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Abstract

Background: Spirocerca lupi is a life-threating parasitic nematode of dogs that has a cosmopolitan distribution but
is most prevalent in tropical and subtropical countries. Despite its veterinary importance in canids, the
epidemiology, molecular ecology and population genetics of this parasite still remain unexplored.

Methods: The complete mitochondrial (mt) genome of S. lupi was amplified in four overlapping long fragments
using primers designed based on partial cox1, rrnS, cox2 and nad2 sequences. Phylogenetic re-construction of 13
spirurid species (including S. lupi) was carried out using Bayesian inference (BI) based on concatenated amino acid
sequence datasets.

Results: The complete mt genome sequence of S. lupi is 13,780 bp in length, including 12 protein-coding genes,
22 transfer RNA genes and two ribosomal RNA genes, but lacks the atp8 gene. The gene arrangement is identical
to that of Thelazia callipaeda (Thelaziidae) and Setaria digitata (Onchocercidae), but distinct from that of Dracunculus
medinensis (Dracunculidae) and Heliconema longissimum (Physalopteridae). All genes are transcribed in the same
direction and have a nucleotide composition high in A and T. The content of A + T is 73.73% for S. lupi, in
accordance with mt genomes of other spirurid nematodes sequenced to date. Phylogenetic analyses using
concatenated amino acid sequences of the 12 protein-coding genes by BI showed that the S. lupi (Thelaziidae) is
closely related to the families Setariidae and Onchocercidae.

Conclusions: The present study determined the complete mt genome sequence of S. lupi. These new mt genome
dataset should provide novel mtDNA markers for studying the molecular epidemiology and population genetics of
this parasite, and should have implications for the molecular diagnosis, prevention and control of spirocercosis in
dogs and other canids.
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Background
The nematode Spirocerca lupi (Rudolphi, 1809) (at the
adult stage) parasitizes the oesophagus and aorta of
canids, especially in dogs. S. lupi is responsible for ca-
nine spirocercosis with a worldwide distribution but is
usually found in tropical and subtropical countries [1,2].
Canine spirocercosis is usually associated with several
clinical signs, such as regurgitation, vomiting and dys-
pnoea [3,4]. This disease is also fatal when it causes
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malignant neoplasms or aortic aneurysms [2,4,5]. Fortu-
nately, spirocercosis can be treated efficiently using
anthelminthics, such as doramectin [6].
Canine spirocercosis caused by S. lupi is often neglected

and underestimated by some veterinary scientists and
practitioners. However, S. lupi is most prevalent in dogs in
rural areas, such as in Bangladesh (40%) [7], Greece (10%)
[8], Grenada (8.8% in owned dogs and 14.2% in stray dogs)
[1], India (23.5%) [9], Iran (19%) [10], South Africa (13%)
[11] and Kenya (85% in stray dogs and 38% in owned
dogs) [12]. S. lupi has been also reported in dogs in China,
with a very high prevalence (78.6%) [13]. Although canine
spirocercosis is an emerging disease, little is known about
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Figure 1 Arrangement of the mitochondrial genome of
Spirocerca lupi. Gene scaling is only approximate. All genes are
coded by the same DNA strand and are transcribed clockwise. All
genes have standard nomenclature except for the 22 tRNA genes,
which are designated by the one-letter code for the corresponding
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the molecular biology and genetics of S. lupi [14]. A previ-
ous study has found utility of mitochondrial (mt) cyto-
chrome c oxidase subunit 1 (cox1) for population genetic
and phylogenetic studies of S. lupi [14], yet, there is still a
paucity of information on S. lupi mt genomics.
mt genome sequences provide useful genetic markers

not only for genetic and epidemiological investigations
and molecular identification of parasites, but also for
phylogenetic and population studies [15-18] due to its
maternal inheritance, rapid evolutionary rate, and lack of
recombination [19,20]. To date, although mt genome
sequences have been sequenced for 12 species within
the order Spirurida, only one mt genome (for Thelazia
callipaeda) is available within the family Thelaziidae
[21]. Therefore, the objectives of the present study were
to determine the complete mt genome sequence of S.
lupi and to assess the phylogenetic position of this
nematode in relation to other spirurid nematodes for
which complete mt sequence datasets are available.

