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Abstract

Background: The use of gravid mosquitoes as vehicles to auto-disseminate larvicides was recently demonstrated
for the transfer of pyriproxyfen (PPF) by container-breeding Aedes mosquitoes and presents an appealing idea to
explore for other disease vectors. The success of this approach depends on the female’s behaviour, the time of
exposure and the amount of PPF that can be carried by an individual. We explore the effect of PPF exposure at
seven time points around blood feeding on individual Anopheles gambiae sensu stricto and Culex quinquefasciatus
fecundity and ability to transfer in laboratory assays.

Method: Mosquitoes were exposed to 2.6 mg PPF per m2 at 48, 24 and 0.5 hours before and after a blood meal
and on the day of egg-laying. The proportion of exposed females (N = 80-100) laying eggs, the number of eggs laid and
hatched was studied. Transfer of PPF to oviposition cups was assessed by introducing 10 late instar insectary-reared
An. gambiae s.s. larvae into all the cups and monitored for adult emergence inhibition.

Results: Exposure to PPF between 24 hours before and after a blood meal had significant sterilizing effects:
females of both species were 6 times less likely (Odds ratio (OR) 0.16, 95% confidence interval (CI) 0.10-0.26) to lay eggs
than unexposed females. Of the few eggs laid, the odds of an egg hatching was reduced 17 times (OR 0.06, 95% CI
0.04-0.08) in Anopheles but only 1.2 times (OR 0.82, 95% CI 0.73-0.93) in Culex. Adult emergence inhibition from larvae
introduced in the oviposition cups was observed only from cups in which eggs were laid. When females were exposed
to PPF close to egg laying they transferred enough PPF to reduce emergence by 65-71% (95% CI 62-74%).

Conclusion: PPF exposure within a day before and after blood feeding affects egg-development in An. gambiae
s.s. and Cx. quinquefasciatus and presents a promising opportunity for integrated control of vectors and nuisance
mosquitoes. However, sterilized females are unlikely to visit an oviposition site and therefore do not transfer lethal
concentrations of PPF to aquatic habitats. This suggests that for successful auto-dissemination the optimum
contamination time is close to oviposition.
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Background
Mosquito larval source management is an effective
method for controlling mosquito-borne diseases [1-5].
However, application of larvicides requires labour in-
tensive programmes that are complex to organize and
expensive to run [6-8]. Thus novel strategies for larvicide
application need to be explored to minimize efforts and
costs [9,10]. Using the gravid female mosquito as a vehicle
to auto-disseminate larvicides has been demonstrated re-
cently for the transfer of pyriproxyfen (PPF) by container-
breeding Aedes mosquitoes [11-13] and presents an
appealing idea to explore for the control of other mosquito
genera.
PPF is a juvenile hormone mimic and affects immature

and adult mosquito stages in different ways [14-17]. The
major effect of PPF on mosquitoes is the inhibition of
metamorphosis to prevent emergence of adults from
pupae [18,19]. PPF has extremely low toxicity to humans
[20], is effective at controlling mosquito larvae at very
low doses [16,21] and can persist for up to six months in
a variety of aquatic habitat types [15,21-23]. In addition,
exposure of larvae to sub-lethal doses of PPF affects the
adults’ egg development, egg production and reduces
the hatching of eggs [24,25]. Exposure to PPF has been
studied extensively in Aedes mosquitoes [11,13,15,26-28]
and it has been shown that topical application can also
reduce the reproductive capacity of adults [13,15,27,28]
depending on dosage and time of exposure in relation to
the blood meal [13], which signals the start of egg devel-
opment [29]. However, inconsistent information on the
effect of PPF exposure on egg-laying and hatching of eggs
laid can be found for various species requiring more
research in this subject area [13,15,30,31].
To date only three studies have evaluated the impact

of topical contact of PPF on Anopheles gambiae sensu
lato, the major African malaria vector [17,32,33]. Ohashi
and colleagues [32] exposed An. gambiae s.s. to treated nets
immediately before or after a blood meal and reported
complete sterilization in females exposed to nets that
retained an approximate dose of 35 mg/m2 PPF and
3.5 mg/m2 PPF. However, at a 10 times lower dosage
the proportion of females laying eggs was reduced by
less than 50% compared to the control when exposed
just before the blood-meal and not at all when exposed
after the blood meal. A more recent study by Ngufor
and colleagues [33] confirmed complete sterilization
in wild An. gambiae s.s. exposed to PPF-treated nets
in experimental hut trials. Harris and colleagues [17]
however, observed complete sterilization of female An.
arabiensis only 24 hours after the bloodmeal (exposed
to 3 mg/m2 PPF) but not when exposed 24 hours be-
fore a bloodmeal, challenging the idea that treating
bednets would be a successful intervention for this
species.
Culex quinquefasciatus is another important disease
vector responsible for the transmission of Wucheria
bancrofti (lymphatic filariasis), and arboviruses like
Western equine encephalitis virus, St Louis encephalitis
virus and West Nile virus [34,35]. It is also an abundant
nuisance mosquito in many tropical and subtropical
areas [36,37]. Conflicting reports arise from two studies
that evaluate the impact of PPF on exposed Cx. quinque-
fasciatus. Whilst Mosqueira and colleagues [38] reported
both a reduction in the number of eggs laid and hatchings
in Cx. quinquefasciatus exposed 24–36 hours before a
blood meal to an insecticidal paint formulation that
contained PPF, Ngufor and others [33] found that expos-
ure of Cx. quinquefasciatus to PPF-treated nets while
seeking a blood meal had no effect on the reproductive
capacity.
Whilst the sterilizing effect of PPF on adult mosquito

