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Abstract

co-infect hosts.

Haemosporida, Avian malaria

Background: Various ecological and physiological mechanisms might influence the probability that two or more
pathogens may simultaneously or sequentially infect a host individual. Concurrent infections can have important
consequences for host condition and fitness, including elevated mortality risks. In addition, interactions between
coinfecting pathogens may have important implications for transmission dynamics.

Methods: Here, we explore patterns of association between two common avian pathogens (West Nile virus and
avian malaria parasites) among a suburban bird community in Chicago, IL, USA that share mosquito vectors. We
surveyed 1714 individual birds across 13 species for both pathogens through established molecular protocols.

Results: Field investigations of haemosporidian and West Nile virus (WNV) infections among sampled birds yielded
an inverse association between WNV serostatus and Plasmodium infection status. This relationship occurred in adult
birds but not in juveniles. There was no evidence for a relationship between Haemoproteus infection and WNV
serostatus. We detected similar prevalence of Plasmodium among birds captured with active WNV infections and
spatiotemporally paired WNV-naive individuals of the same species, demonstrating that the two pathogens can

Conclusions: Mechanisms explaining the negative association between WNV serostatus and Plasmodium infection
status remain unclear and must be resolved through experimental infection procedures. However, our results
highlight potential interactions between two common avian pathogens that may influence their transmission
among hosts. This is especially relevant considering that West Nile virus is a common zoonotic pathogen with
public health implications. Moreover, both pathogens are instructive models in infectious disease ecology, and
infection with either has fitness consequences for their avian hosts.

Keywords: Parasite-parasite interactions, Coinfection, Concurrent infection, Concomitant infection, West Nile virus,

Background

Numerous pathogens co-circulate within host popula-
tions, and various mechanisms influence the probability
that these pathogens may cause concurrent or consecutive
infections within a host individual [1-4]. For instance,
pathogens with similar ecological tolerances and vectors
might be more likely to co-occur within a host [5], while
differences may result in non-overlapping distributions
across hosts over space and time. Infection can influence
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the susceptibility of a host to another pathogen [2,4], and
this interaction can alter pathogen transmission dynamics
at the population level [1]. Negative associations between
pathogens occur when an established pathogen lowers the
infection success of another pathogen through immune-
mediated mechanisms [3,4], resource competition, or host
mortality [4]. Conversely, established parasites can in-
crease the probability of infection of another pathogen
through facilitation [1,2]. Concurrent infections can ele-
vate host morbidity and mortality rates [6], although this
effect often depends on the particular pathogens involved
[7,8]. Thus, pathogen-pathogen interactions can greatly
influence the course of infection within the host and the
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distribution of pathogens among host individuals at the
population level.

Avian Haemosporida are an instructive model system
for disease ecology, including the consequences of concur-
rent infections. Mixed avian haemosporidian infections
can be common within individuals in some host popula-
tions [9]. Both field- and laboratory-based studies have
demonstrated that co-infection with different haemospo-
ridian parasites can depress host fitness more than single
infections [10,11]. However, few studies have explored the
interactions of avian Haemosporida with other pathogens
(in contrast to mammalian malaria [7,12], however, see
Atkinson et al. [5], Barnett [13]). This absence of
knowledge is particularly concerning because birds are
primary reservoirs for many zoonotic pathogens, includ-
ing arthropod-borne encephalitis viruses whose course of
infection may be influenced by concurrent protozoan in-
fections [12]. Thus, understanding interactions between
Haemosporida and other pathogens could have important
implications for disease surveillance and animal and hu-
man health.