Methods
Ethics statement
This study was approved by the Animal Ethics Commit-
tee of Lanzhou Veterinary Research Institute, Chinese
Table 1 Sequences of primers used to amplify PCR
fragments from Spirocerca lupi

Name of primer Sequence (5’ to 3’)

Short-PCR

For cox1

JB3 TTTTTTGGGCATCCTGAGGTTTAT

JB4.5 TAAAGAAAGAACATAATGAAAATG

For cox2

SLCO2F TTGAAATTACGAGTATGGGGATA

SLCO2R AGCTCCACAAATTTCTGAACACT

For nad2

SLND2F TGGTGGAGGGGTTTTGTTATTTG

SLND2R ATCTTCTCAACCTGACGACC

For rrnS

SL12SF AATCAAAATTTATTAGTTCGGGAGT

SL12SR AATTACTTTTTTTTCCAACTTCAA

Long-PCR

SLCO1F CTTTAGGTGGTTTGAGAGGTATTGTT

SL12S R CTTCATAAACCAAATATCTATCTGT

SL12SF ATAGATATTTGGTTTATGAAGATTT

SLCO2R AAGAATGAATAACATCCGAAGAAGT

SLCO2F CCTATTGTTGGCTTATTTTATGGTCAG

SLND2R CAAAAATGAAAAGGTGCCGAACCAGAT

SLND2F GGTTTTGGTCGTCAGGTTGAGAAGA

SLCO1R ATCATAGTAGCCGCCCTAAAATAAGTA

amino acid, with numerals differentiating each of the two leucine-
and serine-specifying tRNAs (L1 and L2 for codon families CUN and
UUR, respectively; S1 and S2 for codon families UCN and, AGN
respectively). “AT” refers to the non-coding region.
Academy of Agricultural Sciences (Approval No.
LVRIAEC2010-007). The farmed dog from which S. lupi
adults were collected, was handled in accordance with
good animal practices required by the Animal Ethics
Procedures and Guidelines of the People’s Republic of
China.

Parasites and DNA extraction
Adult nematodes representing S. lupi were obtained at
post mortem from the oesophagus of an infected farmed
dog in Zhanjiang, Guangdong province, China. These
specimens were washed in physiological saline, identified
morphologically to species according to existing
descriptions [22], fixed in 70% (v/v) ethanol and stored
at −20°C until use.
Total genomic DNA was isolated from one S. lupi

worm using sodium dodecyl sulphate/proteinase K treat-
ment, followed by spin-column purification (TIANamp
Genomic DNA kit). In order to independently verify the
identity of this specimen, the mt cox1 gene was ampli-
fied by the polymerase chain reaction (PCR) and
sequenced according to an established method [14]. The
cox1 sequence of this S. lupi sample had 96.5% similarity
with that of S. lupi in dogs in South Africa (GenBank ac-
cession no. HQ674759).
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Amplification and sequencing of partial cox1, rrnS, cox2
and nad2 genes
Initially, a fragment of cox1 (346 bp) was amplified by
conserved primers JB3/JB4.5 [23], and rrnS (213 bp), cox2
(300 bp) and nad2 (1200 bp) were amplified by PCR with
primers designed (Table 1) based on sequences well
Table 2 Mitochondrial genome organization of Spirocerca lup

