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Characterisation of a secretory serine protease
inhibitor (SjB6) from Schistosoma japonicum
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Abstract

Background: Proteins belonging to the serine protease inhibitor (serpin) superfamily play essential physiological
roles in many organisms. In pathogens, serpins are thought to have evolved specifically to limit host immune
responses by interfering with the host immune-stimulatory signals. Serpins are less well characterised in parasitic
helminths, although some are thought to be involved in mechanisms associated with host immune modulation. In
this study, we cloned and partially characterised a secretory serpin from Schistosoma japonicum termed SjB6, these
findings provide the basis for possible functional roles.

Methods: SjB6 gene was identified through database mining of our previously published microarray data, cloned
and detailed sequence and structural analysis and comparative modelling carried out using various bioinformatics
and proteomics tools. Gene transcriptional profiling was determined by real-time PCR and the expression of native
protein determined by immunoblotting. An immunological profile of the recombinant protein produced in insect
cells was determined by ELISA.

Results: SjB6 contains an open reading frame of 1160 base pairs that encodes a protein of 387 amino acid residues.
Detailed sequence analysis, comparative modelling and structural-based alignment revealed that SjB6 contains the
essential structural motifs and consensus secondary structures typical of inhibitory serpins. The presence of an
N-terminal signal sequence indicated that SjB6 is a secretory protein. Real-time data indicated that SjB6 is expressed
exclusively in the intra-mammalian stage of the parasite life cycle with its highest expression levels in the egg stage
(p < 0.0001). The native protein is approximately 60 kDa in size and recombinant SjB6 (rSjB6) was recognised
strongly by sera from rats experimentally infected with S. japonicum.

Conclusions: The significantly high expression of SjB6 in schistosome eggs, when compared to other life cycle
stages, suggests a possible association with disease pathology, while the strong reactivity of sera from
experimentally infected rats against rSjB6 suggests that native SjB6 is released into host tissue and induces an
immune response. This study presents a comprehensive demonstration of sequence and structural-based analysis
of a secretory serpin from a trematode and suggests SjB6 may be associated with important functional roles in
S. japonicum, particularly in parasite modulation of the host microenvironment.
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Background
Serine protease inhibitors (serpins) are members of an
important superfamily of structurally-related proteins
found in many organisms including viruses, bacteria, ani-
mals and plants [1-4]. Serpins participate in many import-
ant physiological processes such as signalling cascades [5],
blood coagulation [6,7], fibrinolysis [8], inflammation and
activation of the complement system [9,10]. Furthermore,
these inhibitors also play key roles in host immune modu-
lation by pathogens, and hence the suggestion that patho-
gen serpins may have evolved for the singular purpose of
limiting host immune activation by interfering with host
immunomodulatory signals [11,12]. In parasitic helminths,
these inhibitors appear to perform similar roles [13].
Schistosoma japonicum is a zoonotic trematode that

infects humans and many animals causing Asiatic schis-
tosomiasis. Despite considerable control measures, high
re-infection rates and the potential for the development
of drug resistance, necessitate the development of an ef-
fective anti-schistosomal vaccine, which would significantly
decrease the schistosomiasis-induced morbidity and mor-
tality in endemic areas. Despite significant research regard-
ing the biology and immunology of schistosomiasis, much
is still unknown regarding the mechanisms associated with
schistosomes evading the host immune responses or the
involvement of serpins in these processes. In particular,
there are limited reports to date presenting the functional
characterisation of serpins in the Asiatic schistosomes or
their possible role in host-parasite interactions.
Through the analysis of the transcriptional changes oc-

curring during the S. japonicum life cycle [14] and cross-
referencing with the S. japonicum genome database [15],
we are able to report here the identification and cloning of
a full-length cDNA sequence, termed SjB6 [GenBank:
CAX69453.1] encoding a secretory S. japonicum serpin.
According to MEROPS classification of protease inhibi-
tors [16], SjB6 (MEROPS Accession: ME179730) is a
member of inhibitor family 14 (Clan ID). We also present
structure-to-function bioinformatics analysis of the SjB6
polypeptide, its production as a recombinant protein and
its characterisation.

Methods
Ethics statement
All work was conducted with the approval of the QIMR
Berghofer Medical Research Institute Animal Ethics
Committee (Project number P288).