Here, we explore patterns of association between avian
Haemosporida and West Nile virus (WNV), an important
zoonotic pathogen. We consider the genera Plasmodium
and Haemoproteus, which are diverse and abundant
Haemosporida that infect a range of avian host species
[14]. The two genera differ in their lifecycles and
transmission dynamics [14,15]. Most notably, Plasmodium
replicates asexually within erythrocytes leading to the rup-
ture of blood cells, and is vectored by mosquitoes (Culici-
dae). In Haemoproteus infections, asexual reproduction is
limited to the viscera and vascular endothelium, and the
parasites are vectored by Culicoides biting midges (Cera-
topogonidae). Haemosporida parasites of both genera are
often pathogenic [16-18], but virulence varies with patho-
gen lineage and host species [18,19]. Infections can main-
tain throughout the life of the host, but may disappear
from the bloodstream and relapse later [14]. Vernal recru-
descence, a phenomenon in which dormant infections ac-
quired during previous transmission seasons relapse into
the bloodstream in the spring, is common in temperate
latitudes [14]. WNV was introduced to North America in
1999 and spread across most of the continent within
5 years [20,21]. In 2012, one of the largest WNV epi-
demics to date occurred in North America (CDC). WNV
is maintained in a transmission cycle generally between
mosquitoes and birds, but is occasionally transmitted to
other hosts, including humans [21]. Symptoms of WNV
infection in humans may be mild to severe, occasionally
including neurologic impairment or death [22]. WNV in-
fection also has severe fitness consequences for some avian
host species [23], and its introduction coincided with popu-
lation declines in some North American bird species [24].
Associations between WNV and trypanosomes [25] and
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Culex flavivirus [26] have previously been documented in
mosquitoes. However, interactions of WNV with Haemo-
sporida within birds have received comparatively little
attention.

The similar ecology of avian Haemosporida and WNV
suggests that interactions between these pathogens might
occur in North America. Both WNV and avian Haemo-
sporida are common in American robins (Turdus migra-
torius), northern cardinals (Cardinalis cardinalis), and
house sparrows (Passer domesticus) [27]. Individuals of
these species also host WNV [28,29] and appear to be the
vertebrate drivers of local WNV transmission dynamics in
the eastern Unites States [30,31]. In addition, WNV and
avian Plasmodium share the same vectors (Culex pipiens
and Cx. restuans) in eastern North America [14,27,32-34],
suggesting similar host encounter rates between the path-
ogens. In this study, we explore the potential interaction
between WNYV and Haemosporida near Chicago, IL, USA,
and show that WNV seropositive birds have a lower prob-
ability of haemosporidian infection.

Methods

Sampling and pathogen testing

The study was conducted at 17 sites in suburban Chicago,
IL, USA [35]. Birds were captured in mist-nets from
May-October during 2006-2007 and screened for avian
Haemosporida [27]. A blood sample was taken from the
jugular vein and centrifuged to separate serum from blood
cells. Packed blood cells were preserved in Longmire’s lysis
buffer. Samples were digested with Proteinase K overnight
at 60°C. DNA was extracted via protein precipitation with
5 M ammonium acetate, and purified with a standard al-
cohol precipitation. DNA samples were screened for hae-
mosporidian parasites by polymerase chain reaction
(PCR) targeting a segment of the mitochondrial 16S rRNA
gene [36]. Samples that tested positive by this method
were then subjected to a nested PCR that targeted a 552-
base pair fragment of the haemosporidian cytochrome b
gene [37,38]. We generally obtained sequences from ~85%
of samples that screened positive for a haemosporidian in-
fection with the 16S rRNA primers.

