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Abstract

Background: Toxoplasma gondii is an opportunistic pathogenic protozoan parasite, which infects approximately
one third of the human population worldwide, causing opportunistic zoonotic toxoplasmosis. The predilection
of T. gondii for the central nervous system (CNS) causes behavioral disorders and fatal necrotizing encephalitis
and thus constitutes a major threat especially to AIDS patients.

Methods: In the present study, we explored the proteomic profiles of brain tissues of the specific pathogen-free
(SPF) Kunming mice at 7 d, 14 d and 21 d after infection with cysts of the Toxoplasma gondii Prugniaud (PRU)
strain (Genotype II), by two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF/TOF tandem
mass spectrometry (MS/MS).

Results: A total of 60 differentially expressed protein spots were selected. Fifty-six spots were successfully
identified, which corresponded to 45 proteins of the mouse. Functional analysis using a Gene Ontology
database showed that these proteins were mainly involved in metabolism, cell structure, signal transduction and
immune responses, and will be beneficial for the understanding of molecular mechanisms of T. gondii
pathogenesis.

Conclusions: This study identified some mouse brain proteins involved in the response with cyst-forming T. gondii
PRU strain. These results provided an insight into the responsive relationship between T. gondii and the host brain
tissues, which will shed light on our understanding of the mechanisms of pathogenesis in toxoplasmic encephalitis,
and facilitate the discovery of new methods of diagnosis, prevention, control and treatment of toxoplasmic
encephalopathy.
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Background
The obligate intracellular parasite Toxoplasma gondii is an
important water- and food-borne protozoan and can infect
humans as well as almost all warm-blooded animals in-
cluding mammals and birds, and the infection usually per-
sists throughout the life of the hosts [1-5]. T. gondii infects
approximately 30% of the human population worldwide
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and 8% of population in China [6]. Humans can be
infected by ingesting tissues cysts in uncooked meat or by
ingesting food and water contaminated with oocysts from
infected cat feces [1,2,6]. There are three infectious stages
of T. gondii: tachyzoites (the rapidly multiplying form),
bradyzoites (latent form found in tissue cysts) and sporozo-
ites (in oocysts) [7]. Bradyzoites develop in cysts within
host cells in a number of tissues, and they are more com-
mon in neural and muscular tissues.
T. gondii has long been known as an important oppor-

tunistic pathogen of immuno-compromised patients.
Toxoplasmosis ranks high on the list of diseases that
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lead to death of the AIDS patients. Encephalitis caused
by T. gondii is the most predominant manifestation of
toxoplasmosis in immunosuppressed patients and is now
recognized with great frequency in patients treated with
immunosuppressive agents [8-11].
In the past decade, proteomic approaches have been

extensively employed to study the interaction between
pathogens and their hosts. The most frequently used
technique in quantitative proteomics is two-dimensional
electrophoresis (2-DE). In quantitative 2-DE, the appro-
priate experimental design plays an important role in
the detection of significant and reliable protein expres-
sion differences [12]. Despite that there are some limita-
tions of the technology, such as offering a limited
dynamic range of separated proteins, it has been used to
investigate host cell proteome changes after infection
with T. gondii tachyzoites [13,14], but little is currently
known of the proteomic changes at differential time
points in host brain tissues after infection with T. gondii
cysts. In the present study, we applied 2-DE combined
with mass spectrometry to study proteomic changes in
mouse brain tissues infected with T. gondii cysts. The
objective was to examine the proteomic modulation of
host brain by cyst-forming T. gondii in vivo.

Methods
Ethics statement
The present study was approved by the Animal Ethics
Committee of Lanzhou Veterinary Research Institute,
Chinese Academy of Agricultural Sciences (Approval
No. LVRIAEC2010-008). The mice were handled in ac-
cordance with good animal practices required by the
Animal Ethics Procedures and Guidelines of the People’s
Republic of China.

Sample collection
Sixty Specific-Pathogen-Free (SPF)-grade female Kun-
ming mice (including 30 mice for T. gondii infection and
30 mice as non-infected control), aged 6 to 8 weeks old,
were purchased from Sun Yat-Sen University Laboratory
Animal Center. All mice were handled in accordance
with good animal practice according to the Animal Eth-
ics Procedures and Guidelines of the People’s Republic
of China. All mice were maintained under standard con-
ventional conditions, with food and water ad libitum.
T. gondii (PRU) strain (Genotype II) was kindly pro-

vided by Prof Hai-Zhu Zhang (Department of Parasit-
ology, Xinxiang Medical College, Henan, China) and
were preserved in our laboratory. Tissue cysts of the
PRU strain were obtained from the brains of Kunming
mice infected with cysts according to Yan et al. [15].
Cysts were counted under an optical microscope. After
counting, each of the 30 mice in the treatment group
was inoculated intra-gastrically with 10 cysts of the PRU
strain, while 30 mice in the non-infection control group
were inoculated intra-gastrically with sterile physio-
logical saline. After inoculation, the mice were observed
daily for clinical symptoms. Based on a previous study
[16] and our pilot study, at 7 d, 14 d and 21 d post infec-
tion, six mice from both treatment group and the con-
trol group were euthanized and the whole brain of each
mouse was rapidly removed separately, washed to re-
move the blood, and immediately stored at −80°C until
proteomic analysis, or directly processed for protein ex-
traction. The mice that were successfully infected and
produced T. gondii cysts were determined by observing
tissue cysts in the brain under an optical microscope
(for 14 d and 21 d).

Protein extraction
Proteins were prepared according to the previously
published protocol [13]. In brief, mouse brain tissues
of six mice from each group, respectively, were lysed in
lysis buffer containing 7 M urea, 2% CHAPS {3-[(3-
cholamidopropyl)-dimethylammonio]-1-propanesulfonate},
2 M thiourea (Amersham), 20 mM Tris–HCl (pH 8.5,
Amresco) and phenylmethylsulfonyl fluoride solution
(Amresco). Then the sample was sonicated on ice (80 W,
12 s duration, 10 times, with 2 min intervals) and
centrifuged at 12,000 × g for 20 min at 4°C. The super-
natant was transferred to a new centrifuge tube with four
times the volume of acetone added. The mixture was then
precipitated overnight at −20°C and centrifuged on the
next day with the same parameters. The precipitate was
harvested and stored at −80°C until use. The samples were
prepared in triplicates.

