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Abstract

using the first complete genome sequence of T. equi.

Background: Theileria equi is a tick-borne apicomplexan hemoparasite that causes equine piroplasmosis. This
parasite has a worldwide distribution but the United States was considered to be free of this disease until recently.

Methods: We used samples from 37 horses to determine genetic relationships among North American T. equi
using the 18S rRNA gene and microsatellites. We developed a DNA fingerprinting panel of 18 microsatellite markers

Results: A maximum parsimony analysis of 185 rRNA sequences grouped the samples into two major clades. The
first clade (n = 36) revealed a high degree of nucleotide similarity in U.S. T. equi, with just 0-2 single nucleotide
polymorphisms (SNPs) among samples. The remaining sample fell into a second clade that was genetically
divergent (48 SNPs) from the other U.S. samples. This sample was collected at the Texas border, but may have
originated in Mexico. We genotyped T. equi from the U.S. using microsatellite markers and found a moderate
amount of genetic diversity (2-8 alleles per locus). The field samples were mostly from a 2009 Texas outbreak

(n = 22) although samples from five other states were also included in this study. Using Weir and Cockerham'’s
Fst estimator (6) we found strong population differentiation of the Texas and Georgia subpopulations (6 = 0.414),
which was supported by a neighbor-joining tree created with predominant single haplotypes. Single-clone
infections were found in 27 of the 37 samples (73%), allowing us to identify 15 unique genotypes.

Conclusions: The placement of most T. equi into one monophyletic clade by 18S is suggestive of a limited source
of introduction into the U.S. When applied to a broader cross section of worldwide samples, these molecular tools
should improve source tracking of T. equi outbreaks and may help prevent the spread of this tick-borne parasite.
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Background

The apicomplexan protozoan Theileria equi (also known
as Babesia equi) causes equine piroplasmosis (EP) and is a
growing threat to the horse industry [1-3]. T. equi is an
obligate intracellular parasite that requires a tick host for
sexual reproduction and an equine host for asexual
reproduction during a haploid phase [2]. T. equi can be
naturally transmitted by ticks of the family Ixodidae [4]
and, in addition to this biological route, T. equi has the
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potential to be transmitted iatrogenically [5]. In fact,
iatrogenic transmission is thought to have been the
primary mode of transmission in an outbreak in Florida,
U.S., in 2008 [6]. Once a horse becomes infected, the
parasite undergoes asexual reproduction within erythro-
cytes; high parasitemia is found during this acute phase
of infection [7]. If the horse overcomes the acute infec-
tion it will typically carry a life-long persistent infection
that is usually asymptomatic [8]. Due to the low parasit-
emia that is characteristic of a persistent infection the
parasite is not detectable by microscopic examination of
blood smears. However, infections can be detected by
serology and PCR. Although asymptomatic horses have
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low parasitemia, transmission of T. equi can still occur
either iatrogenically, or when competent tick vectors
feed on these horses [2,9]. Thus, asymptomatic persist-
ently infected carriers can serve as reservoirs of infec-
tion, which is one of the challenges for controlling the
spread of this parasite.

When naive horses are parasitized by 7. equi the infec-
tion can cause a range of disease symptoms up to and in-
cluding death. Although this parasite is less prevalent in
countries such as the U.S., Australia, England and Canada,
even with transport regulations there is a potential for
spread from infected horses or ticks from endemic regions
[10]. The U.S. was thought to be free of EP since 1988 as
the result of a twelve million dollar, 25 year-long eradica-
tion campaign that began in 1962 [6]. However, since
2008 numerous cases of T. equi infection have been iden-
tified in the U.S. in California, Colorado, Florida, Georgia,
Oklahoma and Texas. These are most likely the outcome
of importing asymptomatic horses that produced negative
results during mandatory screening procedures [6,11,12].
A large outbreak in Texas caused alarm when positive
horses from 16 states were epidemiologically traced back
to a single source ranch [11,12]. With over 9.2 million
horses in the U.S., a widespread outbreak could have a
large financial impact on the $39 billion horse industry
[13]. Due to concerns about importing 7. equi into non-
endemic regions, the World Organization for Animal
Health (OIE) and U.S. Department of Agriculture (USDA)
implemented a mandatory screening process for inter-
national movement of horses. When horses are imported
into the U.S. they are screened with a serological assay to
ensure they are free of 7. equi. Prior to 2005 the comple-
ment fixation test (CFT) was used as the regulatory test
of choice, but since that time import testing has
included a competitive enzyme-linked immunosorbent
assay (cELISA) [14]. DNA-based methods have also
been developed for screening horses and these may be
more sensitive for detecting early infection, or very low-
level parasitemia [15].