Avian haemosporidian taxonomy is unresolved at the
species level, and currently relies on cytochrome b se-
quences to identify parasite taxa [39-41]. We therefore
separated evolutionary lineages of Plasmodium and
Haemoproteus following Ricklefs et al. [37]. Generally,
haemosporidian taxa were categorized as sets of closely
related (<1% sequence divergence) monophyletic parasite
cytochrome b haplotypes recovered from the same set of
host species. Two lineages presented here were identical
to previously named morphospecies (Plasmodium cathe-
merium and Plasmodium elongatum, Genbank accession
no. AY377128 and AY733088, respectively).
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Avian serum was used to test for the presence of WNV
antibodies using inhibition ELISA, and to screen individ-
uals for circulating WNV with a quantitative reverse
transcriptase-PCR (methodology for the ELISA and quan-
titative reverse transcriptase-PCR summarized in Hamer
et al. [42]). Among birds screened for malaria, ~7% were
seropositive for WNV antibodies. 5728 birds (including
birds screened for haemosporian parasites here) were
screened for WNV [35,43] across an extended WNV study
from 2005-2011 in the study site. Only 27 (0.5%) individ-
uals were positive for the virus by RT-PCR [43]. To
compare concurrent infection rates of WNV and Haemo-
sporida, blood samples from 26 of these birds were
screened for haemosporidian infections. In addition, we
screened 26 spatiotemporally paired WNV-negative sam-
ples of the same species and age. Each WNV positive and
negative pair was sampled from the same site, generally
on the same day.

Haemosporidian phylogeny

We aligned cytochrome b sequences (512 bp and subse-
quently inferred phylogenetic relationships among haemo-
sporidian parasites using maximum-likelihood methods,
invoking a general time-reversible (GTR) model of nu-
cleotide substitution with TI-distributed rate variation
among sites in MEGAS5 [44]. Statistical support was esti-
mated for individual nodes by bootstrap analysis (1000
replicates), and the best-scoring tree was mid-point rooted
for clarity. The resulting tree (Additional file 1: Figure S1)
was used primarily to assign lineages to genera. Sequences
of all unique cytochrome b lineages are deposited in Gen-
Bank (accession no. KC789821-KC789828, KM280598—
KM280635.

Statistical analyses
We used a series of generalized linear mixed models
(GLMM) with a binomial error distribution to test for
an association between WNYV serostatus and Haemospo-
rida infection status for birds sampled between 2006—
2007. All GLMMs were performed in the Ime4 package
in R. Our data were heterogeneous and unbalanced with
respect to other variables that potentially influence hae-
mosporidian infection across WNV-seropositive and
naive individuals. Therefore, we included species as a
random factor in all models tested. Moreover, year of
sampling (two levels: 2006 and 2007), month of sam-
pling (four levels: May/June, July, August, September/
October), age class at sampling (two levels: hatch-year
juvenile [HY] or after hatch-year adult [AHY]), WNV
serostatus (presence or absence of WNV antibodies),
and an age*WNYV serostatus interaction, were included
as covariates in a full model.

We used AICc multimodel inference to select among
a set of candidate models (SOM-Section 2) that included

Page 3 of 9

all combinations of the five fixed effect variables. We es-
timated the natural average of the estimate and associ-
ated unconditional 95% confidence intervals [45] with
the R package “AlCcmodavg”. WNV serostatus model
estimates (Bwa1) represent the change in the log-odds
of Haemosporida infection for WNYV seropositive relative
to WNV seronegative individuals. Within the text, values
of Bwnay are presented as the natural average of the
model coefficients + 1.96 * unconditional (model-aver-
aged) standard error (SE). When calculating the model-
averaged Bwas we excluded models with the age*WNV
interaction term. We performed the basic modeling ap-
proach detailed above for five separate analyses in which
the dependent variable of infection status was defined
differently: 1) total Haemosporida; 2) total Plasmodium,;
3) total Haemoproteus; 4) Plasmodium cathemerium;
and 5) Plasmodium elongatum. We performed the basic
modeling approach detailed above for data on 1714 indi-
viduals of 13 well-sampled species (N > 10) that had both
haemosporidian infections and WNV seropositive indi-
viduals. We excluded records of other species that did
not fit the criteria above, or those with missing data (ie.
unknown age, WNYV serological status, etc.). All species
along with their sample sizes across age class, Plasmo-
dium prevalence, Haemoproteus prevalence, and WNV
seroprevalence are listed in Additional file 1: Table S1.