Identification of S. japonicum serpin
Source sequence encoding S. japonicum SjB6 [GenBank:
CAX69453.1] was found using BLAST (Basic Local Align-
ment and SearchTool) [17] with the BLASTP and BLASTN
algorithms against S. japonicum Gene Index (SjGI) avail-
able at DFCI (http://compbio.dfci.harvard.edu/tgi/) and a
S. japonicum gene expression database created by our re-
search group [14]. Validation of sequence accuracy was
carried out by inspecting and confirming the presence
of start and stop codons, the expected amino acid
length range for serpins (350–450 amino acids of trans-
lated protein sequence) [1,18], and the presence of two
amino acids motifs described as highly conserved for ser-
pins: NAVYFKG and DVNEEG [19,20].

Bioinformatics analyses
The SjB6 coding sequence was compared to known entries
in GenBank using the BLASTp program. To gain insight
on probable functionality, the deduced SjB6 amino acid
sequence was scanned against amino acid motif entries,
ScanProsite, THMMM, PROSITE and SignalP servers
(ExPASY Bioinformatics Resource Server; http://www.
expasy.org/proteomics). The reactive centre loop (RCL) of
SjB6 was determined based on the consensus 20/21 resi-
due peptide “p17 [E]-p16 [E/K/R]-p15 [G]-p14 [T/S]-p13
[X]-P12-9 [AGS]-p8-1 [X]-p1’ – 4’” [4,21]. The putative
scissile bond (P1 – P1’) and the P1 residue were predicted
based on the conserved features that there are generally
17 amino residues (P17 to P1) between the start of the
hinge region of the RCL and the scissile bond [1]. Se-
quence alignment was performed using the MUSCLE al-
gorithm [22,23] in the MEGA 6.0 program [24]. Putative
N-glycosylation sites were identified using the NetNGly1.0
server (Gupta et al., unpublished, http://cbs.dtu.dk/services/
NetNGlyc/). Theoretical molecular weight and isoelectric
points of the mature serpin protein were calculated using
the ExPASy Compute pI/Mw tool [25].

Structural based sequence alignment and comparative
modelling
The SjB6 amino acid sequence was subjected to structural
based alignment using STRAP [26] and the MUSCLE al-
gorithm [22]. The tertiary structures of SjB6 and other
parasitic helminth serpins were predicted using the Phyre2

program [27]. QMEAN was the method used to estimate
model reliability and predict quality [28,29]. The predicted
structures were aligned and viewed using DeepView-
SWISS PdbViewer v4.1 [30]. Illustrations of the 3D struc-
tures were generated using DeepView-SWISS PdbViewer.

Phylogenetic analysis
Multiple amino acid sequence alignments of SjB6 and
some other parasite serpins retrieved from GenBank
(GenBank accession numbers in Table 1) were created
using the MUSCLE algorithm [22] in an open source
Phylogeny.fr program [31]. The phylogenetic analyses
were performed using default setting of the “One Click
mode” in Phylogeny.fr program [31] with Gblocks for
automatic curation [32], PhyML for tree building [33] and
TreeDyn for tree drawing [34].

http://compbio.dfci.harvard.edu/tgi/
http://www.expasy.org/proteomics
http://www.expasy.org/proteomics
http://cbs.dtu.dk/services/NetNGlyc/
http://cbs.dtu.dk/services/NetNGlyc/


Table 1 Key characteristics of the serpin SjB6 sequence

Amino acid sequence Amino acid
position

Serpin motif DEEGAV 329 – 334

Reactive Central Loop AASASATVMYMCSAIRSHQPVPE 337 – 357

Serpin signature FRIDHPFFISI 358 – 368
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Parasite materials
A Chinese field isolate (Anhui strain) of S. japonicum
was maintained in Oncomelania hupensis hupensis snails
and in BALB/c mice (Animal Resource Centre, Western
Australia) at QIMR Berghofer Medical Research Institute.
Adult worms were recovered by perfusion of infected
mice using sodium citrate buffer (0.15 M sodium chloride/
0.05 M sodium citrate). Soluble worm antigen products
(SWAP) were obtained from homogenised adult worm
pairs following centrifugation. Eggs were obtained from
infected mouse livers and miracidia hatched from isolated
eggs as described [35]. The production of cercariae [36]
and schistosomula, obtained by mechanical transform-
ation of cercariae [37], followed published procedures. All
parasite stages were stored in liquid nitrogen until needed
or stored in RNAlater (Ambion) at 4°C until total RNA
extraction.