Gene/region Positions Size (bp) Num

cox1 1-1650 1650 549

tRNA-Trp (W) 1657-1714 58

nad6 1751-2209 459 152

tRNA-Arg (R) 2207-2266 60

tRNA-Gln (Q) 2263-2316 54

cytb 2315-3397 1083 360

tRNA-LeuCUN (L1) 3396-3450 55

cox3 3448-4230 783 260

Non-coding region 4231-4630 400

tRNA-Ala (A) 4631-4692 62

tRNA-LeuUUR (L2) 4689-4742 54

tRNA-Asn (N) 4747-4804 58

tRNA-Met (M) 4807-4864 58

tRNA-Lys (K) 4867-4924 58

nad4L 4932-5159 228 75

rrnS 5170-5855 686

tRNA-Tyr (Y) 5855-5910 56

nad1 5908-6816 909 302

tRNA-Phe (F) 6785-6843 59

atp6 6847-7431 585 194

tRNA-Ile (I) 7435-7491 57

tRNA-Gly (G) 7492-7546 55

cox2 7549-8253 705 234

tRNA-His (H) 8244-8302 59

rrnL 8301-9288 988

nad3 9281-9616 336 111

tRNA-Cys (C) 9616-9670 55

tRNA-SerUCN (S2) 9673-9726 54

tRNA-Pro (P) 9730-9787 58

tRNA-Asp (D) 9847-9900 54

tRNA-Val (V) 9902-9955 54

nad5 9959-11551 1593 530

tRNA-Glu (E) 11550-11606 57

tRNA-SerAGN (S1) 11607-11656 50

nad2 11637-12485 849 282

tRNA-Thr (T) 12487-12543 57

nad4 12544-13773 1230 409
aThe inferred length of amino acid sequence of 12 protein-coding genes; Ini/Ter co
conserved in many related taxa. PCR reactions (25 mL)
were performed in 10 mM Tris–HCl (pH 8.4), 50 mM
KCl, 4 mM MgCl2, 200 mM each of dNTP, 50 pmol of
each primer and 2 U Taq polymerase (Takara) in a
thermocycler (Biometra) under the following conditions:
after an initial denaturation at 94°C for 5 min, then 94°C
i

ber of aaa Ini/Ter codons Anticodons In

ATG/TAA +7

TCA +6

TTG/TAA +36

ACG −3

TTG −4

ATT/TAA −2

TAG −2

ATA/TAA −3

0

TGC 0

TAA −4

GTT +4

CAT +2

TTT +2

ATG/TAG +7

+10

GTA −1

TTG/TAA −3

TTG −32

ATT/TAG +3

GAT +3

TCC 0

ATG/TAG +2

GTG −10

−2

TTG/TAA −8

GCA −1

TGA +2

AGG +3

GTC +59

TAC +1

TTG/TAG +3

TTC −2

TCT 0

ATG/TAG −20

TGT −1

TTG/TAG 0

dons: initiation and termination codons; In: Intergenic nucleotides.
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for 30 s (denaturation), 55°C (for cox1) or 48°C (for cox2)
or 50°C (for nad2 and rrnS) for 30 s (annealing), 72°C for
1 min (extension) for 36 cycles, followed by 72°C for
10 min (final extension). Two microliters (5–10 ng) of
genomic DNA was added to each PCR reaction. Each
amplicon (5 μL) was examined by agarose gel electrophor-
esis to validate amplification efficiency. Then, these
amplicons were sent to Sangon Company (Shanghai,
China) for sequencing from both directions by using
primers used in PCR amplifications.
Long-PCR amplification and sequencing
After we had obtained partial cox1, rrnS, cox2 and nad2
sequences for the S. lupi, we then designed four primers
(Table 1) in the conserved regions to amplify the entire mt
genome of S. lupi from this representative sample in four
overlapping long fragments between cox1 and rrnS (ap-
proximately 4.5 kb), between rrnS and cox2 (approxi-
mately 2.5 kb), between cox2 and nad2 (approximately
4 kb), and between nad2 and cox1 (approximately 3 kb).
Long-PCR reactions (25 μl) were performed in 2 mM
MgCl2, 0.2 mM each of dNTPs, 2.5 μl 10× LA Taq buffer,
2.5 μM of each primer, 1.25 U LA Taq polymerase
(Takara), and 2 μl of DNA sample in a thermocycler
(Biometra) under the following conditions: 92°C for 2 min
(initial denaturation), then 92°C for 10 s (denaturation),
60°C (for 4.5 kb) or 44°C (for 2.5 kb) or 52°C (for 4 kb) or
48°C (for 3 kb fragment) for 30 s (annealing), and 60°C for
Table 3 Comparison of A + T content (%) of gene and region
date (alphabetical order), including Spirocerca lupi (in bold)

