressed the question of whether permanent marshlands
in the neighbourhood of Jimma (the main city in the
Gilgel Gibe catchment), which are bio-diverse areas that
are under serious threat by land encroachment and which
are perceived as mosquito breeding grounds, are indeed a
preferred habitat for anopheline mosquito larvae. These
marshlands fulfil many ecosystem services so their de-
struction would entail important losses and a good and in-
tegrated management is therefore required.

Methods
Study area
This study was conducted in the Gilgel Gibe I watershed
situated in Southwest Ethiopia, lying between latitudes
7°37’N and 7°53’N and longitudes 36°46’E and 37°43’E
(Figure 1). The elevation of the study area ranges from
1,650 to 1,800 meters above sea level. The mean annual
temperature in the area is between 15°C and 22°C,
and the mean annual precipitation is between 1800 mm
and 2300 mm, with maximum rainfall from June till early
September and minimum precipitation between December
Figure 1 Map of the study area with indication of the sampling sites
and January [35]. The study area is characterized by dif-
ferent land use patterns. The main socio-economic activ-
ities of the inhabitants are farming and small stock
rearing, with maize (Zea mays) and teff (Eragrostis tef )
being the main crops cultivated in the area. The region
is, however, also known for its coffee production. The
average population density in this area is approximately
100 to 110 people/km2.

Characterization of larval habitats
A total of 220 samples were taken at 180 different sam-
pling locations (larval habitats) between August and
October 2010 and September to November 2012. Selec-
tion of surveyed sites was based on previous reports on
surface water quality monitoring [36] and distribution of
disease vectors in the region [22]. Sampling sites situated
in permanent habitats such as natural wetlands, reservoir
and streams were selected along a gradient of visible dis-
turbance including point source pollution, land use pat-
tern, hydrological modification and accessibility. Sampling
sites situated in temporary breeding habitats were ran-
domly selected from six villages located up to 8 km from
the Gilgel-Gibe hydroelectric dam and from temporary
pools located around permanent habitats. Permanent hab-
itats were sampled at exactly the same location during
in the Gilgel Gibe I watershed, Southwest Ethiopia.
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both years, while the sampling location of temporary habi-
tats changed depending on the availability of water. Tem-
porary habitats are those containing water for a short
period of time (approximately two weeks after the end of
rainy season). Semi-permanent habitats are those contain-
ing water for 2 to 3 months after the rainy season ends.
Permanent habitats are those containing water throughout
the year (fed by surface or ground water) and are more
stable systems. Surveyed habitats included: natural wet-
lands (n = 60), breeding habitats around the shore of the
dam reservoir (n = 13), natural ponds (n = 10), streamed
pools (n = 30), farm ditches (n = 25), pits for plastering
(n = 40), rain pools (n = 20), vehicle ruts (n = 12) and
animal hoof prints (n = 10) (Figure 2). Detailed infor-
mation on habitat condition, water quality, presence of
anopheline larvae and mosquito predators and compet-
itors was collected during the survey.
Data on size of the water body (area), substrate type,

vegetation cover, canopy cover and land use pattern
were collected for each larval habitat. Water depth was
measured using a metal ruler at different points of each
habitat and average depth was recorded. Substrate was
classified into clay, silt, sandy, gravel and artificial sub-
strate (concrete, tire, plastic and mud pot). The emer-
gent, submerged and floating plant cover of a habitat
was visually estimated as the percentage cover of these
aquatic macrophytes within a 500 metre stretch for large
aquatic habitats and the entire area for smaller habitats.
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Figure 2 Pictures of Different habitat types sampled in the studied w
wetland (b), stream fringe (c), pond (d), maize field (e), brick pit (f), p
Plant cover was categorized as very low (<10%), low
(10-35%), moderate (35-65%), high (65-90%) and very high
(>90%) [37]. Canopy cover was defined as the amount of
vegetation covering the water surface. Canopy within or
the surrounding of the sampling site was estimated visu-
ally based on the percentage of shade [38]. The type of
land use adjacent to each sampling site was also recorded
and checked with the available GIS data on land use. The
map templates including land use types were obtained
from the Ethiopian Ministry of Water and Energy.
Habitat characterization, including dissolved oxygen,

