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Abstract

Background: Invasive aedine mosquito species have become a major issue in many parts of the world as most of
them are recognised vectors or potentially involved in transmission of pathogens. Surveillance of these mosquitoes
(e.g. Ae. aegypti, Yellow fever mosquito, Aedes albopictus, Asian tiger mosquito) is mainly done by collecting eggs
using ovitraps and by identification of the larvae hatched in the laboratory. In order to replace this challenging and
laborious procedure, we have evaluated matrix-assisted laser desorption/ionization time of flight mass spectrometry
(MALDI-TOF MS) for easy and rapid species identification.

Methods: Individual protein profiles were generated using five eggs each of nine aedine species (Ae. aegypti,
Ae. albopictus, Ae. atropalpus, Ae. cretinus, Ae. geniculatus, Ae. japonicus, Ae. koreicus, Ae. phoeniciae, Ae. triseriatus)
from various geographical origins, and species-specific biomarker mass sets could be generated. A blinded
validation using our reference data base for automated egg identification was performed. In addition, pools of
10 aedine eggs (132 two-species and 18 three-species pools) in different ratios were evaluated.

Results: Specific biomarker mass sets comprising 18 marker masses could be generated for eggs of nine
container-inhabiting aedine species, including all the major invasive and indigenous species of Europe and North
America. Two additional masses shared by all investigated aedine species are used as internal calibrators. Identification
of single eggs was highly accurate (100% specificity, 98.75% sensitivity), and this method is also of value for the
identification of species in pools of ten eggs. When mixing two or three species, all were identified in all pools
in at least 2 or 1 of the 4 loaded replicates, respectively, if the “lesser abundant” species in the pool accounted for three
or more eggs.

Conclusions: MALDI-TOF MS, which is widely applied for routine identification of microorganisms in clinical
microbiology laboratories, is also suited for robust, low-cost and high throughput identification of mosquito vectors in
surveillance programmes. This tool can further be developed to include a wide spectrum of arthropods but also other
Metazoa for which surveillance is required, and might become the method of choice for their centralised identification
via online platforms.

Keywords: Invasive mosquitoes, Aedes, Surveillance, Monitoring, Mass spectrometry, Egg, Identification, Europe,
North America

* Correspondence: alexander.mathis@uzh.ch

'Swiss National Centre for Vector Entomology, Institute of Parasitology,
University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
Full list of author information is available at the end of the article

- © 2014 Schaffner et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( B|°Med Central Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.


mailto:alexander.mathis@uzh.ch
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Schaffner et al. Parasites & Vectors 2014, 7:142
http://www.parasitesandvectors.com/content/7/1/142

Background

Invasive mosquitoes have become a major issue in many
parts of the World [1,2], as most of them are potential
vectors of arboviruses and parasites [3]. In Europe, the
Asian tiger mosquito Aedes albopictus and the Asian
bush mosquito Ae. japonicus are invading Southern and
Central parts, respectively. The Yellow fever mosquito
Ae. aegypti, with recently established populations in
Madeira and along the Black Sea coast [4], is knocking
at Europe’s doors, whereas other Asian and American
mosquitoes such as Ae. atropalpus or Ae. koreicus locally
occur at several places [4]. The danger posed by these
mosquitoes in Europe was demonstrated by the very re-
cent local transmissions of dengue and chikungunya vi-
ruses by Ae. albopictus in France and Croatia [5] and the
outbreak of dengue in Madeira with Ae. aegypti acting
as vector [6]. Statistical modelling revealed that more
areas in Europe are climatically suitable for these two
vector species [7]. In North America, the naturalised Ae.
aegypti and the invasive Ae. albopictus mainly occur in
south-eastern states, whereas Ae. japonicus has colo-
nised most of the eastern states (except the southern-
most ones) and some western states as well [8,9]. Also
in North America, dengue fever is back [8], and the glo-
bal context raises awareness for the emergence of
chikungunya fever [10].