Molecular genetic tools provide a powerful means for
detecting and tracking the spread of cryptic pathogens
and parasites such as Plasmodium falciparum and
P. vivax [16-19]. Although molecular tools have been
developed for T. equi to provide detection (ema-1 gene)
and broad phylogenetic classification (185 rRNA gene)
[20-22], to date there is no system available for genotyp-
ing with microsatellite markers. These highly variable
markers provide fine-scale resolution for epidemio-
logical tracking, evaluating genetic structure and identi-
fying single versus mixed infections of haploid clones.
Mixed infections are an important factor in protozoan
diseases and can lead to increased virulence compared
to single clone infections [23]. The use of both neutral
microsatellite markers and gene sequences such as the
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18S rRNA gene greatly enhances the ability to conduct
population genetic analyses on pathogens [24].

The goal of this study was to understand genetic diver-
sity among 7. equi samples from North America. First, we
examined full-length 18S rRNA gene sequences to provide
broad phylogenetic groupings for all samples into the four
previously described clades of T. equi [21,25]. Next, we
developed a panel of 18 microsatellite markers to provide
finer-scale resolution of these genetic relationships. The
first whole genome sequence of T. equi [26] provided
the foundation for the development of highly variable
microsatellite markers for 7. equi. This genotyping
panel was used to determine the genetic diversity of
T. equi strains in the recent Texas outbreak and to trace
back samples from potential sources of 7. equi in the
southern U.S. Both types of molecular data provided
insight into the number of genetic lineages in the
U.S. and the amount of genetic diversity within
subpopulations.

Methods

T. equi DNA samples and preparation

The T. equi genomic DNA (gDNA) samples used in this
study were collected by the USDA-ARS, Animal Disease
Research Unit in Pullman, WA from routine screenings
and as part of the response to recent outbreaks. We
used a set of 38 samples from six states to maximize
geographic diversity within the U.S. as much as possible
(Table 1). Later, two samples were removed due to low
data quality; Te0021 was excluded from 18S analysis
and Te0044 was excluded from the microsatellite
analysis. A major focus was on samples from the Texas
outbreak, which affected several hundred horses in 2009
[11]. Two isolates were derived from Amblyomma
cajennense (Te0002) and Dermacentor variabilis (Te0035)
ticks collected from multiple horses during the Texas
outbreak [11]. These ticks were fed on uninfected
horses at the USDA lab and once infections were con-
firmed the isolates were preserved as frozen blood stabi-
lates, as previously described [11]. Another isolate,
Te0042, was collected during the 2008 Florida outbreak
[6]. Our positive control was a lab strain, Te0003, which
originated from a Florida outbreak in the 1970s and was
the same strain used for the first T. equi whole genome
sequence (WGS) [26]. All but one of the samples were
from infected U.S. horses; Te0044 was collected from a
stray horse captured crossing the U.S.-Mexico border
near Eagle Pass, TX. This horse tested as a weak sero-
positive for T. equi using the official cELISA regulatory
test, but yielded negative results using nested PCR
targeting ema-1. Infection was confirmed in this horse
by passaging 100 mL of whole blood into a naive
splenectomized horse via intravenous inoculation. The
transmission was successful and at the peak parasitemia
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Table 1 T. equi samples extracted from horse blood for use in this study
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NAU ID Location County Year Details Passage details of MSAT 18S
collected sample group**
Te0002* TX Kleberg 2010 horse infected with Amblyomma tick passage from field yes A
cajennense ticks collected from 73 TX (from multiple hosts)
horses
Te0003* FL 2009 lab strain originally from 1970s outbreak multiple needle yes A
(whole genome sequence) passages
Te0004 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0005 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0006 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0007 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0008 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0009 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0010  TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0011 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0012  TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0013 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0014 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0015 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0016  TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0017 TX Kleberg 2009 mare from index ranch breeding herd field blood yes A
(direct from horse)
Te0018* TX 2009 retired racehorse-epidemiologic trace out, needle passage from yes A
pastured with Be0019, Be0020 field
Te0019* TX Kleberg 2009 pastured with Be0018-epidemiologic trace  needle passage from yes A
out field
Te0020* TX Kleberg 2009 pastured with Be0018-epidemiologic trace  needle passage from yes A
out field
Te0021 CA 2010 routine screening, presumed to be field blood yes no
unrelated to outbreak (direct from horse) sequence
data
Te0022 CA San 2010 routine screening, presumed to be field blood yes A
Diego unrelated to outbreak (direct from horse)
Te0023 GA 2010 routine screening, presumed to be field blood yes A
unrelated to outbreak (direct from horse)
Te0024 GA 2010 routine screening, presumed to be field blood yes A
unrelated to outbreak (direct from horse)
Te0025 GA 2010 routine screening, presumed to be field blood yes A
unrelated to outbreak (direct from horse)
Te0026 GA 2010 routine screening, presumed to be field blood yes A

unrelated to outbreak

(direct from horse)
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Table 1 T. equi samples extracted from horse blood for use in this study (Continued)