conductivity, pH and water temperature were measured
using a multi-probe meter (HQ30d Single-Input Multi-
Parameter Digital Meter, Hach). A hand-held hygrometer
(RH87) was used to measure ambient air temperature and
relative humidity. Turbidity was measured using Aqua-
Fluor Handheld Fluorometer/Turbidimeter. Water chem-
istry analysis was carried out by sampling 2 l of water
from each sampling site. The water sample was stored
in an icebox and transported to the Laboratory of Environ-
mental Health Science and Technology, Jimma University.
The samples were then analysed for total dissolved
solids (TDS), alkalinity, hardness, chloride, and ortho-
phosphate and nitrate concentration following standard
methods [39].
Geographic coordinate readings were recorded for all

sampling sites using a hand-held global positioning sys-
tem unit (GPS) (Garmin GPS 60, Garmin international
i

h

g

etlands: natural vegetated wetland (a), natural open water
ool (g), rain pool (h), drainage ditch (i).
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Inc., and Olathe, Kansas, USA). Coordinate readings were
integrated into a GIS database using Arc MAP 10 GIS soft-
ware. All digital data in the GIS were displayed in the
World Geodetic System (WGS) 1984 Coordinate system.

Mosquito larvae sampling and identification
To collect mosquito larvae, one to ten dip samples were
taken from each habitat using a standard 350 ml dipper
(Clarke Mosquito Control Products, Roselle, IL) depend-
ing on the habitat size. Mosquito larvae were also sam-
pled using 5 ml graduated pipettes from water bodies,
which were too small to use standard dippers. For small
habitats such as hoof prints, several hoof prints were
pooled to get the required sample volume. Quantitative
sampling from small habitats may overestimate larval
density as compared to large habitats since larvae may
not escape in small habitats where whole water can be
sampled [40]. The use of different sampling methods
may affect the analysis of abundance data, which could
be considered as a limitation of the study. Water col-
lected by dippers was emptied into a white enamel sort-
ing tray and mosquito larvae were sorted and identified
to genus level as either anopheline or culicine. The pres-
ence of mosquito immature stages was defined by the
presence of at least one larva or pupa found in any of
the ten dips.

Mosquito predator and competitor sampling
and identification
A rectangular frame net (30 × 20 cm) with a mesh size
of 250 μm was used to sample mosquito predators and
competitors at the same sampling sites where mosquito
larvae sampling was carried out. Each collection entailed
a 10 minute kick-sample with a hand net over a distance
of 10 metres in the habitats that were sufficiently large
[41]. Time was allotted proportionally to the percentage
cover of different mesohabitats (i.e., bottom, mid-water,
surface, and near debris). Small habitats (e.g. farm ditches,
road puddles and pits) that could not be sampled by kick-
net were sampled using sweep nets. Contents collected in
the sweep or kick-net were emptied on a white sorting tray
to enhance visibility and counting of the sampled organ-
isms. Fish and tadpoles were recorded and released at their
site of capture. Macroinvertebrates were sorted in the field,
kept in vials containing 75% ethanol for later identifica-
tion and enumeration. Macroinvertebrates were identified
to family level in the laboratory using a stereomicroscope
(10 ×magnifications) and standard identification key [42].
Each family was categorized into one of the five func-
tional feeding groups (FFG): gatherer-collector, filterer-
collector, predator, scraper, and shredder [43]. When
multiple possible FFGs were identified for a particular
family, the most commonly occurring classification was
used. All identified macroinvertebrates, their frequency
of occurrence in the study area and their FFG are pre-
sented (Additional file 1). Filter-collectors such as tadpole,
black fly (Simuliidae), bivalve molluscs (Sphaeriidae) cad-
disfly larvae (Hydropsychidae) and culicine larvae were
considered as competitors of anopheline larvae [44]. Fish
and aquatic invertebrates belonging to the orders Hemip-
tera (water bugs), Coleoptera (Water beetles) and Odonata
(dragonflies and damselflies) were considered as predators
[44]. Presence or absence (1/0) of invertebrate predators
and competitors were used as independent variables in the
classification tree models.