Total RNA extraction, cDNA synthesis and real-time PCR
Total RNA was extracted from isolated S. japonicum life
cycle stages using Trizol reagent (Life Technologies) and
an RNeasy Mini kit (Qiagen). Total RNA quantity was
measured using Nanodrop-1000 (Nanodrop Technologies)
and quality assessed using an Agilent Bioanalyzer (Agilent
Technologies). cDNA was synthesised from total RNA
obtained using a Quantitect Reverse Transcription Kit
(Qiagen) according to the manufacturer’s instructions.
Real-time PCR for SjB6 was performed using 2.5 ng of
cDNAs as templates with the SYBR Green PCR Master
Mix (Applied Biosystems). Primers were designed from
cDNA sequences using Primer3 (http://primer3.wi.mit.
edu/). The forward primer was 5’- TTG ACC AGT TTA
CCA CAC CTA CA– 3’ and the reverse primer was 5’-
AGA CAG CAA TGA AGA GAT TCC AC – 3’. NADH-
ubiquinone reductase (NADH-UR) was used as house-
keeping gene [14]. The cycling conditions were: 95°C for
10 min; 39 cycles at 95°C for 30 s at 58°C for 30 s and
72°C for 30 s. All reactions were carried out in four bio-
logical replicates. Rotor-Gene 6000 series software and
GraphPad Prism software were used to analyse the results.

Cloning of the SjB6 gene and sequence analysis
The full-length coding sequence of SjB6 was amplified
from adult worm cDNA by PCR using oligonucleotide
primers flanking the open reading frame of the gene de-
signed using Amplify 3 (http://engels.genetics.wisc.edu/
amplify/). The forward primer was 5’- CGT ATA CAT
TTC TTA CAT CTA TGC GGA TTC GCA TCA CCA
TCA CCA TCA CGT TCT TTG CGG TAG TGA TAA
TAA TAC GAA AGC T-3’ and the reverse primer was
5’- GTT AGT GGT GGT GGT GGT GGT GTT ATT
CAT TCA TTG GTG CTA CAA CAT GTC CTA GA-3’.
The amplification reaction was carried out using a thermal
cycling profile of 95°C for 2 min; 30 cycles at 95°C for
20 s, 60°C for 20 s, 70°C for 20 s and a final extension for
2 min at 72°C. The PCR product was analysed on a 0.8%
(w/v) agarose gel, gel-purified and co-transformed with
linearised p-BAC-1 transfer vector into Escherichia coli
OmniMAX competent cells (Invitrogen). Positive clones
were screened for the presence of plasmid with the appro-
priate insert. The nucleotide sequence of the insert was
determined by automated sequencing.

Generation of recombinant pBAC-1/SjB6 plasmid DNA
Standard insect cell culture techniques were used as pre-
viously described [38,39]. Sf9 cells seeded at 6 × 105

cells/mL in Sf900II medium were plated into a 24-deep
well plate (Invitrogen) and transfected with a mixture of
100 ng recombinant pBAC-1/SjB6 plasmid DNA and
20 ng flashBAC DNA [40] using Cellfectin (Invitrogen)
according to the manufacturer’s instructions. Cells were
then incubated at 28°C for 5 hr and the supernatant re-
moved afterwards. Media supplemented with Gibco
antibiotics-antimycotics (100X) solution (Life Technolo-
gies) was added and the cells incubated at 28°C for a fur-
ther 7 days. Cells were pelleted (500 × g, 5 mins) and the
supernatant containing P1 virus was stored at 4°C until
needed. Cell growth, average cell size and viability were
monitored using Countess Automated Cell Counter (Life
Technologies).

Virus amplification and expression of rSjB6
Sf9 cells seeded at 2 × 106 cells/ml were infected with
P1 virus and incubated at 28°C at 250 rpm for 4 days in
a humidified incubator. At 96 h post-infection, the cells
were pelleted and the supernatant containing P2 virus
was harvested and stored at 4°C. For the expression of
rSjB6, High-Five (Hi-5) cell culture seeded at 1.5 × 106

cells/ml was infected with the P3 virus and incubated at
28°C at 120 rpm for 48 h in a humidified incubator. At
48 h post-infection, the supernatant was collected by
centrifugation, filtered through 0.45 μm filter and affinity
purified.