Thus, surveillance and control of invasive mosquitoes is
essential to assess and manage the risks they induce [11].
Proactive surveillance is of particular relevance within an
early-warning strategy, in order to detect populations of
invasive mosquito species in time, before they are locally
well-established and start to further spread. Suppressing
such container-inhabiting invasive aedine mosquitoes in
an urban environment is particularly challenging, mainly
because of the diversity and limited accessibility of larval
habitats, and their elimination has been achieved only in a
context of early detection [5,12,13].

Surveillance of container-breeding mosquitoes is re-
commended to be performed using so called ‘ovitraps’
(Figure 1), which attract gravid females and thus provide
presence and relative abundance data based on the eggs
they deposit in the traps [4]. However, morphological
identification of these eggs, mainly based on the observa-
tion of the exochorion ornamentation using reflecting (or
episcopic) lightening, is time consuming, requires expert-
ise, and not all species are precisely characterised [4].
Therefore, eggs are usually hatched to allow for larval
identification [4], but hatching is often poor and is delayed
in case of overwintering (diapausing) eggs. Genetic identi-
fication by PCR is described for only a few container-
breeding aedine species [4,14], and this method is costly
and laborious when extensive monitoring is desired.
Matrix-assisted laser desorption/ionization time of flight
mass spectrometry (MALDI-TOF MS), which has come of
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age for the high throughput, fast, accurate and low-cost
identification of microorganisms in clinical diagnostic la-
boratories [15,16], has recently shown promise to identify
metazoan organisms, including larval and adult stages of
biting midges (Ceratopogonidae) and mosquitoes (Culici-
dae) [17-19]. This included the discriminatory identifica-
tion of cryptic insect species [20,21], and the technique
has proven its suitability for accurate identification of
field-collected adult biting midges on a large scale [17].
Further, the method was useful to identify ageing bio-
markers in Ae. aegypti [22].

Here, we developed MALDI-TOF MS for the identifica-
tion of eggs of nine container-inhabiting aedine mosquito
species that deposit their eggs in a comparable manner
(Ae. aegypti, Ae. albopictus, Ae. atropalpus, Ae. cretinus,
Ae. geniculatus, Ae. japonicus, Ae. koreicus, Ae. phoeniciae,
Ae. triseriatus), including all the major invasive and indi-
genous species of Europe and North America.

Methods

Mosquito egg samples

Aedine eggs were either obtained from laboratory colonies
or collected in the field using ovitraps with floating poly-
styrene blocks used as egg-laying devices (see Additional
file 1: Table S1; Figure 1). From each batch of eggs col-
lected in the field, at least 10 were hatched and reared to
larvae and adults for morphological and genetic species
confirmation [4,23]. In case that more than one species
was obtained from a sample, only eggs from reared fe-
males were further used (F1). The remaining eggs were
stored at 12°C + 1°C under a short day regime (8/16 h L/D)
and high humidity for further use (validation study).

MALDI-TOF MS

Sample preparation

Single eggs were placed directly on a well of a slide,
mixed with 1 pl formic acid (10%) and squeezed with
forceps (Dumont Nr. 5). The egg suspension was then
overlaid with 1 ul of a saturated solution of sinapic acid
(saturated solution of sinapic acid in 60% acetonitrile,
40% H,O, 0.3% trifluoroacetic acid; Sigma-Aldrich,
Buchs, Switzerland) and air-dried at room temperature.
Pools of ten eggs were mixed with 10 pl formic acid
(10%) in a 500 pl Multiply®-Pro or 200 ul Axygen® PCR
tube and manually homogenised with a disposable pestle
(Fisher Scientific, Wohlen, Switzerland). One pl of egg
pool suspension were spotted in quadruplicate on a 48
well slide, overlaid with 1 pl of the saturated solution of
sinapic acid and air-dried at room temperature.

Parameters

Protein mass fingerprints were obtained using a
MALDI-TOF Mass Spectrometry Axima™ Confidence
machine (Shimadzu-Biotech Corp., Kyoto, Japan), with
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(K) Ae. phoeniciae, (L) Ae. triseriatus. Scale bar equates to 0.1 mm.