Ethical approval

Fieldwork was authorized by the appropriate permits in-
cluding a Federal Bird Banding Permit no. 06507,
animal-use approvals from the University of Illinois Ani-
mal Use Protocol no. 03034, and Institutional Animal
Care and Use Committee at Michigan State University,
Animal Use Form no. 12/03-152-00.

Results
WNYV serostatus and haemosporida infection
Among the community-level dataset, the prevalence of
Plasmodium and Haemoproteus parasites was 0.26 and 0.08
respectively. Seroprevalence of WNV antibodies was 0.07.
The best-fit model explaining total Haemosporida infec-
tion status included month of capture, year of capture, age,
WNV serostatus, and age*WNV serostatus interaction
(w; =0.97), and was differentiated from other models
(Table 1). Thus, we split the dataset across age class to in-
vestigate the interaction. For adults, WNV serostatus was
an important predictor of Haemosporida infection (Table 2).
The best-fit model included year and WNV serostatus (w;
=0.69) and was differentiated from a model that only in-
cluded year as a fixed effect (AAICc=5.5, w;=0.04). The
model-averaged WNV serostatus effect (Byan=-0.78 £
0.59) indicated that the presence of WNV antibodies re-
duced the odds of a concurrent haemosporidian infection
by a factor of 2.2 for adult birds. Among juvenile birds, the
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Table 1 A summary AlCc table for generalized linear
mixed models that considered both host ages
simultaneously and an age*WNV serostatus interaction
effect

K AlCc AAICc w;AICc

a) Total Haemosporida

mon-+yr+age+wnv+wnv*age 9 2056.5 0.0 0.97

mon+yr+age+wnv 8 2064.0 7.5 0.02
b) Total Plasmodium

mon-+yr+age+wnv+wnv*age 9 1704.7 0.0 0.99

mon+yr+age+wnv 17139 9.1 0.01
c) Total Haemoproteus

mon 5 7423 0.0 032

mon+yr 6 7441 1.8 0.13

mon-+age 6 744.2 19 0.12

mon+wnv 6 7443 20 0.12
d) P. cathemerium

mon+yr+age+wnv 8 8234 0.0 0.59

mon+yr+age+wnv+wnv*age 9 8252 18 0.24
e) P. elongatum

yr+age+wnv 5 586.23 0.0 040

yr+age+wnv-+wnv¥*age 6 587.0 08 027

yr+age 4 587.6 14 0.20

Models with AAICc < 3.0 are shown. However, when only one model had a
AAICc < 3.0, the next best model was listed for comparison. Abbreviations are
as follows: mon = month of capture, yr = year of capture, age = age class,
wnv = WNV serostatus (seropositive, seronegative). Species was a random
effect in all models tested.

Table 2 A summary AlCc table for generalized linear
mixed models performed on adults and juveniles
separately

K AlCc AAICc w;AICc

a) Total Haemosporida-adults

yr+wnv 4 11389 0.0 0.69

mon-+yr+wnv 7 1140.9 2.1 0.24
b) Total Haemosporida-juveniles

mon+yr 6 862.7 0.0 0.73

mon-+yr+wnv 7 864.7 20 0.27
c) Total Plasmodium-adults

yr+wnv 4 8714 0.0 0.64

mon-+yr+wnv 7 8726 1.2 0.35
d) Total Plasmodium-juveniles

mon+yr 6 785.5 0.0 0.72

mon-+yr+wnv 7 7874 19 0.28

Only models with AAICc < 3.0 are shown. Abbreviations are as follows:
mon = month of capture, yr = year of capture, wnv =WNV serostatus
(seropositive, seronegative). Species was a random effect in all models tested.
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best-fit model included month and year of capture (w;=

0.73), and was differentiated from a model that contained
month, year, and WNYV serostatus (AAICc = 2.0, w; = 0.27).
The confidence limits of the WNV serostatus effect
(Bwa=—0.06 £ 0.94) for juvenile hosts included zero, pro-
viding low support for an association between WNYV seros-
tatus and Haemosporida infection among hatch-year birds.