Data analysis
Twenty five input variables were used to identify the
main predictors of mosquito larvae occurrence and abun-
dance (Table 1). We used classification and regression tree
(CART) models and ordination analysis to investigate the
relationship between anopheline mosquito larvae occur-
rence and abundance and different explanatory variables.
In addition, occurrence and abundance of anopheline lar-
vae were analysed using logistic and Poisson regression
models (Additional file 2 and Additional file 3). CARTana-
lysis is a form of binary recursive partitioning that can be
used to classify observations [45]. It has a number of ad-
vantages over traditional generalized linear models. First, it
is well suited for analysis of complex ecological data with
high–order interactions [45,46]. Second, it captures non-
linear relationship between explanatory and response vari-
ables [46]. Third, it does not rely on the assumptions that
are required for parametric statistics and the analysis is
not restricted by multicollinearity in predictor variables
[47]. Fourth, missing values are not dropped from the ana-
lysis, instead variables containing information similar to
that contained in the primary splitter are used [47]. CART
trees are also relatively simple for non-statistician to inter-
pret [47]. However, CART may produce different models
depending on the selection of input variables [48]. Ordin-
ation methods are widely used for community analysis
[49], and typically assume that abundance of individual
species vary in a linear or uni-modal manner along envir-
onmental gradients [50].

Classification and regression tree models (CART)
Classification tree (CT) models were used to model
the occurrence (presence/absence) of anopheline lar-
vae based on measured environmental factors. The CT
models were built using the J48 algorithm [51], a java re-
implementation of the C4.5 algorithm, which is a part of
machine learning package WEKA [52]. Likewise, regres-
sion tree (RT) models were used to model the abundance
of anopheline larvae [52]. The RT models were built using
the M5 algorithm in WEKA [51]. Regression tree models
have been previously successfully used in malaria studies
[53]. Default parameter settings were used to induce the



Table 1 Input variables used for habitat preference analysis with their mean, standard deviation (SD) and minimum
and maximum values (range)

Variables Unit Mean SD Range

Altitude Meter above sea level 1725 35 1655–1800

Area Hectare 0.65 0.9 0–7.8

Water depth Meter 0.37 0.2 0–1.42

Canopy cover % 6 15 0–100

Air temperature °C 27 3 19–39

Water temperature °C 24 3 16–34

pH - 7 0.6 5.4–10

Dissolved oxygen mg/l 4.7 2 0.47–10

Conductivity μS/cm 112 55 21–513

Total dissolved solid mg/l 106 77 15–425

Turbidity NTU 160 218 4–894

Alkalinity mg/l 58 33 0–250

Hardness mg/l 37 23 0–160

Nitrate mg/l 0.4 0.48 0–2.3

Ortho-phosphate mg/l 0.12 0.2 0–1.4

Permanency Temporary(1), semi-permanent(2), Permanent(3) N/A N/A N/A

Emergent plant cover Very low to very high 2 1.6 0–4

5 class (0–4)

Submerged plant Very low to very high 0 0.5 0–4

5 class (0–4)

Floating plant Very low to very high 0 0.5 0–4

5 class (0–4)