Figure 1 Container-inhabiting aedine mosquito eggs collected with ‘ovitraps’ that are commonly used for monitoring purposes.
(A) Ovitrap with a wooden stick as oviposition support; (B) ovitrap with a floating piece of polystyrene as oviposition support; (C) eggs laid on
polystyrene; eggs of (D) Ae. aegypti, (E) Ae. albopictus, (F) Ae. atropalpus, (G) Ae. cretinus, (H) Ae. geniculatus, (1) Ae. japonicus, (J) Ae. koreicus,

J

detection in the linear, positive mode at a laser fre-
quency of 50 Hz and within a mass range from 3,000-
20,000 Da. Acceleration voltage was 20 kV, and the ex-
traction delay time was 200 ns. A minimum of 10 laser
shots per sample was used to generate each ion
spectrum. For each insect sample, a total of 100 protein
mass fingerprints were averaged and processed using
the Launchpad™ v2.8 software (Shimadzu-Biotech Corp.,
Kyoto, Japan). Spectra were internally calibrated by the
use of two conserved aedine egg masses (m/z 5660.1, m/z
11’321.8) with an error of 800 ppm in the Launchpad™
v2.8 software. This software was also used for peak pro-
cessing of all raw spectra with the following settings: the
advanced scenario was chosen from the Parent peak clean
up menu, peak width was set 80 chans, smoothing filter
width 50 chans, baseline filter width 500 chans and the
threshold apex was chosen as peak detection method. For
the threshold apex peak detection, the threshold type was
set as dynamic, the threshold offset was set to 0.025 mV
with a threshold response factor of 1.25. Each target plate

was externally calibrated using the reference strain
Escherichia coli DH5a.

Peak matrix generation for unsupervised cluster analysis
Generated protein mass fingerprints were analysed with
SARAMIS™ Premium (spectral archive and microbial iden-
tification system, AnagnosTec, Potsdam-Golm, Germany).
Binary matrix was generated using the SARAMIS™ Super-
Spectra™ tool and exported to a text file. Intensity and error
columns were removed with the Microsoft® Excel software.
The adapted binary matrix was imported into the free soft-
ware PAST v2.12. Using PAST, multivariate cluster analysis
was performed using the paired group dice algorithm [24].
The generated dendrogram was exported in nexus file for-
mat and imported into the free FigTree v1.3.1 application
for dendrogram illustration.

Superspectra generation
Generated protein mass fingerprints of 5 eggs each from 9
aedine mosquito species were analysed with SARAMIS™
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Figure 2 Individual protein profiles of nine important aedine mosquitoes. (A) Ae. aegypti, (B) Ae. albopictus, (C) Ae. atropalpus, (D) Ae. cretinus,
(E) Ae. geniculatus, (F) Ae. japonicus, (G) Ae. koreicus. (H) Ae. phoeniciae, (1) Ae. triseriatus. Biomarker masses are illustrated as dashed lines within
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Premium software, and biomarker mass patterns, called
superspectra, were calculated for the 9 Aedes species using
the SARAMIS™ SuperSpectra™ tool. To that end, the peak
lists of all 45 Aedes eggs (reference set) were imported into
the SARAMIS™ software, the spectra trimmed to a mass
range of 3-20 kDa, and peaks with a relative intensity
below 1% were removed. Peak lists were binned and average
masses were calculated using the SARAMIS™ SuperSpectra™
tool with an error of 800 ppm. Specificities of these poten-
tial biomarker masses were determined by comparison
against the whole SARAMIS™ spectral archive. In accord-
ance with the SARAMIS user guidelines, the threshold for
identification was set at 75% biomarker matches based on
the reference data set. Twenty masses for each species were
weighted and used as SuperSpectra™ for automated Aedes
egg species identification (see Additional file 2: Table S2).