Isoelectric focusing electrophoresis
2-DE procedure was performed essentially according to
a protocol published previously [13]. Briefly, before the
isoelectric focusing electrophoresis, the precipitate was
dissolved in rehydration buffer containing 7 M urea, 2%
CHAPS, 2 M thiourea, followed by centrifugation at
12,000 × g for 20 min at 4°C. The protein concentration
was determined by the Bradford method using a 2D
Quant kit (Amresco) according to the manufacturer’s in-
structions. Using an equal mixture of the brain tissue
protein of each mouse in the control group and treat-
ment group respectively, proteins were initially separated
using an Ettan IPGphor 3 Isoelectric Focusing system
(GE Healthcare). Brain tissue proteins were focused to
their isoelectric points on a 24 cm (pH 4–7) Immobiline
DryStrip (GE Healthcare) with the following parameters:
300 V for 20 min, 700 V for 30 min, 1,500 V for 1.5 h,
9,000 V for 3 h and 9,000 V for 4 h. After the isoelectric
focusing, the IPG strip was equilibrated for 15 min in
equilibration buffer containing 2% sodium dodecyl sul-
fate (SDS), 50 mM Tris–HCl (pH 8.8), 6 M urea, 30%
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(vol/vol) glycerol, 0.002% bromophenol blue and 100 mM
dithiothreitol (freshly added before use, Amresco), and
followed by a second wash for 15 min with equilibration
buffer containing 250 mM iodoacetamide (freshly added
before use, Amersham). The IPG strip was then embedded
in a precast gel and sealed into place using agarose sealing
solution.

SDS-PAGE
After equilibration, the immobilized pH gradient strips
were loaded onto 12.5% (w/v) homogeneous acrylamide
gels (1 mm × 24 cm × 19 cm) and sealed with 1% (w/v)
agarose. Proteins were separated by running the gels at
2 W/gel for 45 min and then at 18 W/gel at 10°C until
the bromochlorophenol blue reached the end of gels. Fi-
nally, the gels were fixed in fixing solution (ethanol: gla-
cial acetic acid: deionized water = 4:1:5) for 2 h, stained
with Coomassie Brilliant Blue G-250 overnight and
rinsed with deionized water.

Analysis of gels
Images of gels were obtained at 150 dpi (dots/in) using a
scanner (Powerlook1100, UMAX) and analyzed using
ImageMaster™ 2D Platinum 5.0 software (GE Healthcare).
Spots were detected by 2DElite Automatic Spot Detection
Program, which calculated spot volumes relative to the
background and normalization. The volume percentage of
each spot was determined by comparison of the spot vol-
ume to the total volume presented in the 2-DE gel. To se-
lect differentially expressed protein spots, quantitative
analysis was performed using the Student’s t-test by the vol-
ume percentage of spots between brain tissues of the
infected and uninfected groups on the triplicate gels. Two
spots were considered significantly different if P < 0.05 and
with 1.5 fold differences in volume. Spots meeting these
criteria were then selected and subjected to in-gel tryptic
digestion.

Protein enzymolysis
The differentially expressed protein spots were manually
excised from the Coomassie Brilliant Blue-stained gels
and put into a 96-well microplate. The gel pieces were
washed twice with MilliQ water, destained with 50%
methanol at 37°C for 30 min, and dehydrated in 100 μl
of acetonitrile (ACN) at room temperature for 20 min.
Next, the samples were swollen in 50 μl of 100 mM
NH4HCO3, dehydrated for the second time and incu-
bated in 1 μg/50 μl trypsin (Promega) at 4°C for 30 min.
Then the samples were added with coverage solution
(10% ACN, 50 mM NH4HCO3, MilliQ water) and incu-
bated at 37°C for 16 h. After suction of the coverage
solution, the peptide mixtures were extracted using 2.5%
trifluoroacetic (TFA)/90% ACN at room temperature for
30 min and vacuum dried.
Identification of protein spots by MS
After vacuum drying, material was dissolved in 1.5 μl so-
lution containing MilliQ water, 50% ACN and 0.1% TFA.
Then, 0.8 μl of the mixture was loaded onto a target plate
with 0.5 μl HCCA (5 mg/ml a-Cyano-4-hydroxycinnamic
acid) matrix, dried at room temperature and analyzed
using ABI 4800 matrix-assisted laser desorption
ionization-time of flight/time of flight (MALDI-TOF/
TOF) Proteomics Analyzer mass spectrometer (Ap-
plied Biosystems, USA). The UV laser was operated at
a 200 Hz repetition rate with a wavelength of 355 nm
and an accelerated voltage of 20 kV.

Database searching
The experimental MS data were matched to a corre-
sponding virtual peptide mass database derived from
GPS Explorer™ v 3.6, the Mascot and the International
Protein Index (IPI) mouse protein database. Protein
identification was carried out by peptide mass finger-
print (PMF) using the Mascot software (http://www.
matrixscience.com). The search parameters used in PMF
were as follows, database: IPI mouse (56871 sequences);
species: mouse; enzyme: trypsin; fixed modifications:
carbamidomethylation; variable modifications: oxidation
(M). The function, gene name, and Gene Ontology cat-
egory of each protein were determined using the Mascot
v 2.1 software protein database search engine and the
IPI mouse protein database.

Quantitative real-time PCR verification
Total RNA was extracted from the mouse brain tissues
infected with T. gondii cysts using the Trizol reagent
(Invitrogen). One microgram of total RNA was used to
synthesize the first-strand cDNA, which was diluted 20
fold; 5 μl of the diluted cDNA was used as a template
for real time PCR. SYBR Green-monitored real time
PCR was performed on an ABI PRISM® 7500 Sequence
Detection System (Applied Biosystems). The primer
sequences used for real time PCR are listed in Table 1.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
was used as a housekeeping gene for the tests.