Habitat type 9 types (see Table 2) N/A N/A N/A

Substrate type Silt(1), sandy(2), gravel(3), artificial substrate(4) N/A N/A N/A

Land-use 9 types (See Figure 3) N/A N/A N/A

Fish Absence(0), presence(1) N/A N/A N/A

Invertebrate predators Abundance 28 42 0–232

Competitors Abundance 2.7 4 0–23

N/A not applicable.
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decision trees. Model training and validation were based
on a three-fold cross-validation procedure [51]. The data-
set was randomly shuffled into three equal subsets and
each subset in turn was used for validation, while the
remaining two subsets were used for training. The cross-
validation process was then repeated three times each time
with one of the three subsets used as the validation dataset.
The predictive performance (based on the percentage of
correctly classified instances and Cohen’s kappa statistic)
of the subsets were averaged to produce a single predic-
tion of the dependent variable. The variation was also
assessed based on the difference between the outcomes
of the subsets.
The mean percentage of correctly classified instances

(CCI) [51] and Cohen’s Kappa statistic (κ) [54] were
used to evaluate the predictive performance of the
classification tree model. The CCI is the percentage of the
true positive (TP) and true negative (TN) predictions,
whereas Cohen’s Kappa statistic simply measures the pro-
portion of all possible cases of presences or absences that
are predicted correctly by a model, accounting for chance
effects. Models with a CCI higher than or equal to 70%
and κ higher than or equal to 0.4 were considered reliable
[55]. CCI is affected by the frequency of occurrence of the
taxon being modelled [55]. Unlike CCI, κ takes a correc-
tion into account for the expected number of correct pre-
dictions due to randomness, which is strongly related to
taxon prevalence [55]. We used the following ranges of κ
recommended by [55] for model performance evaluation:
poor (κ = 0), slight (κ = 0–0.2), fair (0.2–0.4), moder-
ate (κ = 0.4–0.6), good (κ = 0.6–0.8) and nearly perfect
(κ = 0.8–1). We used the determination coefficient (R2)



Table 2 Distribution of anopheline larvae among
different larval habitat types, Southwest Ethiopia

Habitat type No. of samples Anopheline positive
samples n (%)N = 220

Marshland 60 24(40)

Reservoir 13 7(54)

Farm ditch 25 23(92)

Pond 10 5(50)

Road puddle 12 11(92)

Stream margin 30 17(57)

Rain pool 20 17(85)

Pit 40 38(95)

Hoof print 10 9(90)
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value to evaluate the performance of the regression tree
models [46]. The closer the value to one, the better the
model performed.
A conditional analysis was performed in order to see

how different values of a predictor variable influence the
abundance of anopheline larvae. For each of the three
regression tree submodels developed (based on the three
folds), the influence of predictor variables on the abun-
dance of anopheline larvae was analysed. Regression
equations obtained from the submodels were then used
to calculate the abundance of anopheline larvae. This
was achieved by taking minimum and maximum values
of the predictor variables, while other variables, which
were present in the model were kept constant at average
values. Hence, for each of the three different subsets
(folds) a line was plotted showing the relationship be-
tween the predictor variables and the abundance of
anopheline larvae.

Ordination analysis
To determine whether a linear or unimodal type of re-
sponse was present along environmental gradients, the
data-set was first analysed using a detrended corres-
pondence analysis (DCA) in CANOCO for Windows
version 4.5 [56]. Redundancy analysis (RDA) was then
used because all environmental gradients were shorter
than 2 standard deviation units. In all RDA analyses,
the abundance of anopheline larvae, predators and com-
petitors were considered as response variables, whereas
environmental variables were treated as independent
variables. A preliminary analysis was performed to test
multi-collinearity in environmental variables. When two
or more variables had a variance inflation factor of
greater than 5, one of these variables was removed from
the analysis.
Based on a stepwise forward selection, twelve environ-

mental factors were selected as independent variables.
Species and environmental data, except for pH, were log
transformed [log(x + 1)] prior to analysis to stabilize the
variance. The statistical significance of eigenvalues and
species-environment correlations generated by the RDA
were tested using Monte-Carlo permutations.