Superspectra validation

For SuperSpectra™ validation, 175 aedine single eggs and
150 egg pools in quadruplicates were analysed. The 775
generated mass fingerprints obtained were imported into
SARAMIS™ software for automated identification with
SuperSpectra™.

Results and discussion
In a first step, individual protein profiles (Figure 2) were
generated using five eggs of each mosquito species from

various geographical origins (Additional file 1: Table S1).
These entire protein profiles (data count between 78 and
157) were used to compile the total mass spectra for the
nine species in a dendrogram, yielding distinct clustering
of the same species on definite branches (Figure 3).
Species-specific biomarker mass sets of 18 marker masses
could be generated (Figure 2; Additional file 2: Table S2)
and were imported into the SARAMIS™ software, adding

Ae. geniculatus
. Ae. atropalpus

Ae. koreicus

Ae. phoeniciae

Ae. japonicus

Ae. aegypti

Ae. cretinus

Ae. albopictus

Ae. triseriatus

0.09

Figure 3 Dendrogram of matrix-assisted laser desorption/
ionization time of flight (MALDI-TOF) mass spectra of five single
eggs for each of the nine studied aedine species. Distance units
correspond to the relative similarity calculated from the distance matrix.
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Table 1 Results of a blinded validation for automated
MALDI-TOF MS identification of single eggs using our
reference data base

Species No. identified  No. unidentified  Sensitivity %
€ggs €ggs
Aedes albopictus 18 1 947
Ae. aegypti 19 0 100
Ae. atropalpus 14 0 100
Ae. cretinus 7 0 100
Ae. geniculatus 55 1 98.2
Ae. japonicus 23 1 958
Ae. koreicus 7 0 100
Ae. phoeniciae 7 0 100
Ae. triseriatus 22 0 100

to the >3400 biomarker mass sets, including 54 species-
specific insect (larvae and adults) sets, of our reference
data base (www.mabritec.com). In addition, two masses
were identified that are shared by all investigated aedine
species (see Additional file 2: Table S2), and these masses
were henceforth used as internal calibrators.

A blinded validation using our reference database for
automated egg identification was performed. Out of 175
single eggs from all the nine container-breeding invasive
or indigenous aedine species included in the study, 172
were accurately identified (specificity 100%, overall sensi-
tivity 98.3%, Table 1); the remaining three eggs (1.7%)
yielded poor protein profiles, probably because they
were unfertilised or desiccated.

In a second step, we aimed at improving the perform-
ance and reducing the costs of MALDI-TOF MS applied
in surveillance programmes by identifying mosquito spe-
cies in batches of eggs. First, 132 two-species pools con-
taining ten aedine eggs in different ratios from the three
container-inhabiting aedine species occurring in central
Europe (Ae. albopictus, Ae. geniculatus, Ae. japonicus) and
from the yellow fever mosquito Ae. aegypti were analysed
with 4 technical replicates per pool. At least one species
could be identified in every single replicate. The more
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balanced the composition of the pools was, the more rep-
licates provided identification of both species (Table 2):
Thus, both species were identified in all pools in at least 2
of the 4 replicates if the “lesser abundant” species in the
pool accounted for three or more eggs. Single replicates of
the pools yielded the identification of both species in 25%
of the pools in the extreme ratio of 9 and 1 eggs.

We experienced an improved reproducibility of identi-
fication when calibration of the spectra was done with
the mosquito-derived internal calibrator masses, as com-
pared with calibration relying on the external calibrators
(Escherichia coli). For example, the sensitivity for the
identification of two-species pools improved from 84.5%
to 91.7% in the case of the 5:5 egg pools.

Then, 18 three-species pools (i.e. Ae. aegypti, Ae. albo-
pictus, Ae. japonicus) of ten eggs were evaluated. Based
on the experience with the two-species pools (reliable
identification of eggs constituting at least 30%), pools
containing 3, 3, 4 eggs in all permutations were tested.
Again, at least one species could be identified in every
single replicate, and at least one technical replicate per
pool was positive for all three species in 97.6% (Table 3).