Results
Comparative proteomic analysis by 2-DE
Global protein components of mouse brain tissues were
separated with 2-DE in a 24 cm, pH 4–7 IPG strip. The
2-DE gels were processed by silver staining or
Coomassie brilliant blue G-250 staining, then scanned
using a UMAX scanner. Consistency of the method was
confirmed by analyzing in gels in triplicate. The data
were analyzed using ImageMaster™ 2D Platinum 5.0 soft-
ware. The results showed that at least 2500 protein spots
were detected in each gel. Spots with significant increase
(or decrease) in their relative abundance were considered

http://www.matrixscience.com/
http://www.matrixscience.com/


Table 1 Primer sequences and amplicon lengths of
quantitative real-time PCR products of target genes

Target genes Primers (5′ to 3′) Amplicon
length (bp)

Calreticulin FP: CACCAAGAAGGTTCATGTCA 190

RP: CAGAAAGTCCCAATCATCCT

Rho GDP-dissociation
inhibitor 1

FP: AGTCTTGTGACCCCGGAAGT 129

RP: TCTGCCATGCTTACCTCTAGC

Endoplasmin FP: ACCAGACACCAAGGCGTATG 150

RP: TCTCCCTCATCCTGCTCTGA

Stomatin-like protein 2 FP: GTCAGCGCATTCTCCAAACT 180

RP: CGTGTCTGTAGCCTGGACAT

GAPDH FP: CGGCCTCCAAGGAGTAAGAAA 141

RP: GCCCCTCCTGTTATTATGG

FP: Forward primer; RP: Reverse primer.
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the differentially expressed proteins if P < 0.05 and two
spots have 1.5 fold differences in volume. After bioinfor-
matics analysis, 60 differentially expressed proteins were
selected and identified using MALDI-TOF MS.

Identification of differentially expressed proteins
Proteins with MW ranging from 17 to 170 kDa and pI
between 4 and 7 were separated well. Differentially
expressed proteins were picked from gels and identified
using MALDI-TOF MS. The data are summarized in
Table 2. Sixty significantly and consistently up- or down-
regulated protein spots with 1.5 fold changes of volume
intensity in the triplicate gels were digested by trypsin
and analyzed by MALDI-TOF MS.
Fifty-six of 60 differentially expressed proteins were

successfully identified (Figure 1), corresponding to 45
unique proteins. These proteins are listed in Table 2.
Several different protein spots were identified as the
same proteins by MS. Spots 4 and 18 were identified as
the same protein. Spots 22 and 44 were identified as the
same protein. Spots 31 and 36 were identified as differ-
ent isoforms of the same protein. At 7 d post T. gondii
infection, 9 spots (spots 1–9) were down-regulated and
6 were up-regulated (spots 10–15) in mouse brain tissue.
At 14 d post infection, 17 spots were down-regulated
(spots 16–24, 39–46) and 13 were up-regulated (spots
25–27, 47–56). At 21 d post infection, 13 protein spots
(spots 28–32, 39–46) were down-regulated and 16
(spots 33–38, 47–56) were up-regulated. Eight protein
spots (spots 39–46) and 10 protein spots (spots 47–56)
were down- or up-regulated on both 14 d and 21 d,
respectively (Figure 1).

Analysis of differentially expressed proteins
According to the Uniprot Knowledgebase (Swiss-Prot/
TrEMBL) and Gene Ontology database, the functions of
successfully identified proteins were grouped based on
biological processes, cellular component and molecular
function. The results showed that the function of these
proteins involved in cellular metabolism, structural mol-
ecule activity, immune responses, biological regulation,
metabolic process, binding, catalytic activity, enzyme
regulator activity, transporter activity and other func-
tions. The differentially expressed proteins were mainly
located in the cytoplasm, cell membranes and organelles
(mitochondria and lysosomes), and some are secreted
proteins (Figure 2).

Quantitative real-time PCR verification of differentially
expressed proteins
Four genes corresponding to the protein spots desig-
nated calreticulin, Rho GDP-dissociation inhibitor 1,
endoplasmin and stomatin-like protein 2 were chosen
for quantitative real-time PCR analysis to quantify their
transcript levels. The real time PCR results were consist-
ent with those of the 2-DE studies, and suggested that
these proteins identified as differentially expressed were
regulated at transcriptional level.

Discussion
The present study compared the proteomic profiles of
brain tissues at 7 d, 14 d and 21 d after infection with
cysts of T. gondii PRU strain by 2-DE analysis. A total of
60 differentially expressed protein spots were selected
and identified by MALDI-TOF MS. Of these, 56 protein
spots were successfully identified, which represented 45
different proteins. Four protein spots were not success-
fully identified, which may be due to the low concentra-
tions of the proteins, which therefore failed to produce
high quality mass spectrometric data.
GO analysis revealed that most of the differentially

expressed proteins are involved in metabolism, cell
structure, signal transduction and immune responses.
Here, we focused on the discussion of the functions of
several main differentially expressed proteins, and the
relationships between these proteins and T. gondii
infection.
Serine protease inhibitor (SERPIN) A3k is persistently

up-regulated in mouse brain tissues 7, 14 and 21 days
after infection with Toxoplasma cysts. Many members of
the serine protease inhibitor superfamily play an import-
ant role in the physiological and pathological process,
and can be regarded as protease inhibitors which are in-
volved in the coagulation reaction, fiber dissolution,
angiogenesis, complement activation, immune and in-
flammatory reaction [17,18]. It was suggested that
SERPINs could inhibit host cell apoptosis [19]. In
addition, SERPIN may inhibit replication and decrease
T. gondii viability [20]. Therefore, the persistence of up-
regulated SERPIN A3k may play an important role in
preventing the death of infected mouse brain cells as



Table 2 Differentially expressed proteins between T. gondii-infected and non-infected mouse brain tissues

Spot
No.

Accession
No.