Analysis of abundance of mosquito predators and
competitors in different habitat types
We made Box-and Whisker plots in STATISTICA 7.0
[57] to visualize the abundance of mosquito predators
and competitors in different habitat types. Abundance
data were log transformed [log(x + 1)] prior to analysis.
We used a non-parametric, Kruskal-Wallis test at a
significance level of 0.05, to determine whether sig-
nificant differences in the abundance of invertebrate
predators and competitors existed between different habi-
tat types.
Results
Occurrence and distribution of mosquito larvae
A total of 220 samples were collected from 180 sampling
sites. Anopheline larvae occurred more frequently in pits
dug for plastering, vehicle ruts and farm ditches and less
frequently in natural wetlands and ponds (Table 2). Over-
all, 1220 anopheline larvae individuals were found in 151
samples (69% frequency of occurrence). A total of 496
culicine larvae individuals were found in 62 samples (28%
frequency of occurrence). The anopheline positive habitats
were mainly located in agricultural and agro-pastoral land
use types (Figure 3). Anopheline larvae were sparsely dis-
tributed in natural wetlands.

Influence of environmental factors on the occurrence
of anopheline mosquito larvae
Based on the three models (one model for each fold or
subset) developed, the most frequently selected variables
were habitat permanency (100%) and occurrence of
predators and competitors (67%). Moreover, habitat per-
manency was selected as the root of the tree for all
models, indicating that this was the most important vari-
able determining the presence/absence of anopheline
larvae. The classification tree of subset one (Figure 4a)
has five leaves and eight branches. Habitat permanency
was selected as root of the tree. Anopheline larvae were
present in both temporary and semi-permanent habitats.
In contrast, anopheline larvae were absent in permanent
habitats when predators or competitors were present.
This classification tree model had a good predictive per-
formance, with a CCI of 86% and κ of 0.63. The classifi-
cation tree model based on subset two (Figure 4b) has
six leaves and ten branches. Similar to subset 1, habitat
permanency was selected as a root of this tree. Anophel-
ine larvae were present in both temporary and semi-
permanent habitats. In contrast, anopheline larvae were
absent in permanent habitats when predators were present



Figure 3 Map showing the distribution (presence (blue) and absence (red)) of anopheline larvae in the Gilgel Gibe I sub-catchment,
Southwest Ethiopia.
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and water temperature was less than 20°C. This classifica-
tion tree model had a good predictive performance, with a
CCI of 82.4% and κ of 0.63. The classification tree model
based on subset three (Figure 4c) has twelve leaves and
nineteen branches. Habitat permanency was selected again
as root of the tree. Anopheline larvae were present in tem-
porary habitats. The occurrence of anopheline larvae in
permanent habitats was influenced by several biotic and
abiotic factors. This classification tree model had a very
good predictive performance, with a CCI of 86.5% and κ
of 0.71. The importance of biotic factors such as inverte-
brate predators and competitors and abiotic factors such
as permanency on the occurrence of anopheline larvae
was also indicated by Generalize Linear Models (GLMs)
(See Additional file 2).

Influence of environmental factors on the abundance
of anopheline mosquito larvae
The regression tree model based on subset one predict-
ing the abundance of anopheline larvae has a determin-
ation coefficient of 0.44. If the abundance of predators
was less than or equal to 12 individuals per sample, LM1
was applied, in case the abundance was higher than 12
individuals, LM2 was used (Figure 5a). According to
LM1, the abundance of anopheline larvae increased with
increasing water temperature, total dissolved solids, ni-
trate concentration and decreased with increasing preda-
tor abundance and dissolved oxygen concentration. For
LM2, the abundance of anopheline larvae increased with
increasing water temperature, alkalinity and nitrate and
decreased with increasing abundance of predators. The
regression tree model based on subset two has three
leaves and a determination coefficient of 0.44 (Figure 5b).
If the abundance of predators was lower than 2 individ-
uals per sample and water temperature was lower than
28°C, LM1 was applied. In case the temperature was
higher than 28 LM2 was applied, whereas if the abun-
dance of predators was higher than 2, LM3 was used
(Figure 5b). The regression tree model indicated that the
abundance of anopheline larvae increased with increasing
water temperature and decreased with increasing predator
abundance. The regression tree model based on subset
three has three leaves and a determination coefficient of
0.42 (Figure 5c). If water temperature was lower than or
equal to 27°C, the linear model LM1 was applied. In case
temperature was between 27-29°C LM2 was applied,
whereas when temperature was higher than 29°C LM3 was
applied. According to the model the abundance of anoph-
eline larvae increased with increasing water temperature,
total dissolved solids and turbidity and decreased with in-
creasing predator and competitor abundance.
A conditional analysis of the regression tree model (all