Gene/region AV BM CQ DI DM HL

atp6 75.21 75.09 80.14 71.88 72.40 77.89

cox1 67.36 68.98 70.28 67.88 68.21 71.69

cox2 66.81 68.96 73.25 69.15 68.25 74.71

cox3 71.54 72.69 76.92 71.79 71.54 75.93

cytb 72.32 73.97 76.13 72.25 72.14 79.30

nad1 73.43 73.55 75.85 72.94 72.29 75.69

nad2 74.68 77.61 82.39 74.39 76.93 82.92

nad3 79.82 79.35 81.71 77.15 75.89 83.18

nad4 73.98 76.31 78.05 74.55 72.32 80.36

nad4L 76.89 82.08 83.33 77.37 74.39 82.05

nad5 71.93 74.81 78.17 73.75 73.64 78.93

nad6 77.19 81.46 82.89 80.57 76.26 81.74

rrnS 75.48 76.04 76.85 75.84 73.59 80.50

rrnL 77.78 80.78 80.25 79.55 76.70 81.81

AT-loop 83.37 85.11 86.49 85.91 74.75 96.75

Entire 73.54 75.46 77.67 74.16 72.72 79.11

*Nematodes: AV: Acanthocheilonema viteae, BM: Brugia malayi, CQ: Chandlerella quis
longissimum, LL: Loa loa, OF: Onchocerca flexuosa, OV: Onchocerca volvulus, SD: Seta
Entire: entire mt genome.
10 min (extension) for 10 cycles, followed by 92°C for
10 s, 60°C (for 4.5 kb) or 44°C (for 2.5 kb) or 52°C (for
4 kb) or 48°C (for 3 kb fragment) for 30 s (annealing), and
60°C for 10 min for 20 cycles, with a cycle elongation of
10 s for each cycle and a final extension at 60°C for
10 min. Each PCR reaction yielded a single band detected
in a 0.8% (w/v) agarose gel (not shown). PCR products
were sent to Sangon Company (Shanghai, China) for se-
quencing using a primer-walking strategy.
Sequence analyses
Sequences were assembled manually using the commercial
software ContigExpress program of the Vector NTI soft-
ware package version 6.0 (Invitrogen, Carlsbad, CA), and
aligned against the complete mt genome sequences of other
spirurid nematodes available using the computer program
Clustal X 1.83 [24] and MegAlign procedure within the
DNAStar 5.0 [25] to infer gene boundaries. The open-
reading frames were analysed with Open Reading Frame
Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) using
the invertebrate mitochondrial code, and subsequently
compared with that of T. callipaeda [21]. Protein-coding
gene sequences were translated into amino acid sequences
using the invertebrate mitochondrial genetic code; amino
acid sequences were aligned using default settings with
MEGA 5.0 [26]. Translation initiation and termination
codons were identified by comparison with those of the
spirurid nematodes reported previously [21,27]. For
of the mt genomes of spirurid nematodes sequenced to

LL OF OV SD SL TC WB

76.46 73.71 72.99 74.23 74.87 74.23 76.63

69.48 69.70 67.03 69.10 66.97 67.88 67.70

71.53 68.10 69.24 69.38 68.51 67.38 70.57

76.20 72.18 71.79 72.56 71.39 72.41 74.33

75.35 73.65 72.11 72.34 72.85 73.68 72.70

72.85 71.60 69.78 72.78 72.50 73.22 72.52

77.26 75.56 74.30 76.49 70.91 77.35 75.71

79.82 76.56 76.11 77.06 80.65 80.24 84.27

75.75 74.05 73.15 76.91 74.47 75.59 73.88

81.09 77.73 78.60 76.76 76.75 80.17 80.66

74.03 73.62 72.87 74.81 72.88 73.82 74.69

81.98 81.11 79.11 82.44 77.56 80.17 80.04

76.56 75.84 74.71 74.55 76.09 75.68 75.30

78.65 77.71 76.95 79.40 79.05 77.43 79.01

83.68 79.93 85.32 86.36 88.50 79.57 83.71

75.54 74.17 73.30 75.14 73.73 74.57 74.59

cali, DI: Dirofilaria immitis, DM: Dracunculus medinensis, HL: Heliconema
ria digitata, SL: Spirocerca lupi, TC: Thelazia callipaeda, WB: Wuchereria bancrofti,