Te0027 GA 2010 routine screening, presumed to be field blood yes A
unrelated to outbreak (direct from horse)
Te0028 GA 2010 routine screening, presumed to be field blood yes A
unrelated to outbreak (direct from horse)
Te0029 GA 2010 routine screening, presumed to be field blood yes A
unrelated to outbreak (direct from horse)
Te0033 OK 2010 routine screening, presumed to be field blood yes A
unrelated to outbreak (direct from horse)
Te0034 CO 2010 routine screening, presumed to be field blood yes A
unrelated to outbreak (direct from horse)
Te0035*% TX 2009 horse infected with Dermacentor variabilis ~ tick passage from field yes A
ticks collected from 17 TX horses (from multiple hosts)
Te0039* TX Cameron 2011 index ranch-treatment study needle passage from yes A
field
Te0040 TX Kleberg 2011 index ranch-housed at USDA field blood yes A
(direct from horse)
Te0041  TX Kleberg 2011 index ranch-housed at USDA field blood yes A
(direct from horse)
Te0042* FL 2008 2008 Florida outbreak needle passage from yes A
field
Te0045 TX Kleberg 2011 index ranch-treatment study field blood yes A
(direct from horse)
Te0046 TX Kleberg 2011 index ranch-treatment study field blood yes A
(direct from horse)
Te0044* US-MX  Maverick 2011 stray intercepted crossing TX-Mexico needle passage from no (amplification at C
border border field only 7/18 MSAT loci)

*Isolate, which refers to strain types derived from infections that were reproduced in the lab and available as frozen blood stabilates for future study.

**As previously defined by Bhoora et al. [21], 2009 and illustrated in Figure 1.

(10% parasitized erythrocytes) blood samples were
collected for genotyping. Genomic DNA was isolated
during acute infection and nested PCR targeting ema-1
again yielded negative results. Sequencing of the 18S
rDNA [GenBank:JQ390047] demonstrated 52 bp diver-
gence from the 18S gene found in the Florida 7. equi
whole genome sequence.

DNA from T. equi-infected horse blood was prepped
with either the Qiagen® DNeasy Blood & Tissue Kit or
the Qiagen® Gentra PureGene Blood Kit (Valencia,
CA). Before extraction, horse blood was centrifuged for
15 minutes at 2,000 x g to pellet red blood cells and the
white blood cell layer was removed to minimize the
amount of horse DNA in the final preparation. To
obtain a higher yield of parasite DNA from some of the
persistently infected horses that were sampled, anti-
coagulated whole blood was transferred to uninfected
horses at the USDA lab. Blood was collected from the
recipient for DNA extraction at peak parasitemia. The
volume of blood transferred from persistently infected
horses ranged between 10—60 mL; the goal was to trans-
fer a sufficient amount of blood to ensure that the full
diversity of T. equi from the field horse was transferred
to the naive uninfected horse. All animals used in these
studies were handled according to protocols approved

by the University of Idaho Institutional Animal Care
and Use Committee (protocol #2010-54).

All gDNA samples were processed with whole gen-
ome amplifications (WGAs) using Qiagen’s REPLI-g®
Mini Kit (Valencia, CA) to increase the limited amount
of T. equi DNA present in some samples. The manufac-
turer’s WGA protocol was followed, using 1 pL of gDNA
as template. The WGA procedure was also performed on
samples with sufficient parasite DNA to insure that all
samples were treated the same. In the case of single clone
infections a WGA had no effect on the results, because
genotypes were the same whether WGA or gDNA was
used as template (data not shown). Conversely, the WGAs
of mixed clone infections sometimes resulted in different
clone ratios due to stochastic bias in the WGA process.
To ensure adequate and unbiased representation of the
entire genome, three independent WGA replicates were
run for each T. equi sample. Each WGA replicate was vali-
dated using a PCR assay targeting the ema-1 gene [22].
The published assay was converted into a qPCR assay
using SYBR® Green (Invitrogen, Grand Island, NY).
WGAs were considered valid if they showed amplification
with a cycle time of 30 cycles or less (C; < 30). Validated
WGA replicates were pooled together to serve as tem-
plates for genotyping.
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Sequence diversity of 18S rRNA gene