vectors is by itself an important aspect to study for
developing novel vector control strategies, it is also likely
that it affects the potential of a female to transfer the
insecticide to a larval habitat. The major challenge in the
development of such an auto-dissemination approach is
therefore to find the best timing and strategy to expose
female mosquitoes to PPF to ensure that a large quantity
of the insecticide gets picked up and transferred to an
aquatic habitat. The best knowledge we have of the be-
haviour of An. gambiae s.s. is its indoor host-seeking
and resting behaviour associated with the need for a blood
meal [39-42]. Consequently, contaminating females during
this time period would be the easiest e.g. exposing females
to treated resting sites [17] or bednets [30], however, this
timing might coincide with sterilizing effects and affect
the ability to transfer PPF. Another challenge of the
auto-dissemination approach for malaria control is the
low density of adult anophelines in comparison to the
surface area of the aquatic habitats [43]. To increase the
amount of PPF transferred to An. gambiae s.l. larval
habitats, other co-habiting mosquito species i.e. Culex
mosquitoes [44-46] might also be targeted for transfer,
especially since their immature stages are frequently of
a greater density [43,47-49].
Here, we explored the effect of PPF exposure at differ-

ent points in time before and after a blood-meal on the
egg-laying and hatching of eggs in An. gambiae s.s. and
Cx. quiquefasciatus and how this affects their ability to
transfer PPF to a breeding site. We had the following
hypotheses: (1) PPF exposure of adult An. gambiae s.s.
and Cx. quinquefasciatus affects their ability to lay eggs
and the number of offspring hatched from eggs laid, (2)
the impact is largest when exposure takes place around
blood-feeding time (3) the concentration of PPF transferred
by a single female is very low requiring a large number of
females to transfer lethal concentrations (LC99) (4) sterile
females do not transfer PPF and (5) for auto-dissemination
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of PPF females need to be exposed not more than 24 hours
prior to oviposition.

Methods
Mosquitoes
The study was carried at the International Centre of Insect
Physiology and Ecology, Thomas Odhiambo Campus
(icipe-TOC) located in Mbita, along the shores of Lake
Victoria, Western Kenya (geographic coordinates 0° 26’
06.19” S, 34° 12’ 53.13”E; altitude 1,137 m above sea level)
with larvae and pupae of An. gambiae s.s. and Cx. quin-
quefasciatus obtained from the icipe-TOC’s insectary.
Larvae were reared in round plastic tubs (diameter 0.6 m)
filled with 5 litres of water (height approximately 5 cm)
from Lake Victoria filtered through a charcoal-sand filter.
Mosquito larvae were fed with Tetramin© Baby Fish food
twice daily. Mosquito larvae were reared at ambient
climate and light conditions in a netting-screened green-
house with a temperature of 25-28ºC, relative humidity of
68-75% and a natural 12 hours of dark and 12 hours of
light cycle. Pupae were collected from tubs and trans-
ferred into holding cages measuring 30x30x30 cm covered
with mosquito netting. Adults were provided with 6%
glucose solution ad libitum. Mosquitoes of both species
were provided with a single blood -meal when they were
three days old; An. gambiae s.s. fed on a human arm for
20 minutes whilst Cx. quinquefasciatus were fed on a rabbit
for 20 minutes. The females of either species were main-
tained in cages with equal numbers of males of the same
species at all times to increase the chances of insemination.

Test insecticide
An experimental formulation of Sumilarv® dust containing
2% of PPF was provided by the manufacturer, Sumitomo
Chemicals, Japan. Dust particles measured approximately
12 μm diameter. Sumilarv® is a registered trademark of
Sumitomo Chemical Company.

Exposing female mosquitoes to PPF
A suspension was prepared by mixing 0.25 g of the in-
secticide with 10 ml of acetone in a 100 ml glass beaker
and vortexing on a shaker for 20 minutes. The inner sur-
faces of plastic jars (7.8 cm diameter, 9.2 cm height,
350 ml capacity) were coated by pipetting 150 μl of the
suspension (0.075 mg active ingredient) into the jar. To
ensure uniform coating of the base and side surfaces an
additional 100 μl of acetone was added to the jar. The
jar was then rolled several times on its base and side. The
total surface area coated was approximately 0.028 m2 to
give a concentration of 2.6 mg/m2 of active ingredient.
A control jar of similar measurements was treated in a
similar manner with acetone. Jars were left to air-dry for
30 minutes. New suspensions and jars were used for
every treatment and replicate round.
Female mosquitoes originating from the same batch of
pupae per round were exposed to PPF at the following
times in relation to when they bloodfed (Figure 1): (1)
48 hours before a blood meal (2) 24 hours before a blood
meal (3) 0.5 hours before blood meal; and (4) 0.5 hours
after a blood meal (5) 24 hours after a bloodmeal (6)
48 hours after a blood meal, and (7) on the day of egg-
laying (72 hours after a blood meal in An. gambiae s.s.
and 144 hours after a blood-meal in Cx. quinquefasciatus).
Control females were exposed to acetone-only contami-
nated jars 0.5 hours before a bloodmeal.
Groups of 150 females per treatment per round were

transferred to a PPF-contaminated jar covered with
non-contaminated mosquito netting for 30 minutes.
Most of the females rested on the plastic, but when a
mosquito attempted to rest on the mosquito netting it
was gently disturbed to rest on the contaminated surfaces
of the jar. After exposure they were transferred into
30×30×30 cm cages per treatment group and an equal
number of males added to maximize the chance of fe-
males mated at the time of experiment. Glucose solution
(6%) was provided ad libitum. On the day of experiment
(see below) 20 gravid females per treatment were selected
from their holding cages.