Protein name Score Expect Queries
matched

Sequence
Coverage

Nominal
mass

Calculated
pI value

Matched peptides Fold change
(Infected/non-
infected)A

Functional
categoriesB

Day 7, down-regulated proteins

1 IPI00230394 Lamin-B1 288 9.00E-25 27 36 66973 5.11 ASAPATPLSPTR;LQEKEELR;SLETENSALQ
LQVTEREEVR;ALYETELADARR;LREYEAAL
NSK;VDLENRCQSLTEDLEFRKNMYEEEINE
TRR;LVEVDSGR;LAQALHEMREQHDAQVR
LYKEELEQTYHAK;LALDMEISAYR;LKNTSE
QDQPMGGWEMIR;NQNSWGTGEDVK;NS
QGEEVAQR;TTIPEEEEEEEEEPIGVAVEEERF
HQQGAPR

−2.91 Structural molecule
activity

2 IPI00944143 Serpin B6 isoform a 218 9.00E-18 9 25 45201 5.99 SRPGCCAGPRGYR;NVFLSPMSISSALAMVF
MGAK;TGTQYLLR;FYEAELEELDFQGATEES
R;FIEWTR;LGMTDAFGGR;AFVEVNEEGTEA
AAATAGMMTVR

−1.68 Enzyme regulator
activity and
metabolic process

3 IPI00110721 Isoform 1 of Glyoxalase
domain-containing
protein 4

508 9.00E-47 12 41 33581 5.28 FQTVHFFRDVLGMQVLRHEEFEEGCK;LGN
DFMGITLASSQAVSNAR;VAEGIFETEAPGG
YKFYLQDR;IYEQDEEKQR;LELQGIQGAVD
HAAAFGR;ELPDLEDLMKR;LLDDAMEADK
SDEWFATR

−1.51 Cell part and
organelle

4 IPI00113660 Proteasome activator
complex subunit 3

471 4.50E-43 9 42 29602 5.69 ITSEAEDLVANFFPK;RLDECEEAFQGTK;SN
QQLVDIIEKVKPEIR;IEDGNNFGVSIQEETVA
ELRTVESEAASYLDQISRYYITR;YPHVEDYR
RTVTEIDEKEYISLR

−1.70 Enzyme regulator
activity

5 IPI00130344 Chloride intracellular
channel protein 1

202 3.60E-16 6 39 27338 5.09 IGNCPFSQR;YPKLAALNPESNTSGLDIFAK;
VLDNYLTSPLPEEVDETSAEDEGISQR;GFTI
PEAFR;YLSNAYAREEFASTCPDDEEIELAYE
QVAR

−1.89 Transporter activity

6 IPI00121851 Prefoldin subunit 3 133 2.90E-09 4 15 22592 6 FLLADNLYCK;NLDSLEEDLDFLR;VYNWD
VKR

−1.51 Metabolic process

7 IPI00315794 Cytochrome b5 212 3.60E-17 6 54 16365 4.79 VEGSEPSVTYYR;NSAEETWMVIHGRVYDITR
FLSEHPGGEEVLLEQAGADATESFEDVGHS
PDAR;QYYIGDVHPSDLKPK

−1.70 Binding and
enzyme activator
activity

8 IPI00124501 Galectin-related
protein A

257 1.10E-21 8 57 19172 5.12 LDDGHLNNSLGSPVQADVYFPRLIVPFCGH
IK;AVFTDR;NSCISGERGEEQSAIPYFPFIPDQ
PFRVEILCEHPR;VFVDGHQLFDFYHRIQTLS
AIDTIK

−1.74 Binding

9 IPI00308984 Eukaryotic translation
initiation factor 1A

248 9.00E-21 3 28 16564 5.07 ELVFKEDGQEYAQVIK;LEAMCFDGVKR;VW
INTSDIILVGLR

−1.67 Binding

Day 7, up-regulated proteins

10 IPI00131830 Serine protease
inhibitor A3K

470 5.70E-43 9 28 47021 5.05 DLQILAEFHEK;ALYQTEAFTADFQQPTEAK;
ELISELDER;ISFDPQDTFESEFYLDEKR;HFRD
EELSCSVLELK;MQQVEASLQPETLRK;FSIAS
NYR;AVLDVAETGTEAAAATGVIGGIR

2.55 Enzyme regulator
activity
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Table 2 Differentially expressed proteins between T. gondii-infected and non-infected mouse brain tissues (Continued)

11 IPI00131830 Serine protease
inhibitor A3K

511 4.50E-47 12 35 47021 5.05 DLQILAEFHEK;ALYQTEAFTADFQQPTEAK;
ELISELDER;ISFDPQDTFESEFYLDEKR;HFRD
EELSCSVLELK;MQQVEASLQPETLRK;FSIAS
NYRLEEDVLPEMGIKEVFTEQADLSGITETK;
AVLDVAETGTEAAAATGVIGGIR

3.15 Enzyme regulator
activity

12 IPI00131830 Serine protease
inhibitor A3K

463 2.90E-42 10 28 47021 5.05 DLQILAEFHEK;ALYQTEAFTADFQQPTEAK;
ELISELDER;ISFDPQDTFESEFYLDEKR;HFRD
EELSCSVLELK;MQQVEASLQPETLRK;FSIAS
NYR;AVLDVAETGTEAAAATGVIGGIR

6.30 Enzyme regulator
activity

13 IPI00131830 Serine protease
inhibitor A3K

564 2.30E-52 14 35 47021 5.05 DLQILAEFHEK;ALYQTEAFTADFQQPTEAK;
ELISELDER;ISFDPQDTFESEFYLDEKR;HFRD
EELSCSVLELK;MQQVEASLQPETLRK;FSIAS
NYRLEEDVLPEMGIKEVFTEQADLSGITETKK;
AVLDVAETGTEAAAATGVIGGIR

4.02 Enzyme regulator
activity

14 IPI00131830 Serine protease
inhibitor A3K

596 1.40E-55 12 35 47021 5.05 DLQILAEFHEK;ALYQTEAFTADFQQPTEAK;
ELISELDER;ISFDPQDTFESEFYLDEKR;HFRD
EELSCSVLELK;MQQVEASLQPETLRK;FSIAS
NYRLEEDVLPEMGIKEVFTEQADLSGITETK;
AVLDVAETGTEAAAATGVIGGIR