http://www.ncbi.nlm.nih.gov/gorf/gorf.html


Liu et al. Parasites & Vectors 2013, 6:45 Page 5 of 9
http://www.parasitesandvectors.com/content/6/1/45
analyzing ribosomal RNA genes, putative secondary
structures of 22 tRNA genes were identified using
tRNAscan-SE [28], of the 22 tRNA genes, 14 were identi-
fied using tRNAscan-SE, the other 8 tRNA genes were
found by eye inspection, and rRNA genes were identified
by comparison with that of spirurid nematodes [21,27].

Phylogenetic analysis
The amino acid sequences conceptually translated from
individual genes of the mt genome of S. lupi were
concatenated. Selected for comparison were concatenated
Table 4 Codon usage of Spirocerca lupi mitochondrial protein

Amino acid Codon Number Frequency (%)

Phe TTT 591 17.03

Phe TTC 16 0.46

Leu TTA 195 5.61

Leu TTG 235 6.77

Ser TCT 139 4.00

Ser TCC 7 0.20

Ser TCA 8 0.23

Ser TCG 6 0.17

Tyr TAT 214 6.16

Tyr TAC 6 0.17

Stop TAA 7 0.20

Stop TAG 5 0.14

Cys TGT 75 2.16

Cys TGC 3 0.08

Trp TGA 36 1.03

Trp TGG 56 1.61

Leu CTT 19 0.54

Leu CTC 0 0

Leu CTA 10 0.28

Leu CTG 2 0.05

Pro CCT 55 1.58

Pro CCC 7 0.20

Pro CCA 6 0.17

Pro CCG 9 0.25

His CAT 52 1.49

His CAC 1 0.02

Gln CAA 20 0.57

Gln CAG 31 0.89

Arg CGT 46 1.32

Arg CGC 1 0.02

Arg CGA 3 0.08

Arg CGG 6 0.17

Total number of codons is 3,470.
Stop = Stop codon.
amino acid sequences predicted from published mt
genomes of key nematodes representing the order
Spirurida, including the superfamilies Thelazoidea (T.
callipaeda [21]), Filarioidea (Acanthocheilonema viteae
[29], Brugia malayi [30], Chandlerella quiscali [29],
Dirofilaria immitis [31], Loa loa [29], Onchocerca flexuosa
[29], O. volvulus [32], S. digitata [27] and Wuchereria
bancrofti [18]), Dracunculoidea (Dracunculus medinensis
[33]) and Physalopteroidea (Heliconema longissimum [33])
(GenBank accession numbers JX069968, NC_016197,
NC_004298, NC_014486, NC_005305, NC_016199, NC_0
-coding genes

Amino acid Codon Number Frequency (%)