Measuring the effect of PPF exposure on a females ability
to lay eggs and the ability of the egg to hatch
Oviposition experiments were implemented 72 hours after
a blood meal with An. gambiae s.s. and 144 hours after a
blood meal with Cx. quinquefasciatus based on the differ-
ent egg maturation times. For each experimental round
and treatment 20 gravid females were selected individually
from their holding cage and transferred to netting covered
cages of 15x15x15 cm at 18:00 h. A single female was
introduced into a cage that contained a glass cup (7 cm
diameter) filled with 100 ml of non-chlorinated tap water
for oviposition. Anopheles gambiae s.s. females exposed to
PPF 72 hours after a bloodmeal and Cx. quinquefasciatus
exposed to PPF 144 hours after a bloodmeal were trans-
ferred directly from the exposure jar into the experimental
cages containing an oviposition cup. Mosquitoes were left
to lay eggs overnight. The following morning the presence
of eggs or egg rafts was recorded, and in the case of
An. gambiae s.s. the number of eggs counted, and then
transferred into separate 300 ml plastic cups filled with
100 ml non-chlorinated tap water. The number of larvae
that hatched from eggs laid by individual females was
recorded.
Five rounds of the experiment were carried out with An.

gambiae s.s. (5 × 20 replicates/treatment) and four rounds
with Cx. quinquefasciatus (4 × 20 replicates/treatment)
on separate dates. Therefore, in total 100 individual
An. gambiae s.s. and 80 individual Cx. quinquefasciatus
females were tested in each treatment arm.
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Figure 1 Schematic diagram showing the pyriproxyfen-exposure times for Anopheles gambiae s.s. and Culex quinquefasciatus. Blue
arrows show treatment groups exposed before a bloodmeal, red arrows show treatment groups exposed after a bloodmeal. Control females
were exposed to acetone at 0.5 hours before bloodmeal. Time of egg-laying was in Anopheles gambiae s.s. 72 hours after a bloodmeal (6 day old
females) and in Culex quinquefasciatus 144 hours after a bloodmeal (9 day old females). All treatment groups and control were tested in parallel,
20 individual females at a time, repeated 4–5 times (rounds).
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Assessment of delayed egg-laying in PPF-exposed
An. gambaie s.s
To assess whether PPF exposure caused delayed egg-
laying in female An. gambiae s.s., tests were conducted
with females exposed to PPF: (1) 24 hours before a blood
meal, (2) 0.5 hours before a blood meal, (3) 0.5 hours
after a bloodmeal and (4) 24 hours after a blood meal.
These were compared to a control group of females that
were exposed to acetone 0.5 hours before a blood meal.
Females were prepared as described above and provided
with oviposition cups 72 hours after a blood meal and
left to lay eggs overnight. The following morning the
presence and number of eggs laid by each female was re-
corded. Thereafter, fresh oviposition cups were provided
in all cages with the same mosquitoes maintained in the
cages with 6% glucose solution ad libitum. The oviposition
cup was left in the cage for a further two days to determine
if mosquitoes would lay eggs. These tests were conducted
in three rounds on separate dates with each round contain-
ing 20 replicates of each treatment and the control group.
Thus in total 60 individual mosquitoes per treatment and
control group were tested.
Analyses of transfer of PPF by adult An. gambiae s.s. and
Cx. quinquefasciatus to the water in the oviposition cups
To evaluate whether An. gambiae s.s. and Cx. quinque-
fasciatus transferred PPF to the water, 10 insectary-reared
late instar An. gambiae s.s. larvae were introduced into all
the oviposition cups in the morning after the removal of
the eggs. For that, larvae were randomly collected from
rearing tubs in the larval insectary to ensure that equal
sizes of larvae were used in the experimental cups [50].
The larvae were monitored daily for mortality or pupation.
During the monitoring period mosquito larvae were fed
on fish food (Tetramin© Baby) daily. This was done by
wetting a blunt toothpick in non-chlorinated tap water
followed by dipping less than 1 mm of toothpick into the
larval food. The toothpick was then dipped onto the
surface of the test water. Pupae were transferred into a
separate glass cup with approximately 50 ml of non-
chlorinated tap water and the cup covered with mos-
quito netting to prevent any escape of emerged adults.
Pupae were monitored for adult emergence.
Statistical analyses
Generalized estimating equations (GEE) were used to
analyze the data. The experimental round was included
as repeated measure. Proportions were analyzed by fit-
ting a binomial distribution with logit link function and
counts analyzed by fitting a negative binomial distribu-
tion with log link function. An exchangeable correlation
matrix was assumed. Treatment group was included as
the fixed factor in the models with the control group as
reference. All means (proportion or counts) per treat-
ment and their 95% confidence intervals (CIs) were
modelled as the exponential of the parameter estimates
for models with no intercept included. Multiple com-
parisons of treatments were also calculated based on the
model parameter estimates. Abbott’s formula [51] was
used to calculate proportion reductions in egg-laying re-
sponses, egg-hatching success and emergence of adults
from larvae introduced in the different treatment groups
taking the natural response/mortality of the control group
into account.
Ethical considerations
Ethical approval for this study was obtained from the Kenya
Medical Research Institute’s Ethical Review Committee
(Protocol no. 422).
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Results
Effect of PPF exposure on a females’ ability to lay eggs
and the ability of the egg to hatch
PPF exposure affected An. gambiae s.s. and Cx. quinque-
fasciatus egg-laying as early as 48 hours prior and up to
24 hours after a blood meal in An. gambiae s.s. and
48 hours after a blood meal in Cx. quinquefasciatus
(Table 1). However, the proportion of females laying was
only reduced by approximately one third when exposed
to PPF 48 hours before a blood meal compared to the
control group (Table 1). The highest reduction due to
the treatments in both species was roughly 60%, which
was achieved by PPF exposure between 24 hours before
and 24 hours after a blood meal in An. gambiae s.s. and
between 24 hours before and 0.5 hours after a blood
meal in Cx. quinquefasciatus. In An. gambiae s.s., the
odds of laying as compared to not laying in the control
was 3.3:1, whilst the odds of laying versus not laying was
on average 0.45:1 in females exposed to PPF 24 hours be-
fore until 24 hours after a blood-meal. Hence, compared
to the control the odds of laying was 7–8 times reduced
(OR 0.12-0.15) when An. gambiae s.s. were exposed to
PPF 24 hours before and up to 24 hours after a bloodmeal.
Similarly, the odds of laying in Cx. quinquefasciatus was
4–9 times reduced (OR 0.11-0.25) when females were ex-
posed to PPF between 24 hours before and 24 hours after
a blood meal. Late contamination of An. gambiae s.s. with
Table 1 Effect of pyriproxyfen (PPF) exposure on the proport