5.80 Enzyme regulator
activity

15 IPI00310972 GTP-GDP dissociation
stimulator 1 isoform b

490 5.70E-45 18 27 61381 5.28 NEFMR;DQEVLLQTGR;EQFASTNIAEELVK;
QIEHDKREMIFEVLAPLAENDAIK;LMDLLD
RHVEDGNVTVQHAALSALR;SEMPPVQFK;
MLIDAQAEAAEQLGK;LVEWCEAKDHAGV
MGESNR;DLASAQLVQILHRLLADER;SVAQ
QASLTEQR

8.32 Cell part and
organelle part

Day 14, down-regulated proteins

16 IPI00131871 COP9 signalosome
complex subunit 4

449 7.20E-41 18 50 46541 5.57 QLLTDFCTHLPNLPDSTAK;VISFEEQVASIR
QHLASIYEKEEDWRNAAQVLVGIPLETGQK
QYNVDYKLETYLK;LYLEDDDPVQAEAYINR
ASLLQNESTNEQLQIHYK;KFIEAAQR;TIVHE
SERLEALKHALHCTILASAGQQR;MLATLFK
DERCQQLAAYGILEK;ATTADGSSILDR;IAS
QMITEGRMNGFIDQIDGIVHFETR

−2.50 Metabolic process

17 IPI00338039 Tubulin beta-2A chain 591 4.50E-55 22 42 50274 4.78 MREIVHIQAGQCGNQIGAKFWEVISDEHGI
DPTGSYHGDSDLQLERINVYYNEAAGNK;
AILVDLEPGTMDSVR;GHYTEGAELVDSVLD
VVRK;IREEYPDRIMNTFSVMPSPK;FPGQLN
ADLRKLAVNMVPFPRLHFFMPGFAPLTSRG
SQQYRALTVPELTQQMFDSKNMMAACD
PR;ISEQFTAMFRR

−1.90 Structural molecule
activity

18 IPI00113660 Proteasome activator
complex subunit 3

450 5.70E-41 11 43 29602 5.69 ERITSEAEDLVANFFPK;RLDECEEAFQGTK;S
NQQLVDIIEKVKPEIR;IEDGNNFGVSIQEETV
AELRTVESEAASYLDQISRYYITR;YPHVEDYR
RTVTEIDEKEYISLR

−2.04 Enzyme regulator
activity

19 IPI00407019 Tetratricopeptide
repeat protein 19

348 9.00E-31 12 23 41550 5.87 LSIMKDEPEAAELILHDALRLAYESDNRK;GQ
LENAEQLFK;QLSQAQR;ALQICQEIQGER;EI
YQEALKR;RDEVSVQHIREELAELSR

−1.99 Cell part, organelle
and organelle part
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Table 2 Differentially expressed proteins between T. gondii-infected and non-infected mouse brain tissues (Continued)

20 IPI00133440 Prohibitin 688 9.00E-65 14 42 29859 5.57 AVIFDRFR;DLQNVNITLRILFRPVASQLPRIY
TSIGEDYDERVLPSITTEILK;FDAGELITQR;Q
VSDDLTER;QVAQQEAER;AAELIANSLATA
GDGLIELRKLEAAEDIAYQLSR

−4.73 Metabolic process

21 IPI00313962 Ubiquitin carboxyl-
terminal hydrolase
isozyme L1

340 5.70E-30 8 39 25165 5.14 LGVAGQWR;QIEELKGQEVSPK;QFLSETEKL
SPEDR;CFEKNEAIQAAHDSVAQEGQCR;M
PFPVNHGASSEDSLLQDAAK;EFTEREQGE
VR

−1.68 Cell proliferation

22 IPI00322312 Rho GDP-dissociation
inhibitor 1

536 1.40E-49 12 49 23450 5.12 SIQEIQELDKDDESLR;YKEALLGRVAVSADP
NVPNVIVTR;EGVEYR;YIQHTYR;IDKTDYMV
GSYGPRAEEYEFLTPMEEAPK;FTDDDKTD
HLSWEWNLTIK

−4.10 Enzyme regulator
activity

23 IPI00845712 Isoform 1 of UPF0424
protein C1orf128
homolog

540 5.70E-50 17 73 24405 5.48 CAAEREEPPEQRGLAYGLYLR;LQCLNESR;
GVFKPWEER;FVESDADEELLFNIPFTGNVK
LKGVIIMGEDDDSHPSEMR;NIPQMSFDDT
EREPEQTFSLNRDITGELEYATK;IFYIGLRGE
WTELRRHEVTICNYEASANPADHRVHQVTP
QTHFIS;

−2.40 Cell part, organelle
and organelle part

24 IPI00221826 Isoform Short of
Splicing factor,
arginine/serine-rich 3

226 1.40E-18 7 41 14422 10.12 DSCPLDCK;AFGYYGPLRSVWVARNPPGFA
FVEFEDPR;NRGPPPSWGR;DDYRR

−1000000 Metabolic process

Day 14, up-regulated proteins

25 IPI00123613 Protein kinase C
and casein kinase
substrate in neurons
protein 1

382 3.60E-34 15 40 50886 5.15 LCNDLMSCVQER;AYAQQLTDWAKR;AWG
AMMTEADKVSELHQEVK;AYHLACKEER;TT
PQYMEGMEQVFEQCQQFEEKR;HLNLAEN
SSYMHVYRELEQAIRGADAQEDLR;KAEGA
TLSNATGAVESTSQAGDR;ALYDYDGQEQ
DELSFK;LGEEDEQGWCRGRLDSGQLGLYP
ANYVEAI

4.65 Catalytic activity
and binding

26 IPI00110265 Isoform 1 of NAD-
dependent deacetylase
sirtuin-2

255 1.80E-21 11 35 43856 5.23 NLFTQTLGLGSQK;LLDELTLEGVTRYMQSER;
VICLVGAGISTSAGIPDFR;HPEPFFALAK;CY
TQNIDTLER;IFSEATPRCEQCQSVVKPDIVFF
GENLPSR;APLATPR;ELEDLVRREHANIDAQ
SGSQAPNPSTTISPGK