Met ATA 52 1.49

Met ATG 103 2.96

Thr ACT 81 2.33

Thr ACC 3 0.08

Thr ACA 2 0.05

Thr ACG 3 0.08

Asn AAT 87 2.50

Asn AAC 6 0.17

Lys AAA 42 1.21

Lys AAG 56 1.61

Ser AGT 99 2.85

Ser AGC 5 0.14

Ser AGA 22 0.63

Ser AGG 30 0.86

Val GTT 239 6.88

Val GTC 5 0.14

Val GTA 35 1.00

Val GTG 37 1.06

Ala GCT 64 1.84

Ala GCC 4 0.11

Ala GCA 1 0.02

Ala GCG 10 0.28

Asp GAT 66 1.90

Asp GAC 2 0.05

Glu GAA 31 0.89

Glu GAG 42 1.21

Gly GGT 143 4.12

Gly GGC 12 0.34

Gly GGA 33 0.95

Gly GGG 72 2.07

IIe ATT 212 6.10

IIe ATC 4 0.11
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16172, AF015193, NC_014282, JN367461, NC_016019
and NC_016127, respectively), using Ascaris suum [34]
(GenBank accession number HQ704901) as the outgroup.
The amino acid sequences were aligned using Clustal
X 1.83 [24] using default settings, ambiguously aligned
regions were excluded using Gblocks online server
(http://molevol.cmima.csic.es/castresana/Gblocks_server.
html) using the options for a less stringent selection,
and then subjected to phylogenetic analysis using
Bayesian inference (BI) as described previously [35,36].
Phylograms were drawn using the Tree View program
v.1.65 [37].
Results and discussion
General features of the S. lupi mt genome
The complete mtDNA sequence of S. lupi was 13,780 bp
in size (Figure 1), and has been deposited in the
GenBank under the accession number KC305876. The
mt genome of S. lupi contains 12 protein-coding genes
(cox1-3, nad1-6, nad4L, atp6 and cytb), 22 transfer RNA
genes, two ribosomal RNA genes (rrnL and rrnS) and a
non-coding (control or AT-rich) region, but lacks an
atp8 gene (Table 2). All genes are transcribed in the
same direction. The gene order is identical to those of T.
callipaeda and S. digitata [21,27], but distinct from
those of H. longissimum (rearrangement markedly) and
Dracunculus medinensis (tRNA-Met and tRNA-Val
change) [33]. The nucleotide compositions of S. lupi mt
genome is biased toward A and T, with T being the most
favored nucleotide and C being the least favored, in ac-
cordance with mt genomes of other spirurid nematodes
[27,31]. The content of A + T is 73.73% for S. lupi, simi-
lar to that of mt genomes of other spirurid nematodes
sequenced to date, such as that of T. callipaeda (74.57%)
Figure 2 Relationship of Spirocerca lupi with other selected spirurid n
concatenated amino acid sequences of 12 protein-coding genes were sub
outgroup. Posterior probability (pp) values are indicated.
[21] and W. bancrofti (74.59%) [18] (Table 3). Further-
more, the S. lupi mt genes overlap a total of 98 bp in 16
locations ranging from 1 to 32 bp (Table 2). The longest
is a 32 bp overlap between nad1 and tRNA-Phe. The mt
genome of S. lupi has 150 bp of intergenic regions at 16
locations ranging in size from 1 bp to 59 bp, the longest
intergenic region is a 59 bp between tRNA-Pro and
tRNA-Asp (Table 2). The mt genome of T. callipaeda
has 14 intergenic regions, which range from 1 to 62 bp
in length. The longest region is 62 bp between tRNA-
Pro and tRNA-Asp [21].
Protein-coding genes
The S. lupi mt genome encodes 12 protein-coding genes,
which are identical to those of T. callipaeda and S. digitata
[21,27]. For S. lupi, the sizes of the protein-coding genes
were in the order: cox1 > nad5 > nad4 > cytb > nad1 >
nad2 > cox3 > cox2 > atp6 > nad6 > nad3 > nad4L (Table 2).
The predicted translation initiation and termination codons
for the 12 protein-coding genes of S. lupi mt genome were
compared with that of T. callipaeda and S. digitata [21,27].
The most common initiation codon for S. lupi is TTG (5 of
12 protein genes), followed by ATG (4 of 12 protein genes),
ATT (2 of 12 protein genes) and ATA (1 of 12 protein
genes) (Table 2). In this mt genome, all protein genes were
predicted to have a TAA or TAG as termination codon
(Table 2). Although incomplete termination codons (T or
TA) are present in some other nematodes, including
Anisakis simplex (s. l.) [38], A. suum [39], Caenorhabditis
elegans [39], S. digitata [27], Toxocara spp. [40] and
Trichinella spiralis [41], they were not identified in the
S. lupimt genome.
Excluding the termination codons, a total of 3,458

amino acids of protein-coding genes are encoded by the
ematodes based on mitochondrial sequence data. The
jected to analysis by Bayesian inference (BI) using Ascaris suum as the