Exposure time to PPF in relation
to blood meal

Proportion that
laid eggs (95% CI)

Anopheles gambiae s.s.*

72 hours after 0.80 (0.73-0.87)

48 hours after 0.80 (0.75-0.85)

24 hours after 0.33 (0.24-0.43)

0.5 hours after 0.31 (0.23-0.41)

0.5 hours before 0.33 (0.24-0.43)

24 hours before 0.29 (0.21-0.39)

48 hours before 0.52 (0.42-0.62)

Control 0.76 (0.71-0.82)

Culex quinquefasciatus**

144 hours after 0.68 (0.58-0.76)

48 hours after 0.58 (0.47-0.78)

24 hours after 0.41 (0.31-0.52)

0.5 hours after 0.24 (0.16-0.34)

0.5 hours before 0.29 (0.20-0.40)

24 hours before 0.31 (0.22-0.42)

48 hours before 0.46 (0.36-0.57)

Control 0.72 (0.65-0.78)

*Egg-laying took place 72 hours after bloodmeal.
**Egg-laying took place 144 hours after bloodmeal.
PPF at 48 hours and 72 hours after a blood meal and of
Cx. quinquefasciatus at 144 hours after a blood meal did
not affect the proportion of females laying eggs (Table 1).
Of those few An. gambiae s.s. that laid eggs, the mean

number of eggs laid per female was reduced by 21-36%
compared to the control females if exposure to PPF
occurred between 24 hours before and 24 hours after a
blood meal, whilst the numbers were similar to the
control when exposure occurred 48 hours and 72 hours
after a blood-meal (Table 2).
It was 13–20 times less likely for an An. gambiae s.s.

egg to hatch into a larva (OR 0.05-0.08) when the
mother was exposed to PPF between 24 hours before
and 24 hours after blood feeding (Table 3). However,
there was no difference in egg hatching in eggs laid
by An. gambiae s.s. exposed close to oviposition time
with those laid by control females (Tables 3). The
impact of PPF exposure on the mean number of lar-
vae that successfully hatched from an egg raft of
Cx. quinquefasciatus was only moderately reduced
by 1.3-1.7 times compared to egg hatching in the control
(Table 3).
PPF exposure did not induce any significant delays in

egg-laying. The exposure either sterilized the female
so that she did not lay at all, or she laid 72 hours after
the last blood meal like unexposed control females
(Table 4).
ion of females laying eggs

Proportion reduction
in laying (95% CI)

Odds ratio
(95% CI)

p-value

0 1.20 (0.68-2.14) 0.460

0 1.21 (0.78-1.88) 0.390

0.56 (0.48-0.66) 0.15 (0.08-0.29) <0.001

0.59 (0.50-0.68) 0.14 (0.05-0.34) <0.001

0.57 (0.48-0.66) 0.15 (0.11-0.20) <0.001

0.62 (0.52-0.70) 0.12 (0.07-0.21) <0.001

0.32 (0.24-0.41) 0.32 (0.18-0.60) <0.001

- 1

0.05 (0.02-0.10) 0.87 (0.67-1.12) 0.450

0.19 (0.14-0.27) 0.48 (0.34-0.68) 0.020

0.43 (0.33-0.52) 0.25 (0.14-0.43) <0.001

0.66 (0.56-0.75) 0.11 (0.08-0.16) <0.001

0.59 (0.48-0.69) 0.14 (0.09-0.20) <0.001

0.56 (0.46-0.66) 0.16 (0.10-0.27) <0.001

0.36 (0.26-0.44) 0.31 (0.18-0.51) <0.001

- 1



Table 2 Mean number of eggs laid by unexposed and pyriproxyfen-exposed An. gambiae s.s