Affinity purification followed by size exclusion
chromatography
The filtered supernatant was loaded into prepacked 1 ml
HisTrap excel IMAC column (GE Healthcare). The col-
umn was washed with wash buffer (20 mM Sodium phos-
phate, 500 mM NaCl, 20 mM Imidazole, pH 7.1) before a

http://primer3.wi.mit.edu/
http://primer3.wi.mit.edu/
http://engels.genetics.wisc.edu/amplify/
http://engels.genetics.wisc.edu/amplify/
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multi-step elution, whereby increasing concentrations
(4%, 8%, 16%, 26%, 50% and 100%) of elution buffer
(20 mM Sodium phosphate, 500 mM NaCl, 500 mM
Imidazole) were used to elute the protein of interest
(Figure 1). Each concentration was held until a baseline
absorbance was reached. Purification steps were per-
formed on AKTA Explorer FPLC system (GE Healthcare)
at a flow rate of 1 mL/min at 4°C. Eluted protein fractions
were dialysed against phosphate buffered saline (pH 7.4)
and loaded into a S75 SEC column with AKTA Explorer
FPLC system at 0.5 mL/min, at 4°C. Protein fractions col-
lected were analysed on SDS PAGE and the yield deter-
mined by standard Bradford assay [41]. The recombinant
protein was stored at −20°C until needed.

Assay of native SjB6 protein in S. japonicum
Production of rabbit antiserum was carried out by Antibody
Production Services (South Australian Health and Medical
Research Institute, Australia). Briefly, the rabbit was
immunised 3 times with 250 μg rSjB6 at 3-week intervals.
Figure 1 Purification of rSjB6 expressed in Hi-5 cells by IMAC affinity
Top panel: (A) An IMAC column was loaded with filtered protein sample a
elution was carried out with increasing concentration of elution buffer (4%
fractions. (C) IMAC purified elution samples were pooled, concentrated and
corresponds to the rSjB10 fraction. Bottom panel: Representative samples
L = protein ladder, lane 1 = culture supernatant; lane 2 = filtered superna
lane 5 = IMAC flow through; lane 6 = IMAC wash. Black arrows show th
The polyclonal antiserum was collected 7 days after the
last immunisation and stored at −80°C until required.
Western blotting was performed according to the LI-COR
Biosciences protocol. Briefly, rSjB6 and SWAP of S. japo-
nicum and subjected to electrophoresis on a 4-12% (w/v)
NuPAGE gel (Invitrogen). After separation, electrophor-
etic transfer of proteins from the polyacrylamide gel
to Immuno-Blot LF PVDF (Bio-Rad) membrane was
achieved using a XCell II Blot Module (Invitrogen) at
25 V for 2 h. Membranes were blocked with Odyssey
Blocking buffer (OBT, LI-COR Biosciences) overnight at
4°C, then incubated with the primary antibodies (anti-
rSjB6 antiserum and normal rabbit serum as control) for
1 h at room temperature (1:1000 dilution of rabbit anti-
serum in 0.2% (v/v) Tween-20 in OBT). The membranes
were washed with PBST (PBS with 0.1% (v/v) Tween-20)
and then incubated with secondary antibody (IRDye-
labeled goat anti-rabbit IgG (H + L) at 1:20,000 dilu-
tion, LICOR Biosciences) in 0.02% (w/v) SDS in OBT for
1 h at room temperature. After further washes with PBST,
chromatography followed by size exclusion chromatography.
nd the column washed to remove unbound material. (B) Multi-step
, 8%, 16%, 26%, 50% and 100%). The peaks indicate eluted protein
loaded onto the SEC column for further purification. The blue peak

collected from the eluted fractions were analysed by SDS-PAGE.
tant; lane 3 = Crossflow waste; lane 4 = concentrated supernatant;
e purified rSjB6.



Figure 2 Multiple sequence alignment comparison of the deduced amino acid sequence of SjB6 known helminth serpins.
Sha (Schistosoma haematobium), Emu (Echinococcus multilocularis), SjB6 (S. japonicum), Sm1 and Sm2 (S. mansoni), Csi (Clonorchis sinensis),
Pwe (Paragonimus westermani), Hco (Haemonchus contortus), Tvi (Trichostrongylus vitrinus), Asu (Ascaris suum), Bma1 and Bma2 (Brugia malayi).
All GenBank accession numbers are shown in Table 2.
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the immunoreactions were visualised with a LICOR Odyssey
Infrared Imager.