Primers specific to the 185 rRNA gene of the genus
Babesia were designed to amplify and sequence most of
the 18S region (~1,600 bp). Primers were designed using
sequences obtained from GenBank for a variety of spe-
cies including B. equi, B. gibsoni, B. major, B. occultans,
14 B. bigemina and 6 B. bovis (accession numbers listed
in Additional file 1: Table S1). Sequences were aligned
in MegAlign (DNASTAR Lasergene9, Madison, WI)
and primer melting temperatures and interactions were
investigated with Primer Express® Software v2.0 (Applied
Biosystems, Carlsbad, CA). These primers were intended
to be used with field samples, where non-target DNA
can be present, so optimized primers were sent through
a Primer-BLAST in GenBank against all prokaryotes
and eukaryotes to ensure other eukaryotic organisms
(e.g., protozoans, ticks, and equids) would not amplify.
We designed two primers for amplification of the 18S
fragment to be sequenced: 18S_AllBab_1F (forward, 5'-
AGCCATGCATGTCTAAGTACAAGCTTTT-3") and
18S_AllBab_R3 (reverse, 5'- TCCGAATAATTCACCG
GATCACTC-3"). The initial 10 pL PCR contained final
concentrations of the following reagents: 1 pL of 10x
buffer, 2.5 mM MgCl,, 0.2 mM dNTPs, 0.4 uM of each
primer, 0.8 units of Platinum® Taq (Invitrogen, Grand
Island, NY) and 1 pL of template (undiluted gDNA).
The cycle conditions for the initial PCR consisted of 5 min,
95°C; (30 sec, 94°C; 30 sec, 60°C; 75 sec, 72°C) x 40 cycles;
5 min, 72°C; held at 16°C. The 1,591 bp PCR product
(2 pL) was visualized on a 1.5% agarose gel using 1 kb
ladder (Invitrogen, Grand Island, NY) as a reference to
confirm the correct target size and to estimate the dilution
needed for cycle sequencing PCR. Water used for no-
template controls (NTC’s) and DNA from uninfected
horse blood as a negative control confirmed the assay
amplified only 7. equi. To remove excess primers and
dNTPs after completion of the PCR, 1.5 pL of Exo-
SAP-IT® (USB Corporation, Cleveland, OH) was
added to each reaction and incubated for 15 min at
37°C, followed by enzyme deactivation for 15 min at
80°C. Dilutions of the PCR product were made
depending on the band intensity from the gel electro-
phoresis. Bright bands were diluted 1:5 and faint bands
were diluted 1:2.

The 18S rRNA gene amplicons of 37 T. equi samples
were sequenced with the Sanger method. Four internal
primers were developed to allow double-coverage sequen-
cing across the entire 1,591 bp amplicon. We used the
diluted PCR product as template for BigDye® Terminator
v3.1 cycle sequencing (Applied Biosystems, Carlsbad, CA).
Every sample required six sequencing reactions with
the following primers: AllBab_1F, sequence listed above;
All_Babesia_F2, 5'-CAAGTCTGGTGCCAGCAGCC-3’;
All_Babesia_F3, 5-CAAAGTCTTTGGGTTCTGGGGG-
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3’; All_Babesia_R1, 5'-CCCTACCGTCAAGCTGATGGG-
3’; All_Babesia_R2, 5-ACGAATGCCCCCAACCGT-3’;
AllBab_R3, sequence listed above. About half of our sam-
ples had poor reads for the outside forward (AllBab_1F)
and reverse (AllBab_R3) contigs. In order to overcome
this, nested forward and reverse primers (All_Babesia_
Fla, 5- AGCTTTTATATGGTGAAACTGCGAAT-3’;
All_Babesia_R3a, 5- TCACTCGATCGGTAGGAGCGA-
3") were designed internally to the original PCR primers.
The conditions for the cycle sequencing were 3 pL 5x se-
quencing buffer, 1 pL BigDye® v3.1, 1 uM of a single pri-
mer and 5 pL of diluted PCR product producing a 10 pL
reaction. The cycle conditions for the cycle sequencing
consisted of 5 sec, 96°C; 20 sec, 50°C; 4 min, 60°C; (three
first steps repeated 25 times) then held at 16°C. An EDTA/
ethanol precipitation cleanup was performed on the pro-
ducts before they were sequenced on a 3130x] Sequencer
(Applied Biosystems, Carlsbad, CA).