Conclusions

Thus, accurate identification by MALDI-TOF MS is pos-
sible for mosquito eggs, also in pools, at least for species
which account for 30% or more of the eggs. This is par-
ticularly valuable in situations where detection of a low
abundant species is not necessary (i.e. during a pathogen
transmission period). Further, if experienced personnel
are available, the sensitivity of egg identification in pools
could be improved by preselecting eggs of similar shape
(Figure 1).

Further developments will aim at investigating larger
pools of mosquito eggs and expanding the database to
also include the remaining mosquito species whose eggs
can be encountered in surveillance programmes of
container-inhabiting mosquitoes in Europe and North
America, i.e. species usually breeding in tree holes or
rock pools in southern Europe (Ae. berlandi, Ae. echinus,
Ae. gilcolladoi, Ae. mariae, Ae. pulcritarsis, Ae. zammitii,

Table 2 Sensitivity of egg identification in two-species pools of ten eggs in different mix ratios

Mix ratio 10/0 9/1 8/2 7/3 6/4 5/5
Number of pools 24 24 24 24 24 12
Total number of spots measured (technical replicates) 9% 96 9% 9% 9% 48
Number of the 4 technical replicates yielding identification of both species

4 0.0% 0.0% 0.0% 70.3% 75.0% 91.7%
23 0.0% 0.0% 16.7% 91.7% 91.7% 100.0%
22 0.0% 12.5% 20.8% 100.0% 100.0% 100.0%
21 0.0% 25.0% 37.5% 100.0% 100.0% 100.0%

Three biological replicates have been performed per pools containing Ae. aegypti/Ae. japonicus, Ae. albopictus/Ae. geniculatus, Ae. albopictus/Ae. japonicus, Ae.

geniculatus/Ae. japonicus.
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Table 3 Sensitivity of egg identification in three-species
pools of ten eggs in different mix ratios

Mix ratios 3/3/4
Number of pools tested 18

Total number of spots measured (technical replicates) 72
Number of the 4 technical replicates yielding identification of

2 species

4 95.80%
23 100.00%
22 100.00%
>1 100.00%
Number of the 4 technical replicates yielding identification of

all 3 species

4 87.50%
>3 88.80%
>2 94.40%
>1 97.60%

Six biological replicates have been performed per pools containing Ae. aegypti/Ae.
albopictus/Ae. japonicus in ratio 3/3/4 in all three possible variations.

and Orthopodomyia pulcripalpis) or North America (Ae.
hendersoni, Ae. thibaulti, Ae. togoi, Ae. varipalpus, Ae.
zoosophus, Or. alba, Or. signifera).

Taken together, we showed that protein profiling,
which is a quick tool with low operational costs, is reli-
able and accurate for species identification of eggs of
invasive/indigenous aedine mosquito species. This ap-
proach has successfully been pursued during a recent
surveillance programme of Ae. albopictus in Switzerland
[25], revealing its presence at seven of the 30 sampled
sites. Three of these positive sites were located north of
the Alpine crest, where the species was not known to
occur, in an area largely occupied by the indigenous Ae.
geniculatus and the invasive Ae. japonicus, which were
identified at two of them as well. This demonstrates the
usefulness of the described method in an applied context.
Further, protein profiling of eggs would also identify inva-
sive mosquito species not expected in a monitored area
and which therefore might not be considered in DNA-
based approaches.

The simple and rapid preanalytical procedure for pro-
tein profiling can be done in peripheral laboratories and
the slides sent to the measuring laboratory. The future ap-
plication of the method will include the accomplishment
of the measurement with a mass spectrometry device any-
where and the identification via our online platform.

Additional files

Additional file 1: Table S1. Origin and suppliers of aedine egg samples.

Additional file 2: Table S2. Biomarker marker masses used for the
identification of eggs of nine aedine mosquito species. Grey cells:
conserved masses used for internal calibration (unit: m/z).
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