Experimental challenge infection of rodents,
measurement of serum anti-SjB6 antibodies
The laboratory rat is a resistant host for experimental in-
fections with S. japonicum while the mouse is a susceptible
host [42-44]. Two infection time-course experiments were
completed with outbred Wistar rats (7 weeks old) and
Swiss outbred mice (8 – 12 weeks old) (Animal Resource
Centre, Australia). Rats (N = 3) and mice (N = 5) were in-
fected percutaneously with 200 and 60 S. japonicum cer-
cariae, respectively, using the cover slip method. Blood
samples were collected from mice prior to infection and
6 weeks post-challenge while in the rat time-course experi-
ment, blood samples were collected after a primary and a
secondary cercarial challenge (as above) based on the ob-
servation that immune resistance in rats re-challenged
with schistosomes was shown to be highest between 4–8
weeks after re-infection [45,46]. Blood was collected via
the tail vein (rats), the tail tip (mice) or from cardiac punc-
ture at necropsy. Sera were obtained from clotted blood by
centrifugation and stored at −80°C until required.
The levels of anti-SjB6 antibodies in the sera of individ-

ual mice and rat were determined by standard ELISA.
Briefly, microplates were coated with 0.5 μg/mL of rSjB6.
Plates were washed with PBST and blocked with 5%
(w/v) skim milk in PBST. After washing, plates were in-
cubated with mouse sera in blocking buffer for a further
1.5 h at 37°C before being incubated with second antibody
(goat anti-mouse IgG conjugated to HRP, Sigma Aldrich)
Figure 3 Predicted amino acid sequence of SjB6 showing the position
were assigned based on the 1HP7 tertiary structure; bold lines are α-helice
and β-strands that constitute β-sheet A-C are labelled as “sA”, “sB” and “sC”
black and grey, respectively. Sequences highlighted in red are N-glycosylat
lines represent the serpin signature.
and subsequently developed with substrate solution (SIG-
MAFast OPD tablets). The endpoint antibody titre was
defined as the dilution with an OD reading 2 times above
the background level. The protocol for ELISA using the
rat sera was identical to that of the mouse except for
the secondary antibody used (goat anti-rat IgG conju-
gated to biotin, Sigma Aldrich) and an additional incu-
bation with HRP conjugated to streptavidin (BD
Biosciences) before developing with the substrate so-
lution. Soluble worm antigen products were used as
positive control antigen.

Statistical analysis
Data were expressed as mean ± standard error of mean
(SEM). Changes in real time PCR data and immunological
parameters were assessed by One-way ANOVA with post
hoc Bonferroni testing (p ≤ 0.05). These analyses were per-
formed using the GraphPad Prism version 6.02 (GraphPad
Software).

Results
Cloning and general characteristics of SjB6
The cloned full-length cDNA of SjB6 (1160 nucleotides)
contained a complete open reading frame (ORF) encod-
ing a polypeptide of 387 amino acids with a predicted
molecular weight of 43.7 kDa and a pI of 6.19. Ana-
lysis of the deduced SjB6 peptide indicated the pres-
ence of three conserved motifs, namely a serpin motif,
a serpin signature and a RCL (Table 1), located near the
C-terminal with the cleavage site of the RCL at position
346C–S347. Three N-glycosylation sites (9NFTD12,
of conserved alpha helices and beta strands. Secondary structures
s and broken lines are β-strands. Helices are labelled from “hA” to “hI”
respectively. The highly and lowly conserved residues are labelled in
ion sites. Sequences in the box represent the RCL while double bold



Figure 4 Predicted tertiary structure of SjB6. The figure shows
the protein in its native conformation with the RCL (indicated by
black arrow) being surface accessible by target protease. The green
colour represents the α-helices, the yellow colour represents the
β-sheets, while loops are coloured grey.
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49NTKA52 and 209NLTS212) and one glycosamino-
glycan attachment site (72SGIG75) were identified on
the polypeptide. The SjB6 polypeptide contained two pro-
tein kinase C phosphorylation sites, one tyrosine phos-
phorylation site and microbodies C-terminal targeting
signal. A signal peptide was found at the N-terminal of
the polypeptide but no transmembrane domain was found
indicating that SjB6 was a secretory serpin. Analysis of
the SjB6 RCL showed that the hinge region contained
the consensus sequence typical of the RCL hinge re-
gion, a characteristic common to all inhibitory serpins
“P17 [E]-P16 [E/K/R]-P15 [G]-P14 [T/S]-P13 [X]-P12–9
Table 2 Structural alignment of SjB6 with human α1-antitryp
Serpin name Genbank accession number Source Ref