Exposure time to PPF in relation to blood meal Mean no. of eggs* (95% CI) Odds ratio (95% CI) p-value

72 hours after 49.4 (45.5-53.6)a,c** 0.97 (0.86-1.09) 0.580

48 hours after 49.4 (46.4-52.6)a,c 0.97 (0.88-1.07) 0.520

24 hours after 37.8 (32.3-44.2)b,c 0.74 (0.62-0.90) 0.002

0.5 hours after 32.9 (27.9-38.7)b 0.64 (0.53-0.79) <0.001

0.5 hours before 40.0 (34.2-46.8)a,b 0.78 (0.65-0.95) 0.010

24 hours before 40.3 (34.1-47.6)a,b 0.79 (0.65-0.97) 0.019

48 hours before 45.0 (39.8-51.0)a,b 0.88 (0.76-1.03) 0.110

Control 51.1 (47.9-54.4)a 1

*Only females that laid eggs were included in analysis.
**Values without letters in common differ significantly (p < 0.05) in mean number of eggs laid.
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Transfer of PPF by adult An. gambiae s.s. and Cx.
quinquefasciatus to the water in the oviposition cups
Transfer of PPF to the oviposition substrate and conse-
quent emergence inhibition of introduced late instar An.
gambiae s.s. larvae was assessed separately for the follow-
ing two groups: (1) oviposition substrates originating from
females that laid eggs; and (2) oviposition substrates
originating from females that did not lay eggs.
Emergence was inhibited from all treatments compared

to the control when females laid eggs. However, the reduc-
tion was very low with 13-28% emergence inhibition from
Table 3 Effect of pyriproxyfen (PPF) exposure of female mosq

Anopheles ga

Exposure time to PPF in relation to blood meal Mean proportio
eggs hatched* (95

72 hours after 0.86 (0.85-0.87)

48 hours after 0.84 (0.82-0.85)

24 hours after 0.22 (0.19-0.24)

0.5 hours after 0.19 (0.17-0.23)

0.5 hours before 0.21 (0.18-0.23)

24 hours before 0.24 (0.22-0.27)

48 hours before 0.54 (0.51-0.56)

Control 0.84 (0.83-0.85)

Culex quinqu

Exposure time to PPF in relation to blood meal Mean no. of larvae h
per egg raft ** (95

144 hours after 76.4 (75.3-77.5)

48 hours after 66.0 (60.6-72.0)

24 hours after 66.4 (63.7-69.2)

0.5 hours after 67.8 (59.9-76.8)

0.5 hours before 61.9 (56.2-68.2)

24 hours before 72.9 (65.0-81.7)

48 hours before 51.2 (49.4-53.0)

Control 81.4 (76.6-86.6)

*Eggs were counted for An. gambiae s.s. and the proportion that hatched calculated
**The number of eggs per egg raft was not counted. Comparisons are made betwe
cups that were visited by An. gambiae s.s. females exposed
to PPF between 48 hours before to 24 hours after a blood
meal and 6-19% emergence inhibition from cups that were
visited by Cx. quinquefasciatus females that were exposed
between 48 hours before to 48 hours after a blood meal
(Table 5, Figure 2). Biologically significant emergence
inhibition was only achieved when females were exposed to
PPF very close to oviposition time i.e. 52-65% from treat-
ments with An. gambiae s.s. exposed 48 hours to 72 hours
after a blood meal and 71% from treatments with Cx.
quinquefasciatus exposed 144 hours after a blood meal.
uito on hatching of her eggs

mbiae s.s.

n
% CI)

Proportion reduction in
hatched larvae (95% CI)

Odds ratio (95% CI) p-value

0 0.99 (0.80-1.23) 0.910

0 0.99 (0.82-1.19) 0.910

0.73 (0.71-0.77) 0.06 (0.05-0.09) <0.001

0.77 (0.73-0.80) 0.05 (0.03-0.07) <0.001

0.75 (0.72-0.78) 0.06 (0.05-0.08) <0.001

0.71 (0.68-0.73) 0.08 (0.06-0.11) <0.001

0.35 (0.34-0.38) 0.27 (0.22-0.34) <0.001

- 1

efasciatus

atched
% CI)

Proportion reduction in
hatched larvae (95% CI)

Odds ratio (95% CI) p-value

0.07 (0.05-0.09) 0.94 (0.89-0.98) 0.008

0.19 (0.16-0.21) 0.81 (0.77-0.86) <0.001

0.18 (0.14-0.22) 0.82 (0.77-0.87) <0.001

0.17 (0.10-0.23) 0.83 (0.70-0.99) 0.035

0.24 (0.18-0.29) 0.76 (0.69-0.83) <0.001

0.10 (0.5-0.16) 0.90 (0.76-1.03) 0.130

0.37 (0.34-0.40) 0.63 (0.60-0.66) <0.001

- 1

.
en mean numbers of larvae per egg raft.