3subsets) showing the effect of water temperature on the
abundance of anopheline larvae is shown in Figure 6a. A
slight increase in anopheline larval abundance was noted
at a temperature between 17°C and 28°C, whereas an
abrupt increase was observed between 28°C and 34°C.
On the other hand, the abundance of anopheline larvae
declined with increasing abundance of macroinverte-
brate predators (Figure 6b). The importance of water
temperature on the abundance of anopheline larvae was
also indicated by GLMs (see Additional file 3).



Habitat
Permanency

Temporary Semi-Permanent Permanent

PredatorsAnopheline 
present

Anopheline 
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Present Absent
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Temperature
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Temperature

20

21°C >21°C
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Anopheline 
present

c

b

a

Figure 4 Classification tree model assessing the presence or absence of anopheline larvae. (a) subset one (Correctly Classified Instances = 86%,
Cohens kappa statistic = 0.63), (b) subset two (Correctly Classified Instances = 82.4%, Cohens kappa statistic = 0.63), (c) subset three (Correctly Classified
Instances = 86.5%, Cohens kappa statistic = 0.71).
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Figure 5 Regression tree with regression equations predicting the abundance of anopheline larvae. (a) subset 1 (Determination coefficient = 0.39),
(b) subset 2 (Determination coefficient = 0.44), (c) subset 3 (Determination coefficient = 0.42).
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The detrended correspondence analysis (DCA) gave a
length of gradient smaller than 2 standard deviation
units, implying that anopheline larvae exhibit a linear re-
sponse to environmental gradients [58]. The association
between anopheline larvae and the selected environ-
mental variables was found to be significant (p < 0.05)
for both the first axis and all canonical axes together
(Figure 7). The variance of the RDA-biplot of anopheline
larvae and environmental variables based on the first two
axes explained 33% of the variance in anopheline data
and 94% of the variance in the correlated and class means
of anopheline larvae with respect to the environmental
variables. The eigenvalues of the first two axes were 0.27
and 0.06, respectively. In this ordination, the anoph-
eline larvae-environment correlation for the first two
axes was 0.77 and 0.67, respectively. The first axis of
the RDA ordination revealed a gradient primarily associ-
ated with habitat permanency. This axis was negatively



Figure 6 Conditional analysis visualized for the abundance (number of individuals per sample) of anopheline larvae in function of
(a) water temperature; (b) abundance of macroinvertebrate predators.
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correlated with the occurrence of anopheline larvae
(r = -0.8, p < 0.05). The second canonical axis described
the emergent plants and mosquito predators and TDS
gradient.

Relationship between the abundance of mosquito
predators and competitors and habitat types
Box- and Whisker-plots indicated that, there was a statisti-
cally significant difference in the abundance of inverte-
brate predators (χ2 = 93.2, df = 2, p <0.05) and competitors
(χ2 = 15.9, df = 2, p < 0.05) among different habitat types
(Figure 8). Permanent habitats support a significantly
higher abundance of macroinvertebrate predators and
competitors than temporary habitats (P < 0.05).

Discussion
A fundamental understanding of the ecology of anophel-
ine mosquito larvae is important in order to plan and
implement effective malaria vector control intervention
strategies [19]. In the present study, habitat permanency,
canopy cover, emergent plant cover and occurrence and
abundance of predators and competitors were found to
be the main variables determining the abundance and
distribution of anopheline larvae in aquatic habitats.