α1-antitrypsin AY256958 Humans Bol

SRP-3 AY525080 C. elegans Pak

CsSERPIN EF550965 C. sinensis Kan

SerpinEmu CAD12372.2 E. multilocularis Me

Hc-serpin ACP43576 H. contortus Yi e

PwSERPIN EU014295 P. westermani Hw

Sh serpin AAA19730 S. haematobium Blan

Sj serpin AAK57435 S. japonicum Yan

Smpi56 CCD60349 S. mansoni Ghe

Contrapsin CCD60352 S. mansoni Mo

Ts11-1 DQ864973 T. spiralis Nag

Tv Serp Y12233 T. vitrinus Mac

Bm-spn-1 U04206 B. malayi Yen

Bm-spn-2 AF009825 B. malayi Zan
[AGS]-P8–1 [X]-P1′–4’” [4,21], with residue variation
only at position P14.
Multiple sequence alignment of the deduced SjB6

amino acid sequence with key known parasitic helminth
serpins from Genbank showed between 21 – 54% hom-
ology (Figure 2) with the highest sequence homology to
S. mansoni serpin (Accession number CCD60349.1).
SjB6 sequence showed very low overall sequence hom-
ology to serpins from other organisms including humans
(data not shown). Analysis of the secondary structure using
SWISS-MODEL (http://swissmodel.expasy.org/) and Phyre2

[27] showed that SjB6 contains nine α-helices and thirteen
β-strands (Figure 3).

Structure-based alignment analysis of SjB6
Alignment of the predicted tertiary structure of SjB6
(Figure 4) with other predicted tertiary structures of hel-
minth serpins showed that SjB6 is structurally similar, with
the greatest similarity to S. mansoni serpin (GenBank:
CD60349.1) (Table 2). The root mean squared values
ranged between 0 and 2. The root mean squared value
indicates the degree of similarity between the three-
dimensional structures of two proteins by measuring the
root-mean-square distance between equivalent atom pairs
from both proteins [47].

Phylogenetic analysis
Phylogenetic analysis of the amino acid sequence of SjB6
with other helminth parasite serpins indicated two major
groups – Group A and Group B. The former comprises
serpins formed by clusters A, B and C while the latter
comprises serpins formed by clusters D. The 4 phylogen-
etic clusters were supported by the aLRT statistical test
[61] showing branch support values of 100% for clusters A
sin and known helminth serpins

erence RMS value (Å) No of atoms involved

len et al. [48] 1.30 288

et al. [49] 1.29 235

g et al. 1.15 238

rckelbach and Ruppel [50] 1.15 235

t al. [51] 1.23 247

ang et al. [52] 1.18 239

ton et al. [53] 1.52 221

et al. [54] 1.49 216

ndler et al. [55] 1.16 240

dha and Doenhoff [56] 1.16 240

ano et al. [57] 1.22 248

Lennan et al. [58] 1.20 296

butr and Scott [59] 1.14 305

g et al. [60] 1.19 298

http://swissmodel.expasy.org/


Figure 6 Gene expression of SjB6 gene in S. japonicum life
cycle stages. SjB6 expression was at least 2.5-fold higher in eggs
than in other life cycle stages examined. Error bars represent mean
real-time PCR expression ± standard error of mean (SEM) from three
biological replicates. ****p-value≤ 0.0001, ***p-value≤ 0.001.

Figure 5 Phylogenetic tree analysis of amino acid sequences for SjB6 and other parasitic helminth serpins. The alignment of
retrieved sequences (GenBank accession numbers shown in Table 2) was created using MUSCLE. All sequences were retrieved
from GenBank.
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and C, 95% for cluster B and 65% for cluster D (Figure 5).
SjB6 is closely related to Smpi56 and contrapsin grouped
within cluster A and sharing 69% sequence identity.

Gene expression profile of the SjB6 gene
Stage-specific expression of the SjB6 transcript was exam-
ined by real-time PCR using cDNA reverse transcribed
from RNA samples isolated from several developmental
stages of S. japonicum and primers designed to specifically
amplify the SjB6 gene. Expression was detected only in
the intra-mammalian stages of the parasite lifecycle with
the egg stage showing about 3-fold increase in expression
when compared with the other stages and this increase
was highly significant (p ≤ 0.001) (Figure 6). The NADH-
UR gene used as the internal control showed a constant
expression across all the lifecycle stages tested (data not
shown).