An assembly of sequences for each individual was
accomplished in SeqMan (DNASTAR Lasergene9,
Madison, WI) and all sequences were edited by visual
inspection. The 37 T. equi 18S sequences were exported
into BioEdit Sequence Alignment Editor (Carlsbad, CA)
to align with 28 other Theileria 18S rRNA sequences
from GenBank, including Theileria buffeli and T. annulata
as outgroup taxa (accession numbers reported in Figure 1).
T. buffeli and T. annulata are appropriate to serve as an
outgroup to T. equi for the 185 rRNA gene as demon-
strated by Bhoora et al. [21]. The 65 18S rRNA gene
sequences were aligned using Clustal W Multiple Align-
ment and gaps were visually inspected and adjusted.
The sequences were imported into MEGA version 4
[27] where a maximum parsimony (MP) tree was
constructed with a bootstrapping method applied. A
consensus tree was created, with only bootstrap values
>50% reported (Figure 1).

Identification of T. equi microsatellite sequences and
primer design

A whole genome sequence of the USDA Florida lab
strain (Te0003) was used to discover microsatellite
regions within the 7. equi genome [26]. A variety of
repeat sizes were searched, ranging from dinucleotide
to hexanucleotide-repeats, using the software Tandem
Repeats Finder [28] and MSATCOMMANDER ([29].
Over a hundred loci were identified and primer pairs
were designed at 75 of these with target sizes <600 bp.
Forward and reverse oligonucleotide primers were devel-
oped using NetPrimer (Premier Biosoft International, Palo
Alto, CA) and SeqBuilder (DNASTAR Lasergene9,
Madison, WI). First the optimal melting temperature
(T, of each locus was determined by a temperature
gradient PCR using the same conditions as a single PCR
(Additional file 2: Table S2) except that a T,, range of
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Figure 1 Maximum Parsimony tree of T. equi 18S rRNA gene sequences with 1,000 bootstrap replicates. The tree is rooted with Theileria

annulata and T. buffeli.
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55-66°C was used. Then the loci were tested for poly-
morphism on nine Texas samples using single PCR con-
ditions (Additional file 2: Table S2). If the locus proved
to be polymorphic, then an external unlabeled primary
forward primer was designed for use in a pre-
amplification PCR. The pre-amplification PCR was fol-
lowed by a heminested PCR using the original forward
primer; this double-PCR process has been used to geno-
type a number of parasite species that often yield very
low concentrations of DNA from host blood [20,30,31].
The external forward primer was first optimized using a
temperature gradient. Then the PCR product from the
primary PCR served as the template for the second
(heminested) PCR, which used the internal forward pri-
mer. All validation PCRs were visualized on 2% agarose
gels stained with SYBR® Safe (Invitrogen, Grand Island,
NY) using a 100 bp DNA ladder to estimate sizes. After
optimization, either 4 or 5 loci for each of the four chro-
mosomes were found to yield robust PCR products
yielding a total of 18 loci (Additional file 2: Table S2).
The development of loci from all four chromosomes
provided well-spaced markers across the whole genome.
The internal forward primer from each locus was
fluorescently labeled for high-resolution sizing on an
AB3730 capillary machine (Applied Biosystems, Carlsbad,
CA).

Electrophoresis was conducted on an AB3730 DNA
Analyzer using GeneScan™ 1200 LIZ® Size Standard
(Applied Biosystems, Carlsbad, CA). Each well contained
13.92 uL of Hi-Di"" Formamide (Applied Biosystems,
Carlsbad, CA) with 0.08 uL size standard and 1 pL of
diluted PCR product (1/100 for single PCR and 1/200 for
heminested PCR). Plates were denatured for five minutes at
95°C and snap-cooled before each AB3730 run. Automatic
scoring was accomplished with GeneMapper Software
Version 4.0 (Applied Biosystems, Carlsbad, CA) and all
calls were confirmed by visual inspection.

Microsatellite marker amplification strategy

Persistently infected horses carry only small levels of
T. equi DNA, reflecting the low parasitemia of chronic
infections [22,30]. These samples can yield variable PCR
amplification and artifacts. Thus, it was critical to
develop a reliable workflow that can be applied reprodu-
cibly to every sample to reduce genotyping errors and
minimize sample to sample variation. We developed a
robust 5-step process to provide consistent and repeat-
able genotyping for T. equi:

1. To conserve the original DNA extraction, which
often had low levels of target DNA, and increase the
amount of starting target copies for PCR, we used
WGAs from each sample as template for the initial
round of PCRs.
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2. After WGA, samples were initially genotyped using
only internal primers in a multiplexed PCR
(Additional file 2: Table S2 for compatible
multiplexes).

3. If multiple alleles were detected at a single marker,
the sample was screened again using unamplified
gDNA as template and running each locus singly
instead of in multiplex reactions. Genomic DNA
provides a better representation of the actual allele
abundance than WGAs and allowed us to determine
the predominant allele (i.e. the one peak with the
largest number of relative fluorescence units (rfu)).
Multiple alleles were scored if the rfu of minor peaks
were >25% of the predominant peak [30].