1.57 Catalytic activity
and binding

27 IPI00649438 Novel protein similar
to splicing factor,
arginine/serine-rich 3

80 0.00061 3 19 19404 11.41 NPPGFAFVEFEDPRDAADAVR;NRGLPPSW
GR

1.65 Metabolic process

Day 21, down-regulated proteins

28 IPI00133522 Protein disulfide-
isomerase

408 9.00E-37 17 37 57507 4.79 SNFEEALAAHK;ALAPEYAKR;LKAEGSEIR;V
DATEESDLAQQYGVR;YQLDKDGVVLFKKF
DEGRNNFEGEITK;HNQLPLVIEFTEQTAPK;
ILFIFIDSDHTDNQR;KEECPAVR;YKPESDELT
AEKITEFCHR;IKPHLMSQEVPEDWDKQPVK
VLVGANFEEVAFDEKK;LGETYKDHENIIIAK;
FFPASADR

−1.52 Metabolic process
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Table 2 Differentially expressed proteins between T. gondii-infected and non-infected mouse brain tissues (Continued)

29 IPI00756786 SH3-domain GRB2-like
endophilin B2

258 9.00E-22 11 26 45165 5.44 KLASDAGIFFTR;FGQAEKTELD FENLLAR;
NWTER;QTEVLLQPNPSAR;ATC GDTVPDF
QETRPR;VAQTEFDRQAEVTRLL GISSTHV
NHLR;SQTTYYAQCYR

−1.50 Cellular process

30 IPI00111556 Serine/threonine-protein
phosphatase 2A catalytic
subunit beta isoform

239 7.20E-20 10 34 36123 5.21 SPDTNYLFMGDYVDR;QITQVY FYDECLR
KYGNANVWK;LQEVPHEGPMC LLWSDP
DDRGGWGISPR;AHQLVMEGY WCHDRN
VVTIFSAPNYCYR;YSFLQFDPA

−2.10 Metabolic process

31 IPI00798544 Isoform 2 of Enolase-
phosphatase E1

384 2.30E-34 11 24 25457 4.92 QLQGHMWK;MKAEFFADVVP RRWREA
GMKVYIYSSGSVEAQK;GHKVD SYRK

−3.54 Metabolic process

32 IPI00230145 Ferritin heavy chain 408 9.00E-37 11 65 21224 5.53 QNYHQDAEAAINR;YFLHQSH REHAEK;
KPDRDDWESGLNAMECALHL SVNQSL
LELHKLATDKNDPHLCDFIETY SEQVK;E
LGDHVTNLRKMGAPEAGMAE FDKHTL
GHGDES

−1.56 Immune system
process

Day 21, up-regulated proteins

33 IPI00403810 Tubulin alpha-1C chain 174 2.30E-13 5 16 50562 4.96 AVFVDLEPTVIDEVR;EIIDLVLDR LDIERPT
YTNLNR;FDGALNVDLTEFQTN PYPRIHF
PLATYAPVISAEK

1.56 Structural molecule
activity

34 IPI00221540 Erlin-2 339 7.20E-30 8 17 38077 5.37 SVQTTLQTDEVK;VTKPNIPEAIR VAQVAEI
TYGQK;KISEIEDAAFLAR;AKAD CYTALK

1.85 Metabolic process

35 IPI00230192 Isoform Alpha-1 of
Guanine nucleotide-
binding protein G(o)
subunit alpha

170 5.70E-13 5 16 40629 5.34 AMDTLGVEYGDKER;LWGDSG ECFNR;YY
LDSLDRIGAGDYQPTEQDILR;L VGGQR

1.54 Signal transducer
activity

36 IPI00653664 Isoform 1 of Enolase-
phosphatase E1

365 1.80E-32 11 27 28696 4.79 EYLQTHWEEEECQQDVSLLR;Q GHMW
K;MKAEFFADVVPAVRRWREAG KVYIYSS
GSVEAQK;VDSESYRK

1.96 Metabolic process

37 IPI00130280 ATP synthase subunit
alpha

376 1.40E-33 11 18 59830 9.22 TGTAEMSSILEERILGADTSVDL TGRVLSI
GDGIAR;NVQAEEMVEFSSGLK AIVDVPV
GEELLGR;APGIIPRISVREPMQT KAVDSLV
PIGR;ELI IGDR

2.43 Transporter activity
and developmental
process

38 IPI00129161 Somatotropin 201 4.50E-16 14 45 24986 5.97 AQHLHQLAADTYKEFERAYIPE QR;EEAQ
QRTDMELLR;IFTNSLMFGTSDR KDLEEGI
QALMQELEDGSPR;QTYDKFD MR;AET
YLR;RFVESSCAF

19.73 Cell proliferation
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Table 2 Differentially expressed proteins between T. gondii-infected and non-infected mouse brain tissues (Continued)

Spots 39–46 were down-regulated on both day 14 and day 21

39 IPI00119113 V-type proton ATPase
subunit B

641 4.50E-60 34 64 56857 5.57 MALRAMRGIVNGAAPELPVPTGGPMAGA
R;NYLSQPR;YAEIVHLTLPDGTKR;AVVQVFE
GTSGIDAKKTSCEFTGDILRTPVSEDMLGR;
GPVVLAEDFLDIMGQPINPQCRIYPEEM
IQTGISAIDGMNSIAR;IPIFSAAGLPHNEIAA
QICR;SKDVVDYSEENFAIVFAAMGVNMET
AR;LALTTAEFLAYQCEKHVLVILTDMSSYA
EALR;RGFPGYMYTDLATIYER;QIYPPINV
LPSLSRLMKSAIGEGMTR;DHADVSNQLYA
CYAIGK;AVVGEEALTSDDLLYLEFLQK;NFIT
QGPYENRTVYETLDIGWQLLR;RIPQSTLSEF
YPR