http://molevol.cmima.csic.es/castresana/Gblocks_server.html
http://molevol.cmima.csic.es/castresana/Gblocks_server.html
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S. lupi mt genome. Table 4 shows the codon usage.
Condons composed of A and T are predominantly used,
which seems to reflect the high A + T content of the mt
genome of S. lupi. A strong preference for A + T rich
codons usage is found in mtDNA of S. lupi. For ex-
ample, the most frequently used amino acid was Phe
(TTT: 17.03%), followed by Leu (TTG: 6.77%), Tyr
(ATA: 6.16%) and IIe (ATT: 6.10%). This result is con-
sistent with a recent study [21].

Transfer RNA genes and ribosomal RNA genes
The sizes of 22 tRNA genes identified in the S. lupi
mt genome ranged from 50 to 62 bp in size. Second-
ary structures predicted for the 22 tRNA genes of S.
lupi (not shown) are similar to that of S. digitata [27].
The rrnL and rrnS genes of S. lupi were identified by
comparison with the mt genomes of T. callipaeda and
S. digitata. The rrnL is located between tRNA-His and
nad3, and rrnS is located between nad4L and tRNA-
Tyr. The lengths of the rrnL and rrnS genes were
988 bp and 686 bp for S. lupi, respectively (Table 2).
The A + T contents of the rrnL and rrnS genes for S.
lupi are 79.05% and 76.09%, respectively.

Non-coding regions
The majority of nematode mtDNA sequences contain
usually two non-coding regions of significant size differ-
ence, the long non-coding region and the short non-
coding region, including A. lumbricoides and A. suum
[34], Contracaecum rudolphii B [42], Oesophagostomum
spp. [43], Toxocara spp. [40] and Trichuris spp. [44,45].
However, there is only one non-coding region (AT-rich
region) in the mt genome of S. lupi, which is located be-
tween cox3 and tRNA-Ala (Figure 1 and Table 2), with
88.50% A + T content (Table 3). This region of the mt
genome of S. lupi was considered as a non-coding region
(or AT-rich region) due to its location and AT rich fea-
ture based on comparison with those of spirurid
nematodes reported previously [21,27]. Moreover, in the
AT-rich region of S. lupi consecutive sequences [A]13
and [T]12 were found, but there are no AT dinucleotide
repeat sequences similar to that of A. simplex s.l. and S.
digitata in the this region [27,38].

Phylogenetic analyses
The phylogenetic relationships of 12 spirurid species
based on concatenated amino acid sequence datasets,
plus the mtDNA sequence of S. lupi obtained in the
present study, using BI is shown in Figure 2. The results
revealed that S. lupi (Thelaziidae) was a sister taxon to a
clade containing S. digitata (Setariidae) and other
members of the Onchocercidae, including B. malayi and
D. immitis (posterior probability = 1.00), consistent with
results of previous studies [14,21,46].
Many studies have demonstrated that mtDNA sequences
are valuable genetic markers for phylogenetic studies
of members within the Nematoda. A recent study analyzed
mt sequence variations in human- and pig-derived
Trichuris and demonstrated that they represent separate
species [44]. In addition, a previous study sequenced and
compared the mt genomes of A. lumbricoides and A. suum
from humans and pigs and indicted that A. lumbricoides
and A. suum may represent the same species [34]. In the
present study, the characterization of the mt genome of S.
lupi can promote to reassess the systematic relationships
within the order Spirurida using mt genomic datasets. For
many years, there have been considerable debates about the
phylogenetic position of members of spirurid nematodes
[47,48]. Given this utility of mt genomic datasets, thus, fur-
ther work should sequence more mt genomes of spirurid
nematodes and re-construct the phylogenetic relationships
of spirurid nematodes using expanded mt datasets.

Conclusions
The present study determined the complete mt genome
sequence of S. lupi, and ascertained its phylogenetic pos-
ition within the Spirurida. These new mtDNA data will
provide useful novel markers for studying the molecular
epidemiology and population genetics of S. lupi, and
have implications for the diagnosis, prevention and con-
trol of spirocercosis in canid animals.
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