4. When amplification was weak (<200 rfu), the
samples were screened using WGA template in a
single PCR without multiplexing.

5. If the above workflow still did not detect any alleles
at a locus, we then used a single, heminested PCR.
We first used WGA as template and if the sample
still did not amplify gDNA template was used. This
heminested PCR approach has been successfully
employed in malaria genotyping for samples with low
levels of target DNA [30,32]. We first amplified using
the external, unlabeled primers for each locus
individually, as described above (Additional file 2:
Table S2). Then 1 pL of this primary PCR was used
as the template for a heminested PCR, again
amplifying each locus separately.

Regardless of whether single or heminested PCR was
used, all alleles were confirmed with a second, inde-
pendent PCR. If two conflicting genotypes were found
then a third PCR was conducted and the allele scored
twice as being predominant was used for the final data.
If three distinct predominant alleles were called then
the most common allele of the three PCRs was used as
a final datum. Our strategy was designed to be conser-
vative in calling alleles that are truly present (as recom-
mended by Anderson and others [30]); however, we
realize this increases the risk of not capturing the full
allelic diversity that may be present in some mixed
infections. Frequencies for most common alleles were
related to a sample’s subpopulation (Texas, Georgia,
Florida, etc.). Missing data at a locus was called when
four or more attempts were made at amplification.
Four horse samples were excluded from analysis be-
cause we were unable to amplify multiple loci, which
indicated T. equi DNA was either too dilute in the
sample or the chromosomal targets were simply absent
in that particular strain. All PCR runs included water
as an NTC and uninfected horse DNA to ensure false
positives were not called due to primer interaction or
amplification of horse DNA.
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Population analysis

We used population genetic analysis to determine link-
age disequilibrium and genetic structure among the
populations investigated in this study. As in many stud-
ies of apicomplexans, only primary alleles were used for
data analysis [16,33-35]. The complete multi-clone
genotype was only used to examine the percentage of
samples exhibiting mixed clone infections versus single
clone infections. To distinguish between a single clone
infection with mutation events and a true mixed infec-
tion, we defined mixed clone infections as samples that
displayed three or more loci with secondary alleles.
Small populations (n < 2 samples) were included in tree
construction, but excluded from all other marker valid-
ation and statistical analyses of population structure.
Using the Texas population, we used the primary alleles
amplified for each 7. equi sample to test for linkage
disequilibrium between all pairs of loci using 3060
permutations in FSTAT v2.9.3.2 (Goudet, J., 2001;
http://www.unil.ch/izea/softwares/fstat.html). Data were
imported into FSTAT using the Excel plug-in Microsatellite
Excel Toolkit [36]. Population structure was estimated
with Weir and Cockerham’s Fgr estimator (0) calculated
in FSTAT. Using the Excel plug-in GenAlexv.6 [37] we
calculated the expected heterozygosity (Hg) at the popu-
lation level. A neighbor-joining (NJ) tree was generated
from mean character distances using PAUP ver. 4.0b10
[38]. Confidence for the NJ tree was estimated by boot-
strapping with 500 repetitions.

Results

Phylogenetics of the T. equi 18S rRNA gene

All T. equi samples from the U.S. grouped together
into a single monophyletic clade based on 18S rRNA
gene sequences. The maximum parsimony (MP) tree
was created using 116 parsimony informative sites.
One of the 387 MP trees based on 18S rRNA gene
sequences is shown in Figure 1 (tree length: 248 steps,
consistency index: 0.7450, retention index: 0.9393).
Separate phylogenetic analyses using MP and neighbor
joining produced similar tree topologies with high
nodal bootstrap values (Figure 1) and were consistent
with two previous 7. equi studies that used neighbor
joining, maximum likelihood and Bayesian inference
on the 18S rRNA gene [21,25]. In the current analysis
we recovered the four major phylogenetic groups (A,
B, C and D) using GenBank sequences previously
described (7 = 28) [21,25] and the new U.S. sequences
we describe in this study all (z = 36) fell into group A
with sequences from South Africa and Spain (Figure 1).
Nucleotide variation within group A is encompassed
by less than ten single nucleotide polymorphisms
(SNPs). Only two of these SNPs were observed in the
U.S. sequences resulting in four distinct haplotypes
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[GenBank:JX177670, JX177671, JX177672, ]X177673],
which suggests that a small source population is re-
sponsible for all recent U.S. outbreaks. All U.S. samples
grouped together in a monophyletic clade with one
other South African isolate [GenBank: EU888906].
One U.S. sample from California, Te0022 [GenBank:
JX177673], shared an identical sequence with this
African isolate.