The best-fit model explaining total Plasmodium infec-
tion status included month of capture, year of capture,
age, WNV serostatus, and age*WNV serostatus inter-
action (w; =0.99), and was differentiated from other
models (Table 1). Splitting the dataset across age classes,
the best-fit model for adult birds included year and
WNV serostatus (w; =0.64, Table 2), but was indistin-
guishable from a model that included month, year, and
WNYV serostatus (AAICc=1.2, w;=0.35). The model-
averaged WNV serostatus effect (Swan=—1.34+0.84)
indicated that the presence of WNYV antibodies reduced
the odds of a concurrent Plasmodium infection by a fac-
tor of 3.8 for adult birds (Figure 1). For juvenile birds,
the best-fit model included month and year of capture
(w;=0.72, Table 2), but was indistinguishable from a
model that included those fixed effects and WNYV seros-
tatus (AAICc=1.9, w;=0.28). The confidence limits of
the WNV serostatus effect (Sway= —0.18 £ 0.94) for ju-
venile hosts included zero, providing low support for an
association between WNV serostatus and Plasmodium
infection among hatch-year birds.

Asynchronous infection dynamics between WNV and
Plasmodium in the study site could explain the inverse
relationship between WNYV serostatus and the probabil-
ity of a Plasmodium infection among adult birds. Gener-
alized linear mixed models with binomial error
distributions and species as a random effect revealed
that the probability of having WNV antibodies or a
Plasmodium infection differed across months. WNV
seroprevalence in adult birds increased across the trans-
mission season (likelihood ratio test of nested models,
x°=8.6, df = 3, p < 0.05). WNV seroprevalence was lowest
in May-June, moderate in July and August, and highest
in September-October. In contrast, the probability of
Plasmodium infection was consistent across the season
(likelihood ratio test of nested models, y*=2.6, df =3,
p > 0.4). The different temporal patterns of WNV sero-
positve and Plasmodium infected hosts across the trans-
mission season did not solely drive the negative
association between these variables. WNV serostatus
remained an important negative predictor of Plasmo-
dium infection status (Additional file 1: Table S11)
among adult hosts sampled during the later portion of
the transmission season (July through October) when
there was more overlap between Plasmodium-infected
and WNV-seropositive individuals. The model-averaged
WNV serostatus effect (Bway=—1.71 £ 1.18) indicated
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Figure 1 Plasmodium prevalence of WNV-seropositive and WNV-seronegative adult birds across host species. The numbers above bars
represent sample sizes. European starlings (Sturnus vulgaris), mourning doves (Zenaida macroura), and brown-headed cowbirds (Molothrus ater)
were not included because of a total lack of Plasmodium or WNV infections among adult birds. Labels correspond to 4-letter abbreviated
American Ornithologists’ Union alpha codes. AMRO = American robin (Turdus migratorius), HOFI = house finch (Carpodacus mexicanus),

NOCA = northern cardinal (Cardinalis cardinalis), SOSP = song sparrow (Melospiza melodia), GRCA = gray catbird (Dumetella carolinensis),

COGR = common grackle (Quiscalus quiscula), HOSP = house sparrow (Passer domesticus), RWBL = red-winged blackbird (Agelaius phoeniceus),
CHSP = chipping sparrow (Spizella passerina), AMGO = American goldfinch (Carduelis tristis).

B WNV seronegative
O WNV seropositive

COGR HOSP RWBL CHSP AMGO

that the presence of WNV antibodies reduced the odds
of a Plasmodium infection by a factor of 5.5 for adult
birds.

We found no support for an association between
WNYV serostatus and Haemoproteus infection (Table 1).
The best-fit model included month (w; = 0.32), however,
three other models had AAICc < 3 (Table 1). The confi-
dence limits of the WNYV serostatus effect on Haemopro-
teus included zero (Bwan= 0.08 £ 0.67).