Figure 7 Ordination plot of anopheline larvae and environmental and biological variables based on the redundancy analysis (RDA).
Competitors of anopheline larvae are indicated by blue arrows and predators of anopheline larvae by red arrows.

Mereta et al. Parasites & Vectors 2013, 6:320 Page 12 of 16
http://www.parasitesandvectors.com/content/6/1/320
Temporary water bodies such as farm ditches, rain
pools, open pits for plastering and clay mining, vehicle
ruts and hoof prints were the most preferred habitats (in
terms of occurrence and abundance) for anopheline lar-
vae. These habitats were either man-made or associated
with anthropogenic activities. It should be noted that al-
though many of these habitats, and especially hoof prints,
are very small, they are very abundant in the landscape.
Increasing human population in the catchment resulted
in increased anthropogenic activities including deforest-
ation, agricultural expansion, livestock rearing and brick
making which could create suitable habitats for mosquito
larvae [6,59]. Clearing and drainage, often for agricul-
tural expansion creates favorable habitats for mosqui-
toes, thereby increasing malaria transmission [58,60]. In
addition, agriculture can cause increased sedimentation
due to erosion, which can slow or block streams and de-
crease the water depth, creating shallow waters ideal for
mosquito breeding [59]. Earth excavation for brick mak-
ing, pot making and pits dug for wall plastering provide a
large number of mosquito larval habitats. In this study
area, brick making activities were carried out in natural
wetlands, where clay soil was used for brick making. In
addition to creating mosquito breeding habitats, brick
making is also considered as an important cause of de-
forestation, as it uses a huge amount of fire wood from
wetland riparian forests. Deforestation may in turn alter
the local microclimate and biodiversity [61], which in turn
influences the distribution of malaria vectors.
Anopheline larvae were more abundant in small tem-

porary habitats exposed to sunlight with low emergent
plant and canopy cover. Emergent plants and/or can-
opy cover reduces the amount of sunlight reaching the
aquatic habitats, thereby reducing water temperature [17].
Low water temperature causes a decline in microbial
growth upon which mosquito larvae feed [17]. Smaller
water bodies are generally characterized by high water
temperature, which eventually led to rapid larval develop-
ment time [62].
In this study, anopheline larvae occurred less fre-

quently and were found at lower abundance in perman-
ent habitats such as ponds, stream margins and natural
wetlands. These habitats are home to a wide diversity of
vertebrate and invertebrate predators and competitors
and their presence is likely suppresses the density of mos-
quito larvae [63]. Several studies pointed out that aquatic
insects belonging to the orders Coleoptera, Odonata and
Hemiptera are responsible for significant reductions in
mosquito populations and could be considered in inte-
grated vector management programs [1]. Predators reduce
the abundance of mosquito larvae directly via predation,
avoidance of oviposition or indirectly via competition for



Figure 8 Logarithmic abundance of predators and competitors in relation to habitat permanency. Box- and Whisker plots of the log
(abundance + 1) of predators (a) and competitors (b) in relation to habitat permanency. Small black squares represent median numbers, boxes
represent interquartile ranges (25–75% percentiles) and range bars show maximum and minimum values. Statistically significant differences
shown by Kruskal-Wallis test (p < 0.05) are indicated by letters.
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food resources [64]. Some predators (especially those
with chewing mouthparts) eat their prey (Odonata), but
others suck the body fluid (hemolymph) of the prey
(many beetle larvae and Hemiptera) [1]. Some species of
mosquito larvae reduce the chance of predator detection
by reducing their activities [65,66]. However, this has
the disadvantage of reducing feeding efficiency, which in
turn prolongs larval development and is also likely to re-
sult in smaller adults with probably a reduced longevity
and fecundity [65].
Previous studies have reported that the occurrence