The sample from the U.S.-Mexico border, Te0044
[GenBank:JQ390047], was different from the other
U.S. samples by 48 SNPs and was robustly placed in
group C identified by Bhoora et al. [21]. This isolate is
clearly different from the other North American sam-
ples. As noted above, the horse from which this isolate
originated was weakly seropositive for T. equi using
the official cELISA regulatory test, but yielded negative
results using nested PCR targeting ema-1 [22]. This
isolate was nearly identical to two South African
T. equi in GenBank [EU642511, EU888905], with only
one SNP separating the Mexican sample from these
two sequences.

Genetic diversity

In contrast to the 18S gene sequences, microsatellite
repeat markers exhibited a greater amount of genetic
diversity among the U.S. T. equi samples. Two to eight
alleles were found at each microsatellite locus (Additional
file 2: Table S2). No linkage disequilibrium was detected
in any combination of locus pairs. The expected hetero-
zygosity (Hg) for the Texas population (n = 24) was
0.496 with a standard error of 0.044. Identical dominant
genotypes were observed for most of the samples from
Georgia (n = 6), with only one sample differing at a
predominant allele and four others differing at one or
two secondary alleles. Despite its physical distance from
Georgia, the sample from Oklahoma also shared a dom-
inant haplotype with the Georgian samples, although it
carried two unique secondary alleles. The two California
samples shared alleles at only five markers. The isolate
from the U.S.-Mexico border (Te0044) did not amplify
well with this marker set. Only 7 of 18 loci amplified
reliably, suggesting that only 7. equi samples from 18S
group C may be typed successfully with this subset of
markers (Additional file 2: Table S2). Unfortunately, we
did not have samples available from groups B and D to
test with this DNA fingerprinting system.

The set of 18 microsatellite markers revealed geo-
graphic structure among U.S. outbreaks of T. equi.
Texas samples were loosely grouped into a large, diverse
lineage (Figure 2). The genetic diversity in Texas may be
due to a larger effective population size than other out-
breaks and tick-borne transmission resulting in genetic
recombination of T. equi. In contrast, Georgian samples
separated into a separate subpopulation distinct from
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the Texas group. The Georgia clade consists mainly of a
group of samples (n = 7) that share the same dominant
haplotype. In addition to Georgia, this clade also
includes a sample from Oklahoma, suggesting a similar
source of infection. The samples from Colorado, California
and the Florida lab strain did not cluster strongly with
any other outbreaks on the NJ tree. The Fst analysis is
generally congruent with the NJ tree, since Texas and
Georgia populations demonstrate strong differentiation
(6 = 0.414, 99% CI: Lower = 0.290, Upper = 0.504).
Population sizes from all other states were too small for
a robust Fst analysis.

Mixed and single infections

Microsatellite analysis revealed that less than one-third
of our total sample set (n = 10; 27%) contained mixed
infections (2—3 clones). We made this estimate based
on the greatest number of alleles at any single locus.
However, this may be an underestimate if additional
alleles were present but not detected. Of the 27 single
infection samples, 15 (56%) had unique multilocus
haplotypes. Some of the samples with single infections
bore evidence of microsatellite mutations, because we
occasionally observed additional secondary alleles at
1-2 loci. Two groups of single infection samples that
shared haplotypes (Te0012, Te0017 and Te0005,
Te0006, Te0013) were collected from mares kept in a
common pasture.