Results with two well-sampled Plasmodium lineages
were broadly similar to those obtained with total Plas-
modium. The best fit model for Plasmodium cathemer-
ium included the fixed effects of month, year, age, and
WNYV serostatus (w;=0.59, Table 1), but was indistin-
guishable from a model that included those fixed effects
and the age*WNV serostatus interaction (AAICc=1.8,
w; = 0.24). However, the best-fit model was differentiated
from a model that included only month, year, and age
(AAICc =4.0, w;=0.08). The model-averaged WNV ser-
ostatus effect (Sway=-1.22+1.10) indicated that the
presence of WNV antibodies reduced the odds of a con-
current P. cathemerium infection by a factor of 3.4 for
adult birds. The best-fit model for Plasmodium elonga-
tum included the fixed effects of year, age, and WNV
serostatus (w; = 0.40, Table 1), but was indistinguishable
from a model that included only year and age (AAICc =
1.4 w; = 0.20). The model-averaged WNYV serostatus esti-
mate (Bywa=—0.89 £ 1.0) indicated that the presence of
WNV antibodies reduced the odds of a concurrent P.

elongatum infection by a factor of 2.4, although the con-
fidence limits of the estimate included zero. Full AICc
tables for all analyses are shown in the Additional file 1:
Tables S2-11.

Analysis of WNV-positive birds

Nine birds of 26 that were positive for WNV had Haemo-
sporida infections, eight of which were Plasmodium. A
similar number (8/26) of spatiotemporally paired individ-
uals of the same species that did not test positive for
WNV had haemosporidian infections (p = 1.0, fisher exact
test). All of these were Plasmodium infections (Table 3).
WNV-infected birds appear to be infected with a diversity
of Haemosporida at a comparable rate relative to birds
without WNYV infections (Table 3).

Discussion

Haemosporida are common parasites of suburban birds
in North America, yet little is known about their poten-
tial interactions with WNV. Our data demonstrate a
negative association between the presence of WNV anti-
bodies and avian Haemosporida infection among urban
birds of Chicago. However, this negative association was
context-dependent, varying with respect to haemospo-
ridian taxonomy and host age. The presence of WNV
antibodies was associated with a lower probability of in-
fection with avian Plasmodium taxa, but not Haemopro-
teus. Moreover, the inverse association between WNV
serostatus and Plasmodium infection status was present
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Table 3 Number of Haemosporida infections and total host individuals sampled among birds with active WNV
infections and spatiotemporally paired individuals of the same age and host species that were naive to WNV

a) West Nile virus positive

Haemosporida infections

Plasmodium infections

Total sampled  Haemosporidian Lineages

American robin’ 2
Gray catbird 1
House finch

House sparrow
House wren

Northern cardinal
Red-winged blackbird

Northern flicker

O O O N O M O

Total
b) West Nile virus negative

American robin' 1

Gray catbird 0
House finch 1
House sparrow? 4
house wren 0

Northern cardinal 1
Red-winged blackbird 1
Northern flicker 0
Total 8

1

~N O O NN O M O O

2 CHIO4PL, CHIO2PL, CHIT9PA

1 CHIOTPA

3

15 P. cathemerium, CHIO5PL, P. elongatum
1

2 P. cathemerium, P. elongatum
1

1

26

2 CHIO4PL, P. elongatum

1

3 P.cathemerium

15 P.cathemerium, P. elongatum
1

2 P. elongatum

1 P.cathemerium

1

26

Haemosporida lineages recovered from each host are listed.
"Two Plasmodium lineages were recovered from the same host individual.
2The lineages of two Haemosporida infections were not identified.

mainly in adult birds. In contrast to the WNYV serostatus
effect, birds that had an active WNV infection were
equally likely to have a Plasmodium infection as birds
that did not have a WNV infection. These data suggest
that WNV and Plasmodium parasites do co-occur and
potentially interact within hosts.