Table 4 Evaluation of delayed egg-laying in An. gambiae s.s. due to pyriproxyfen exposure

Exposure time to PPF in relation
to blood meal

Females
exposed

Females laying eggs
72 hrs after blood meal

Females laying eggs later
than 72 hrs after blood meal

Had the female
laid eggs before?

24 hours after 60 14 0 _

0.5 hours after 60 23 1 No

0.5 hours before 60 24 0 _

24 hours before 60 17 1 No

Control 60 49 2 No
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Conversely, when females did not lay eggs in the pro-
vided oviposition cup, emergence of introduced larvae
was the same as in the control for all treatments and
both species (Table 5, Figure 2).

Discussion
Our study confirms a strong sterilizing effect of PPF on
both An. gambiae s.s. and Cx. quinquefasciatus when
females were exposed within 24 hours before or after a
blood meal. Moreover, in our simple system we demon-
strated that gravid females can transfer lethal concentra-
tions of PPF to oviposition sites. However, our results
suggest that for the use in an auto-dissemination approach
females of both species would need to be exposed to PPF
when already gravid so that sufficient PPF can be delivered
to aquatic habitats.
The effect of PPF exposure on An. gambiae s.s. was

three fold as it reduced the proportion of females laying
eggs, the number of eggs laid and the number of eggs
that successfully hatched into larvae when females were
exposed to 2.6 mg/m2 PPF between 24 hours before and
24 hours after a blood meal. However, the main effect of
PPF exposure on Cx. quinquefasciatus during the same
time interval was only in reducing the number of females
laying eggs.
Overall, the number of offspring produced by females

exposed to PPF 24 hours before to 24 hours after a
blood meal was reduced between 91-94% in An. gambiae
s.s. and 60-75% in Cx. quinquefasciatus compared to
control females. The differences in sterilization between
the two mosquito species might be explained by the larger
size of Cx. quinquefasciatus relative to An. gambiae s.s.
and their different ability to metabolize insecticides [52].
Thus, it is likely that larger concentrations of PPF are
required to increase the impact of topical application on
Culex mosquitoes.
The dependence of exposure time to PPF on reducing

egg laying and hatching in mosquitoes has been shown
in other studies [13,17,32], however, the reported results
are not consistent. For instance while Itoh and colleagues
[13] observed a reduction in number of eggs laid by Ae.
aegypti exposed to PPF on the same day of bloodmeal,
Sihuincha and colleagues [15] reported that exposure of
the same mosquito species at a similar point in time did
not affect the number of eggs laid. Only few studies have
been done on the effect of PPF on egg-laying and hatching
in Anopheles mosquitoes with contrasting findings. Aiku
and colleagues [30] reported that An. stephensi exposed to
bednets treated with 2% PPF at 24 hours after blood meal
were as likely to lay and laid similar numbers of eggs as
control mosquitoes but eggs were less likely to hatch.
However, Miller [31] found that exposure of the same
mosquito species to bednets treated with 0.5 mg PPF/m2

at the time of blood meal caused a reduction in number
of eggs laid. These differences on the effect of PPF might
be explained by the variations in PPF dosages used in the
separate studies and the characteristics of surfaces onto
which PPF is applied [32,38].
Our study confirms the observation of Ohashi and

colleagues [32] that exposure of laboratory reared An.
gambiae s.s. females to PPF at comparable dosages before
and after a blood meal significantly reduces the number of
offspring produced from these females. A recent study
by Ngufor and colleagues [33] also found complete
sterilization in wild pyrethroid-resistant An. gambiae s.
s. that came into contact with PPF treated nets while
seeking a blood meal. Our observations extend their
evidence by showing that the sterilizing effect can be
achieved during a relatively large window of time between
24 hours before to 24 hours after a bloodmeal and at a
relatively low concentration. Our results contrast, how-
ever, with those of Harris and colleagues [17] that showed
for the sibling species An. arabiensis a sterilizing effect
when exposure took place 24 hours after the blood meal
but not 24 hours before the blood meal. Further studies
might be warranted to explore the individual susceptibility
of these closely related species further when aiming at
developing intervention strategies targeting both sibling
species by topical application at the same time.
Our study provides strong evidence that exposure of

adult vectors, both anophelines and culicines to PPF can
contribute significantly to reduce their population density.
The sensitivity of both An. gambiae s.s. and Cx. quinquefas-
ciatus to sterilization by PPF close to a blood meal presents
an excellent opportunity to integrate PPF in insecticide-
treated bednets, include PPF in indoor spays or wall paints
to apply on inner surfaces of houses to reduce mosquitoes’
reproductive capacity as females seek a blood meal or as



Table 5 Adult emergence from late instar larvae introduced into oviposition substrates

Exposure time to PPF in relation to blood meal Mean adults
emerged (95% CI)

Proportion emergence
inhibition (95% CI)

Odds ratio
(95% CI)

p-value

Anopheles gambiae s.s.