Expression and purification of recombinant SjB6 in vitro
The recombinant SjB6 protein was expressed using the
flashBAC baculovirus expression system as a secreted
protein. In the first step of purification, IMAC affinity
column was used to partially purify rSjB6. Further purifi-
cation by size exclusion chromatography resulted in a
single protein band of approximately 43 kDa as analysed
on a 4-12% (w/v) NuPAGE gel (Figure 1).

Western blot analysis of native SjB6 in S. japonicum adult
worms
Western blotting was used to determine whether rabbit
anti-serum, raised against purified rSjB6, to was able
to react with the native antigen in SWAP. As shown in
Figure 7 (lane 3), a highly specific positive signal at an
approximate molecular weight of 60 kDa was detected
in the SWAP. There was also a positive signal at the
expected molecular weight of 43 kDa with the rSjB6
sample (lane 2, Figure 7), confirming the specificity of
the rabbit antiserum. No signal was evident with the
SWAP sample incubated with pre-immune rabbit serum
(Figure 7, lane 4). The molecular weight of the protein
band detected in the SWAP sample probed with rSjB6-
specific rabbit antiserum was considerably higher than
that of rSjB6.

Antibody response of experimentally challenged rodents
to rSjB6 and SWAP
An ELISA was carried to investigate the immunogenicity
of SjB6 as well as the antibody response profile of ex-
perimentally challenged mice (susceptible host) and rats



Figure 7 Western blot analysis of native SjB6. Lane 1, pre-stained
protein ladder; lanes 2 and 3, rSjB6 and SWAP probed with rabbit
antiserum respectively; Lane 4, SWAP probed with pre-immune
rabbit serum. The positive signal at 43 kDa in lane 2 indicates the
position of rSjB6 (yellow arrow) while the positive signal at 60 kDa
indicates the position of native SjB6 (black arrow).
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(resistant host) against this serpin. The ELISA results
clearly showed strong rat serum antibody reactivity against
rSjB6 six weeks post-infection and this response was
highly significant (p < 0.0001) when compared with the rat
sera obtained prior to challenge (Figure 8). The total IgG
antibody titre was even more significantly higher in sera
collected 6 weeks after a secondary challenge (Figure 8).
Figure 8 Humoral immune profile of experimentally challenged rode
challenged with S. japonicum cercariae and immune sera collected six wee
post-secondary challenge. Pre-immune sera were also collected prior to the c
There was no significant difference between the serum antibody levels in the
serum reactivity against rSjB6 after challenge (right panel). Error bars rep
PRE = pre-immune sera. Statistically significant difference (Two-way ANOVA: *
These results were in direct contrast to those observed
in experimentally challenged mice in which no antibody
response against rSjB6 was observed six weeks post-infection
(Figure 8). There was a consistently strong antibody response
against SWAP in both experimentally challenged mice
and rats (Figure 8) which effectively served as a positive
control.

Discussion
Although a number of serpins have been identified and
characterised from many parasitic helminths [13], know-
ledge of schistosome serpins is limited. In this study, we
describe the identification and some characteristics of a
secretory serpin from S. japonicum.
Although the SjB6 amino acid sequence shared low over-

all sequence homology with other known serpins, SjB6 was
identified by closer interrogation as a typical member of
the serpin superfamily as it contains conserved characteris-
tic serpin features such as the RCL, serpin signature
and serpin motif [1,4,62]. In addition, the SjB6 protein is
composed of 387 amino acid residues with a predicted mo-
lecular weight of 43.7 kDa and a native molecular weight
of 60 kDa, which is consistent with other members of the
serpin superfamily [63]. Sequence analysis demonstrated
that SjB6 contains an N-terminal signal peptide with no
transmembrane domain, indicative of a secretory serpin.
In addition, secondary and tertiary structure prediction
analysis showed that SjB6 contains 9 α-helices and 15
β-strands, features again consistent with known serpins
[1,4,18,64]. RCLs of native inhibitory serpins are always
exposed and accessible to target proteases [62] and this
was reflected in the predicted tertiary structure of SjB6.
The consensus 20/21 residue peptide “P17 [E]-P16 [E/K/