−2.11 Transporter activity

40 IPI00759870 Isoform 4 of
Heterogeneous
nuclear
ribonucleoproteins
C1/C2

201 4.50E-16 3 9 32261 4.95 GFAFVQYVNER;MYSYPARVPPPPPIAR −1.52 Metabolic process

41 IPI00115117 Stomatin-like protein 2 231 4.50E-19 12 32 38475 8.95 NTVILFVPQQEAWVVER;ILEPGLNVLIPVLD
R;ASYGVEDPEYAVTQLAQTTMR;YEIKDIHV
PPRVKESMQMQVEAER;ATVLESEGTR;APV
PGAQNSSQSRRDVQATDTSIEELGR

−2.33 Organelle and
organelle part

42 IPI00830393 Putative uncharacterized
protein Cops6

209 7.20E-17 8 31 33855 5.65 SQEGRPMQVIGALIGK;NIEVMNSFELLSHT
VEEK;QVCEIIESPLFLK;IGVDHVAR;LILEYVKA
SEAGEVPFNHEILR;TCNTMNQFVNKFNVLY
DR

−2.91 Cellular process
and metabolic
process

43 IPI00311515 Beta-soluble NSF
attachment protein

415 1.80E-37 20 69 33878 5.32 EAVQLMAEAEKR;ASHSFLRGLFGGNTRIEE
ACEMYTR;NWSAAGNAFCQAAK;HDSATS
FVDAGNAYK;HHITIAEIYETELVDIEKAIAHY
EQSADYYKGEESNSSANK;VAAYAAQLEQY
QKAIEIYEQVGANTMDNPLLK;AALCHFIVD
ELNAKLALEKYEEMFPAFTDSRLLEAHEEQN
SEAYTEAVKEFDSISRLDQWLTTMLLR;

−1.67 Cellular process

44 IPI00322312 Rho GDP-dissociation
inhibitor 1

396 1.40E-35 9 42 23450 5.12 SIQEIQELDKDDESLR;YKEALLGRVAVSADP
NVPNVIVTR;EGVEYR;YIQHTYR;IDKTDYMV
GSYGPR;FTDDDKTDHLSWEWNLTIK

−1000000 Enzyme regulator
activity

45 IPI00133853 UPF0687 protein
C20orf27 homolog

268 9.00E-23 8 50 19692 6.19 FAAGHDAEGSQSHVHFDEK;YEITFTLPPVR;
ETPVHSLHLKLLSVTPTSEGYSIK;EGVLKEEM
LLACEGDIGTCVR;HHGTPMLLDGVK

−1.70 Cell part and
organelle part

46 IPI00315504 ADP-ribosylation
factor-like protein 2

75 0.0016 2 8 21022 5.67 ELQSLLVEER;SHHWR −1.66 Binding
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Table 2 Differentially expressed proteins between T. gondii-infected and non-infected mouse brain tissues (Continued)

Spots 47–56 were up-regulated on both day 14 and day 21

47 IPI00129526 Endoplasmin 766 1.40E-72 33 38 92703 4.74 TDDEVVQREEEAIQLDGLNASQIR;FAFQAE
VNR;NKEIFLRELISNASDALDKIRLISLTDENA
LAGNEELTVK;NLLHVTDTGVGMTREELVKE
VEEDEYKAFYK;ESDDPMAYIHFTAEGEVTF
KSILFVPTSAPRGLFDEYGSKK;RVFITDDFHD
MMPKYLNFVKGVVDSDDLPLNVSR;IADEK
YNDTFWK;LGVIEDHSNR;FQSSHHSTDITSL
DQYVER;QDKIYFMAGSSRKEAESSPFVERE
ATEKEFEPLLNWMK;LTESPCALVASQYGW
SGNMER;DISTNYYASQKKTFEINPR;AYGDR
IER

1.54 Metabolic process

48 IPI00123639 Calreticulin 292 3.60E-25 5 16 48136 4.33 EQFLDGDAWTNR;HEQNIDCGGGYVK;IDN
SQVESGSLEDDWDFLPPKKIKDPDAAKPED
WDER;GEWKPR

1.66 Immune system
process,

49 IPI00131830 Serine protease inhibitor
A3K

175 1.80E-13 6 21 47021 5.05 ALYQTEAFTADFQQPTEAK;ISFDPQDTFES
EFYLDEKR;HFRDEELSCSVLELK;MQQVEAS
LQPETLRK;AVLDVAETGTEAAAATGVIGGIR;

1000000 Enzyme regulator
activity

50 IPI00131830 Serine protease inhibitor
A3K

336 1.40E-29 9 27 47021 5.05 GKTMEEILEGLK;DLQILAEFHEK;ALYQTEAF
TADFQQPTEAK;ISFDPQDTFESEFYLDEKR;
HFRDEELSCSVLELK;MQQVEASLQPETLRK;
AVLDVAETGTEAAAATGVIGGIR

12.57 Enzyme regulator
activity

51 IPI00131830 Serine protease inhibitor
A3K

316 1.40E-27 8 26 47021 5.05 DLQILAEFHEK;ALYQTEAFTADFQQPTEAK
;ISFDPQDTFESEFYLDEKR;HFRDEELSCSVL
ELK;MQQVEASLQPETLRK;FSIASNYR;AVLD
VAETGTEAAAATGVIGGIR

5.29 Enzyme regulator
activity

52 IPI00131830 Serine protease inhibitor
A3K

187 1.10E-14 5 16 47021 5.05 ISFDPQDTFESEFYLDEKR;HFRDEELSCSVL
ELK;MQQVEASLQPETLR;AVLDVAETGTEA
AAATGVIGGIR

1000000 Enzyme regulator
activity

53 IPI00131287 Isoform 1 of N-terminal
EF-hand calcium-binding
protein 2

374 2.30E-33 11 28 43870 5.18 APLVPDIPSADPGPGPAASRGGTAVILDIFR;
KVYEGGSNVDQFVTR;YGGPTPPYIPNHK;TL
SFDLQQRLSDEEGTNMHLQLVRQEMAVCP
EQLSEFLDSLR;NCFHVAAVR