Females that laid eggs

72 hours after 0.32 (0.29-0.35) 0.65 (0.62-0.68) 0.04 (0.03-0.05) <0.001

48 hours after 0.44 (0.41-0.46) 0.52 (0.51-0.54) 0.07 (0.05-0.09) <0.001

24 hours after 0.66 (0.60-0.71) 0.28 (0.24-0.33) 0.18 (0.14-0.25) <0.001

0.5 hours after 0.75 (0.70-0.80) 0.18 (0.14-0.22) 0.31 (0.19-0.51) <0.001

0.5 hours before 0.78 (0.73-0.82) 0.15 (0.21-0.19) 0.36 (0.26-0.50) <0.001

24 hours before 0.79 (0.74-0.83) 0.14 (0.11-0.18) 0.38 (0.25-0.58) <0.001

48 hours before 0.80 (0.76-0.83) 0.13 (0.10-0.16) 0.38 (0.17-0.83) 0.015

Control 0.92 (0.90-0.93) 1

Females that did not lay eggs

72 hours after 0.88 (0.84-0.92) - 0.80 (0.48-1.33) 0.380

48 hours after 0.87 (0.84-0.90) - 0.69 (0.47-1.03) 0.070

24 hours after 0.86 (0.83-0.88) - 0.62 (0.41-0.94) 0.020

0.5 hours after 0.86 (0.84-0.89) - 0.67 (0.38-1.17) 0.160

0.5 hours before 0.88 (0.86-0.90) - 0.79 (0.50-1.23) 0.290

24 hours before 0.90 (0.88-0.92) - 0.96 (0.57-1.61) 0.870

48 hours before 0.89 (0.86-0.91) - 0.82 (0.56-1.21) 0.320

Control 0.90 (0.88-0.93) - 1

Culex quinquefasciatus

Females that laid eggs

144 hours after 0.25 (0.22-0.29) 0.71 (0.67-0.74) 0.07 (0.06-0.09) <0.001

48 hours after 0.70 (0.66-0.74) 0.19 (0.16-0.21) 0.28 (0.15-0.53) <0.001

24 hours after 0.78 (0.73-0.82) 0.09 (0.07-0.13) 0.39 (0.29-0.54) <0.001

0.5 hours after 0.76 (0.70-0.82) 0.12 (0.07-0.16) 0.37 (0.30-0.46) <0.001

0.5 hours before 0.74 (0.68-0.79) 0.14 (0.10-0.19) 0.32 (0.16-0.65) 0.002

24 hours before 0.71 (0.65-0.76) 0.17 (0.14-0.23) 0.28 (0.23-0.36) <0.001

48 hours before 0.81 (0.76-0.84) 0.06 (0.04-0.10) 0.46 (0.34-0.62) <0.001

Control 0.86 (0.84-0.88) 1

Females that did not lay eggs

144 hours after 0.84 (0.79-0.87) - 1.17 (0.94-1.45) 0.170

48 hours after 0.78 (0.73-0.82) - 0.78 (0.61-0.99) 0.038

24 hours after 0.83 (0.80-0.86) - 1.08 (0.60-1.96) 0.790

0.5 hours after 0.84 (0.81-0.87) - 1.14 (0.90-1.45) 0.270

0.5 hours before 0.86 (0.83-0.88) - 1.31 (0.88-1.95) 0.180

24 hours before 0.84 (0.80-0.87) - 1.13 (0.69-1.83) 0.640

48 hours before 0.84 (0.80-0.87) - 1.14 (0.83-1.57) 0.410

Control 0.82 (0.78-0.85) 1

Mbare et al. Parasites & Vectors 2014, 7:280 Page 8 of 12
http://www.parasitesandvectors.com/content/7/1/280
they rest indoors after taking a blood meal. This impact
would be greatly enhanced when sterilization occurs in
successive gonotrophic cycles in addition to reduced
lifespan as previously shown for An. gambiae s.s. exposed
to PPF-treated nets [32]. However, if both species should
be targeted by the intervention, more research might be
required to find the optimum dosages. Our findings on
the sterilizing effect of PPF on Cx. quinquefasciatus
confirm previous findings from a study on insecticidal
paint containing PPF [38]. Yet, a recent experimental
hut trial with wild Cx. quinquefasciatus could not dem-
onstrate any impact of exposed to treated nets on this
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Figure 2 Median adult emergence rates from late instar larvae introduced into oviposition cups. Results for pyriproxifen exposed
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species [33]. Unfortunately, this study does not report
the PPF dosage and one can only speculate that the larger
size of the mosquito combined with a lower resting time
on contaminated surfaces might be responsible for the dif-
ferences between studies.
We were able to demonstrate in principle that female

An. gambiae s.s. and Cx. quinquefasciatus can transfer
PPF from contaminated resting surfaces to aquatic
substrates. This study demonstrated that the greatest
adult emergence inhibition occurred when Cx. quinque-
fasciatus females were exposed to PPF immediately prior
to oviposition. Thus targeting gravid Culex species at their
resting sites would increase the amount of PPF transferred
to aquatic habitats in which immature stages of An.
gambiae s.l. develop. However, the longer period in the
gonotrophic cycle of Culex relative to that of An. gambiae
s.s. presents a challenge in using Cx. quinquefasciatus or
other Culex species for auto-dissemination. Whilst An.
gambiae s.s. took 72 hours (3 days) after a blood meal
to lay eggs, Cx. quinquefasciatus females laid eggs only
144 hours (6 days) after a blood meal. Studies have de-
scribed the gonotrophic cycle in An. gambiae s.s to last
2–3 days [53,54], while that of Cx. quinquefasciatus
and other Culex species lasts 3–6 days [55-58]. As
shown in our study, this extended period increases the
amount of PPF that this mosquito species will lose if
exposure to the chemical is not done close to oviposition
time. The loss of PPF overtime from body surfaces of
mosquitoes has been explored in other studies [13,59].
The auto-dissemination technique has been successfully