Discussion

Samples of T. equi from the recent outbreaks in Texas
and Florida, as well as the other U.S. samples, were all
assigned to the 18S group A of Bhoora et al. [21]. All
U.S. samples exhibit very little diversity within this
clade, suggesting a limited introduction of a small num-
ber of clones into the U.S. This is in strong contrast to
the large amount of 18S diversity previously observed in
South Africa. The sample from California (Te0022) that
shares complete 18S identity with a South African iso-
late [GenBank:EU888906] may suggest a shared source
of introduction for California and the rest of the U.S.
Conversely, the T. equi strain from the U.S.-Mexico
border, Te0044, has a different 18S lineage (group C)
compared to the other U.S. samples. This isolate was
undetectable with the ema-1 PCR and, because it has a
T. equi genotype that is different from other samples,
may require the use of a different detection assay to
mitigate the risk of moving similar strains of T. equi into
regions that are free of the parasite [39]. Te0044 is also
distinctive because less than half of the microsatellite
markers genotyped successfully. Additional develop-
ment of microsatellite loci may be needed for genotyp-
ing all four of the major lineages of 7. equi.
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Our new microsatellite typing system allowed us to
examine population structure of 7. equi with greater
resolution than provided by the 18S gene. Although 36
U.S. samples had nearly identical 18S sequences, at least
15 unique clones were detected using microsatellite
markers. This finding suggests that since the initial
introduction of a limited source into the U.S., T. equi
populations have developed strong population structure
across the spatial scale that we studied. Robust differen-
tiation was observed between Texas and Georgia and
this high Fst value reflects the pattern also observed in
the NJ tree. The greatest amount of genetic diversity
was observed among the Texas samples, which might be
expected from an outbreak with a greater effective
population size [11]. The Texas outbreak was an espe-
cially valuable sample set for validating this panel of
markers. Epidemiological data associated with each
horse helps explain how variation is distributed in the
Texas samples and validates identity between certain
samples. For instance, the horses that yielded isolates
with identical haplotypes, represented in the three
clades observed in Figure 2, were mares that shared the
same pasture. Therefore, it is highly likely that these
horses were infected from a common source or passed
the infection from one to another. It appears that trans-
mission during the Texas outbreak was the result of
tick-borne transmission; both Amblyomma cajennense
and Dermacentor variabilis, as well as other tick spe-
cies, may have been involved in transmission of 7. equi
to 292 of the 360 horses on the ranch at the center of
the outbreak [11]. Some of the genetic diversity
observed among the Texas outbreak samples could be
due to recombination during sexual stage development
in the tick gut, or by infection from multiple ticks that
carried different 7. equi clones. Additionally, the Texas
samples might have been the result of a founding popu-
lation of clones that carried a large amount of microsat-
ellite variation.

The other U.S. samples differed in their level of gen-
etic variation, which allows us to make inferences
about the relatedness of these samples. The two
California 7. equi appeared to be quite distinct from
samples from the other states and may have had
origins unrelated to that of the Texas outbreak. Unfor-
tunately, we do not have an adequate sampling of the
California subpopulation (n = 2) to address this ques-
tion. The 2010 samples from California and Colorado
do not appear to be closely related to the samples
collected farther east. The similar genotypes found in
Georgia, Florida and Oklahoma suggest that there was
a shared source of T. equi for these populations.
Another possibility could be that dominant genotypes
in Oklahoma and Georgia represent a highly virulent
clone that outcompetes less virulent clones, thus giving
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the misleading appearance of a shared source of
infection.

Our microsatellite typing system will also be valuable
for typing isolates obtained from outbreaks resulting
from iatrogenic transmission. The largest outbreak of
equine piroplasmosis in the U.S. prior to Texas in 2009
was the Florida outbreak of 2008 in which 20 infected
horses were identified and euthanized [6]. The epi-
demiological investigation of the Florida outbreak
suggested that iatrogenic transmission was the primary
cause. Unfortunately, we had only one isolate from this
outbreak (Te0042), but if a larger collection of samples
had been available this hypothesis could have been
tested using strain typing. Very limited strain diversity
would have been expected if transmission were purely
mechanical.

A set of three samples illustrates the utility of this
genotyping system to address specific epidemiological
questions for certain individuals. T. equi strains Te0018,
Te0019 and Te0020 were collected from horses pas-
tured together. The horse infected with Te0018 was
retired after a 20-year racing career, whereas Te0019
and Te0020 were epidemiologically linked to the Texas
outbreak ranch. Had one of these horses been the
source of infection for the others? The genotyping data
suggest not, since Te0018 is distinctly different from
Te0019 and Te0020 (Figure 2). Thus, it is highly likely
that the sources of infection were unrelated. This trio of
samples demonstrates the usefulness of microsatellite
markers for tracing back individual samples, which is an
important complement to the analysis of population
structure for larger outbreaks.

Conclusions

The introduction of this tick-borne hemoparasite into
susceptible regions has the potential to be very disrup-
tive to the U.S. horse industry and should remain a
major concern to the horse community and regulatory
agencies. The ability of highly variable molecular mar-
kers to detect small genetic changes among samples
provides a powerful tool for studying the epidemiology
of parasitic diseases such as T. equi. Selectively neutral
microsatellites have been successfully used to determine
population structure of other apicomplexan pathogens
such as the agent causing malaria, P. falciparum [16],
bovine theileriosis, T. annulata [40], and bovine
babesiosis, B. bovis [35]. Using our newly designed
microsatellite panel we have identified multiple unique
clones in recent U.S. outbreaks that were not apparent
from 18S rRNA sequences, which are less sensitive to
population level variations. Furthermore, we found
strong genetic structure between two recent outbreaks,
indicating that not all 7. equi outbreaks can be traced to
any single ranch. Although 18S rRNA pinpointed a
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limited source of introduction, additional resolution
using microsatellites indicated that very few samples
were in fact identical. This marker system will be useful
to help understand the epidemiology of any additional
domestic and international 7. equi outbreaks.
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