and abundance of mosquito larvae reduced in response
to predator cues [67]. For example, backswimmers
(Notonectidae) released predator cues (kairomone) that
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have a potency to repel ovipositing female mosquito over
a week [1]. The predator’s cues not only affect mosquito
oviposition, but also cause a decrease in mosquito sur-
vival, delayed immature development and reduction in
body size of emerged mosquitoes [1,67]. The abundance
of anopheline larvae can be limited by the presence of
competitors in permanent habitats (e.g. natural wetlands).
Molluscs and anurans are the most common competitors,
which feed on the same type of food as mosquito larvae.
Several studies have shown that competitors decrease mos-
quito longevity and increase the developmental time of
mosquito larvae [1]. In this study, Box- and Whisker-plots
showed that permanent habitats support a significantly
higher abundance of macroinvertebrate predators and
competitors than semi-permanent and temporary habitats
(Figure 8). The conditional analysis and ordination diagram
demonstrated that the abundance of anopheline larvae was
negatively related to invertebrate predators.
The decision tree models, redundancy (RDA) analysis

and the GLMs indicated that both biotic and abiotic envir-
onmental factors influence the abundance and distribution
of anopheline larvae. Our results indicate that preferred
(in terms occurrence and abundance) anopheline breeding
sites were temporary habitats, most notably, pits for plas-
tering and clay mining, agricultural trenches, rain pools,
vehicle ruts and small natural sunlit temporary breeding
habitats such as animal hoof prints and rain pools. The
overall suitability of these temporary habitats was mainly
influenced by water temperature, vegetation cover, and
presence of predators and competitors.
Permanent habitats such as natural wetlands in the

vicinity of Jimma town were less suitable as breeding
sites for anopheline larvae (Figure 3). This may be due
to the high abundance and diversity of non-mosquito in-
vertebrates and fish in these habitats (Figure 8), which
could suppress mosquito population by predation and
competition. This suggests that conservation of permanent
habitats such as natural wetlands could be one strategy in
the integrated malaria control program. The use of preda-
ceous insects to control mosquito larvae is not only eco-
logically friendly but also a means by which more effective
and sustainable control can be achieved [1]. However,
detailed knowledge on the interaction between mosquito
larvae and their predators is crucial for implementing suc-
cessful vector control interventions. Contrarily, environ-
mental modifications (e.g. drainage) of permanent habitats
such as natural wetlands for malaria control could reduce
the natural predator and competitor population densities,
and thus be counter-productive and enhance the occur-
rence and abundance of mosquito larvae.
The findings of this study suggest that malaria vec-

tor control intervention strategies in the study area
should target (man-made) temporary water bodies. In
view of the presence of insecticide resistant anopheline
mosquito populations in the study area, targeting these
temporary water bodies for anopheline mosquito larval
control should be considered as an alternative to reduce
vector density and hence prevalence and/or incidence of
malaria at a local scale. The use of microbial insecticides
such as Bacillus thuringiensis can be more environmen-
tally friendly in natural systems [68]. However, the use of
chemical insecticides in natural systems may pose deleteri-
ous effects on non-target organisms such as predators and
competitors. The relationships found in this study be-
tween anopheline larvae and biotic and abiotic variables
are mainly valid for the most common species Anopheles
arabiensis found in the region [22]. The main limitation of
the present study is that the results may be applicable to
some areas where the same or similar species predomin-
ate, but not to the other areas with different species.
Therefore, it would be interesting to further investigate
whether these relationships can be generalized for other
regions and different species.

Conclusions
The findings of this study revealed that anopheline larvae
occurred frequently and were more abundant in shallow
temporary habitats. Their abundance is positively influ-
enced by high water temperature and the absence of nat-
ural predators and competitors. Malaria vector control
intervention strategies should target these temporary water
bodies in order to optimize the efficacy of malaria control.
The drainage or conversion of natural marshlands for lar-
val control may not be an efficient vector control strategy
as wetlands were not found to be the most prolific mos-
quito breeding sites in the study area.
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