R]-P15 [G]-P14 [T/S]-P13 [X]-P12–9 [AGS]-P8–1 [X]-P1’ – 4’”
within the RCL of a serpin determines whether it is cate-
gorised as inhibitory or non-inhibitory [4,21]. As a general
nts against rSjB6. Mice (n = 5) and rats (n = 3) were experimentally
ks post infection with additional sera collected from the rats 6 weeks
ercarial challenge. Each data point represents an average of 3 replicates.
mice before and after challenge (left panel). Rat sera showed high
resent mean + SEM. 1° = primary challenge, 2° = secondary challenge,
***= p-value < 0.0001, ***= p-value 0.0015).
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rule, inhibitory serpins contain glycine at position P15,
threonine or serine at P14, and positions P12-P9 are occu-
pied by alanine, glycine or serine residues with short-side
chains. The corresponding regions of non-inhibitory
serpins do not conform to this consensus [4]. These con-
served residues of inhibitory serpins are essential for effi-
cient and rapid insertion of the RCL into the “A” β-sheet,
a process critical to inhibitory activity of a serpin [4]. Fur-
thermore, it is also known that the presence of hydropho-
bic residues within the hinge region of a serpin provides
an advantage for the construction of the skeleton con-
formation needed for the inhibitory activity of serpins
[65]. Further analysis of SjB6 RCL showed that the hinge
region is predominantly occupied by hydrophobic amino
acid residues which further strengthen the argument that
SjB6 is an inhibitory serpin. Multiple structure alignment
of the predicted tertiary structure of SjB6 with other
known serpins showed that SjB6 is structurally similar to
helminth serpins with highest similarity to a S. mansoni
serpin (Smpi56) with a root mean squared value of 1.16.
This finding was supported by the result obtained from
the phylogenetic analysis of SjB6 sequence and other para-
sitic helminth serpin sequences which showed that SjB6
clustered very closely with Smpi56.
Rabbit anti-rSjB6 serum detected one band (60 kDa)

in native S. japonicum SWAP. The molecular size of the
native protein was larger than the recombinantly derived
polypeptide (43 kDa) but this was not surprising due to
the presence of multiple N-glycosylation sites on the
SjB6 polypeptide indicating that the native SjB6 undergoes
post-translational modifications including glycosylation, as
do many other known serpins [18,66]. However, SjB6 was
undetected in the adult worm excretory/secretory (E/S)
products indicating that SjB6 is not secreted as part of the
E/S products (data not shown). Gene expression profiling
of SjB6 gene provided some insight into the possible bio-
logical function of SjB6 in S. japonicum. Real-time PCR
showed that SjB6 was expressed in the intra-mammalian
stages and, especially, in eggs suggesting a possible role for
SjB6 in the pathogenesis of schistosomiasis. Schistosome-
induced pathology is a consequence of the host immune
response against the parasites’ soluble egg antigens [67-69].
Additionally, another possible role for SjB6 is in protecting
the schistosome eggs deposited in the host tissues from at-
tack by host proteases.
Many secreted serpins have been shown to play im-

portant roles in host-parasite interactions [70-74]. We
used ELISA to determine anti-SjB6 antibody levels (total
IgG) in the sera of laboratory rodents experimentally in-
fected with S. japonicum. The results showed that rSjB6
was strongly recognised by sera from rats experimentally
infected with S. japonicum (Figure 8) suggesting its re-
lease into host tissue and induction of a host immune
response. Surprisingly, no measurable reactivity against
rSjB6 was detected in the sera of mice experimentally in-
fected with S. japonicum. One possible explanation for
this observation is the fact that the rat immune system
is known to generally recognise more schistosome anti-
gens than the mouse [75] and SjB6 could be one of the
molecules not recognised by the murine immune sys-
tem. Another possibility could be that the amount of
SjB6 released by S. japonicum into the host may not be
sufficient to induce an immune response by the mouse.

Conclusion
The full-length cDNA encoding a secretory serpin (SjB6)
from S. japonicum was cloned and expressed, and some
of its characteristics determined, thereby providing some
important insights into the biological functions of this
protein. In vitro inhibitory and other biochemical char-
acterisation as well as in vivo studies, gene knock-down
experiment transgenesis are required to further our un-
derstanding of the biology of SjB6 and its possible roles
in the host-parasite interaction.
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