1000000 Cell part and
binding

54 IPI00928020 Putative uncharacterized
protein Otub1

331 4.50E-29 7 25 28190 5.15 IQQEIAVQNPLVSER;EYAEDDNIYQQK;YSYI
RKTRPDGNCFYR;LLTSGYLQR;FFEHFIEGGR

1.89 Metabolic process

55 IPI00323571 Apolipoprotein E 329 7.20E-29 14 39 35901 5.56 FWDYLR;ELEEQLGPVAEETR;LGADMEDLR;
NEVHTMLGQSTEEIR;LSTHLR;LGPLVEQGR;
TANLGAGAAQPLR;AQAFGDR;GRLEEVGN
QAR;SKMEEQTQQIRLQAEIFQAR;GWFEPIV
EDMHR

1000000 Binding and
antioxidant
activity,

56 IPI00278230 NFU1 iron-sulfur cluster
scaffold homolog

131 4.50E-09 5 17 28922 4.92 FIPGKPVLETRTMDFPTPAAAFR;IRPTVQED
GGDVIYRGFEDGIVR

1000000 Organelle and
organelle part
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Figure 1 Two-dimensional electrophoresis profiles of infected and non-infected mouse brain tissues with or without cyst-forming
Toxoplasma gondii.
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well as limiting the growth of T. gondii in the brain tis-
sue cysts.
Protein disulfide isomerase (PDI) is down-regulated

14 days after infection with T. gondii cysts. PDI family
members can function as molecular chaperones and as di-
sulfide oxidoreductase/isomerases, which means that they
can make, break, or rearrange disulfide bonds [21]. The
PDI family’s main function is to catalyze the oxidative
folding of nascent polypeptide chains in the endoplasmic
reticulum, yet they also play an important role in the ER-
associated protein degradation pathway (ERAD), protein
transport, calcium homeostasis, antigen presentation and
virus invasion [22,23]. PDI may play an important role in
immune and inflammatory responses and one of the intra-
cellular effector molecules involved in anti-inflammatory
reactions [24].
Endoplasmin, also known as heat shock protein 90B1,

is a molecular chaperone protein. In the present study, it
showed sustained up-regulation in brain tissues 14 and
21 days after infection with T. gondii. In Toll like recep-
tor and integrin secretory pathways, it plays a crucial
role in folding protein, so was thought to be one of the
basic immune chaperone proteins in the regulation of
innate and adaptive immunity [25]. Calreticulin (CRT) is



Figure 2 Gene ontology (GO) categories of the identified proteins were obtained from the Uniprot Web site (http://www.uniprot.org/),
classified into cellular component, molecular function, and biological process according to the GO terms.
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persistently up-regulated in brain tissues 14 and 21 days
after infection with Toxoplasma cysts. Calreticulin is a Ca2+

binding protein that has been implicated in many diverse
functions inside and outside of the endoplasmic reticulum
(ER), including the regulation of intracellular Ca2+ homeo-
stasis and Ca2+-dependent pathways, chaperone activity,
steroid-mediated gene expression, cell adhesion and the
interactions of CRT with immunoglobulin G and immuno-
globulin Y [26-28]. CRT could be used as a biomarker in
lung cancer prediction and diagnosis [29]. CRT also plays
an important role in autoimmunity. Enolase 1 and CRT are
important proteins in regulating the differentiation and
functions of mouse mast cells [30]. CRT has important
implications involved in the genesis, development and
prognosis of many diseases.
Lamin B1 is down-regulated in mouse brain tissues

7 days after infection with T. gondii cysts. Lamins are
the important cytoskeletal proteins in the nucleus, and
can be divided into two types A and B. Lamin B1 is ne-
cessary for growth, development and nuclear membrane
integrity in mice [31-33]. Cytochrome b5 is also down-
regulated in mouse brain tissues 7 days after infection
with T. gondii cysts. It is a small microsomal protein
which serves as an electron transfer component in a
number of oxidative reactions in biological tissues, in-
cluding the anabolic metabolism of fats and steroids, as
well as the catabolism of xenobiotics and compounds of
endogenous metabolism [34].
Prohibitin (PHB) is down-regulated in mouse brain tis-
sues 14 days after infection with T. gondii cysts. PHB has a
variety of cell biological functions, including the regulation
of cell proliferation, apoptosis, development, transcription,
mitochondrial protein folding and as a cell surface recep-
tor [35-37]. In the present study, α-tubulin of mouse brain
tissues is up-regulated after infection with T. gondii cysts
at 21 days post infection, but β-tubulin is down-regulated
at 14 days post infection. α- and β-tubulins are the major
components of microtubules of the eukaryotic cytoskel-
eton. Microtubules constitute a major portion of cytoplas-
mic proteins in nerve cells. They have been implicated
to play a central role in axonal transport, neurotrans-
mitter release, neurite outgrowth and synaptogenesis.
An increase in the tubulin microheterogeneity was
demonstrated during brain maturation. Tubulin com-
prises a large percentage of the total protein in brain
[38-40]. Therefore, abnormal expression of tubulin
could have an effect on the normal growth and devel-
opment of host brain, even causing behavioral disor-
ders of the host.
Apolipoprotein E (ApoE) is persistently up-regulated

in brain tissues at 14 and 21 days after infection with
Toxoplasma cysts. ApoE is one of components of plasma
lipoprotein. It regulates the metabolism of plasma lipo-
protein by binding to lipoprotein receptors [41]. Abnor-
mal expression of the protein causes the disorder of the
metabolism of plasma lipoprotein, and is closely related

http://www.uniprot.org/
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to atherosclerosis, hypercholesterolemia and hypertri-
glyceridemia [42].

Conclusions
The present study revealed changes in the proteomic
profiles of mouse brain tissues after infection with cyst-
forming T. gondii PRU strain (Genotype II). 45 mouse
brain proteins differentially expressed between infected
and non-infected mice were identified, these proteins
were mainly involved in metabolism, cell structure, sig-
nal transduction and immune responses. Further explor-
ation of these proteomic data will contribute to
understanding the pathogenesis of toxoplasmic enceph-
alitis, and facilitates the discovery of new methods of
diagnosis, prevention, control and treatment of Toxo-
plasma encephalopathy.
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