explored with Aedes mosquitoes in both laboratory and
field settings [11-13,15,26,27,59,60]. Field studies have
shown that Ae. aegypti and Ae. albopictus females can
transfer PPF from limited contaminated resting sites to
larval habitats to reduce adult emergence rates of devel-
oping larvae by 42-100% [11,12]. Three factors that are
related to the oviposition behaviour of targeted Aedes
mosquitoes contribute to the success of this strategy in
the control of this mosquito species. First, Aedes mos-
quitoes utilize containers that hold small volumes of
water as breeding habitats [61-63]. Second, laboratory
assays indicate that 94% of Ae. aegypti distribute their
eggs in up to seven oviposition cups in a single gono-
trophic cycle, a phenomenon termed as skip-oviposition,
[64] and field studies have shown that a relatively large
number of females lay their eggs in a small oviposition
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container [65-68]. Third, PPF contamination in successful
trials took place close to oviposition time [13,26,59]. These
factors permit Aedes mosquitoes to accomplish several
transfer events of PPF between contaminated surfaces and
aquatic habitats to amplify adult emergence inhibition.
Aedes’ behaviour is in sharp contrast to that of An.
gambiae s.l.. Anopheles gambiae s.l. colonizes natural
habitats of varying size and stability [43,69,70] and is
frequently found in extensive water bodies [71] with
low larval densities per surface area [72,73]. Furthermore,
molecular evidence of sibling relationships suggest that
few females (average of 2–10 females) lay eggs in a typ-
ical larval habitat [74]. Although An. gambiae s.l. does
skip-oviposit occasionally [75,76], it is not the norm in this
species. A recent study [76] showed that approximately
20-30% of gravid females might choose more than one
habitat to lay her eggs.
To our knowledge this is the first report of the po-

tential use of the disease vectors, An. gambiae s.s. and
Cx. quinquefasciatus for use in auto-dissemination of
PPF to aquatic substrates to inhibit adult emergence.
In the present study significantly higher emergence in-
hibition rates were recorded in oviposition cups where
PPF-exposed female mosquitoes laid eggs compared to
the controls. However, sterilized females that were exposed
to PPF between 24 hours before and after a bloodmeal did
not transfer sufficient PPF to water to cause biologically
important emergent inhibition rates. There are two
possible explanations for this phenomenon. First, sterile
females have less or no mature eggs to lay [77,78] and
therefore have little urge to visit aquatic substrates.
Second, chemical analysis by high performance liquid
chromatography (HPLC) reveal that early exposure of
mosquitoes to PPF results in loss of greater amounts of
the chemical before oviposition time [13].
Our study suggests that for An. gambiae s.s. and Cx.

quinquefasciatus to optimally auto-disseminate PPF expos-
ure must take place close to oviposition. However, even
when both species were exposed that late only 65% and
71% emergence inhibition was achieved in oviposition
substrates in which An. gambiae s.s. and Cx. quinque-
fasciatus laid eggs, respectively. Considering the small
volume of water (100 ml) in a small oviposition cup of
0.004 m2 used here, it is estimated that two females of
either species exposed to PPF immediately prior to ovi-
position would be required to transfer sufficient PPF to
cause complete emergence inhibition in such a small
habitat. This suggests that hundreds of mosquitoes would
be required to transfer lethal concentrations to 1 m2 of
habitat and the majority of natural habitats exceed this
size [43]. This suggests that the auto-dissemination is less
likely to be effective for control of Anopheles mosquitoes
in the more difficult field situations than it is for Aedes
control or would at least require PPF formulations with
much higher percentage of the active ingredient than the
2% tested here. Further studies are needed to understand
the behaviour of gravid mosquitoes as they leave the
houses (or other feeding and resting locations) to lay eggs.
This would help to gain knowledge of the outdoor resting
surfaces of gravid An. gambiae s.l. to serve as potential
auto-dissemination stations. Species-specific oviposition
attractants might be used to lure gravid females to the
auto-dissemination stations to pick up lethal doses of PPF
for transfer to uncontaminated aquatic habitats [79,80].

Conclusion
Anopheles gambiae s.s. and Cx. quinquefasciatus are
highly affected by topical application of PPF reducing
their viable offspring by 90% and 70%, respectively, when
exposed to 2.6 mg/m2 one day before to one day after a
blood meal. The time interval of greatest susceptibility is
excellent for use on PPF treated materials and indoor
sprays and paints on resting surfaces and could provide a
significant contribution to malaria control by suppressing
the vector population. Importantly, it presents a promising
opportunity for integrated control of different vectors and
nuisance mosquitoes. It is considered that the integration
of PPF in available insecticides would help in the manage-
ment of resistance to pyrethroids [33,81]. However, steril-
ized females are unlikely to visit an oviposition site and
therefore do not transfer lethal concentrations of PPF to
aquatic habitats. This suggests that for successful auto-
dissemination the optimum time for contamination is
close to oviposition, which requires further studies of the
species’ resting behaviour after blood meals.
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