Several non-mutually exclusive mechanisms might ac-
count for the negative association between the presence
of WNV antibodies and the probability of infection with
avian Plasmodium. First, confounding ecological factors
may result in patterns consistent with real interactions
between pathogens, even though these interactions do
not actually occur within hosts [46]. Shared hosts and
vectors predict a passive positive association between
the pathogens. However, differing temporal patterns of
WNV-seropositive and Plasmodium-infected hosts (per-
haps related to environmental variables like temperature
or vernal recrudescence of previously acquired Plasmo-
dium infections [14]) might produce an apparent nega-
tive association between the pathogens. We show that
Plasmodium infections do appear earlier within a trans-
mission season than WNV antibodies among adult hosts
in Chicago, IL. However, analyses focused on a period
when WNV seropositive and Plasmodium infected hosts

overlap temporally showed a negative association between
the presence of WNYV antibodies and Plasmodium. This
suggests that asynchronous infection dynamics do not
solely drive an inverse relationship between WNYV serosta-
tus and Plasmodium infection status.

Second, WNV and Plasmodium may compete directly
within a host. Direct competition for host nutrients or
cell types could reduce co-occurrence between the path-
ogens within a host. WNV is known to cause anemia in
some birds [47], and thus may reduce the amount red
blood cells available to Plasmodium parasites. The avail-
ability of red blood cells may influence the invasion suc-
cess of Plasmodium parasites, parasitemia, or the
persistence of parasites within the bloodstream. For in-
stance, anemia-inducing helminths lower the parasitemia
of microparasites that require red blood cells in rodents
[4]. However, direct competition would be expected to
occur in both juvenile and adult hosts similarly. The ap-
parent restriction of the WNV serostatus effect to adult
hosts may suggest this mechanism is less likely.

Third, WNV and Plasmodium parasites may interact in-
directly, mediated through the host immune system. For
instance, a pathogen may “prime” a host’s immune system
to respond to a secondary pathogen and thus influence
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the potential for co-infection [3]. While direct crossover
immunity would not be expected between WNYV and Plas-
modium given the biological differences between the path-
ogens, suppression of one infection by the other has been
reported for concurrent infections of Plasmodium and
other viruses [12]. These effects may be mediated by the
Thl and Th2 polarization of mammalian [48] and avian
immune systems [49]. While immune responses to both
pathogens are varied, viruses and intracellular micropara-
sites like Plasmodium typically activate a Th1 response as-
sociated with cell-mediated immunity. Since both WNV
and Plasmodium elicit the same general cytokine re-
sponse, the immune response toward one pathogen may
also counteract infections by the other [3]. However, Hae-
moproteus may elicit a similar general cytokine response
as Plasmodium. The lack of a similar relationship between
Haemoproteus infection and WNV serostatus makes this
mechanism somewhat dubious.

Alternatively, co-infection with WNV and Plasmodium
may reduce host survival, producing an apparent nega-
tive association between these pathogens among hosts.
Both Plasmodium and WNV can produce broad patho-
logical changes in infected avian hosts and fitness conse-
quences for hosts have been documented for each
pathogen independently [14,19,50,51]. Co-infections may
induce an additive effect on mortality probabilities, ei-
ther by disrupting important physiological processes, or
making death by other extrinsic factors (ie. predation)
more likely [52]. Given broad differences in the physi-
ology and causes of mortality between juvenile and adult
birds, mechanisms mediated by host physiology could
produce different outcomes of pathogen association
across age class. Moreover, different patterns of viru-
lence across Haemosporida genera and lineages [11,14]
can lead to different physiological consequences of a
WNV co-infection for host individuals.

Identifying the mechanisms that drive an inverse asso-
ciation between WNV serostatus and Plasmodium infec-
tion status may provide integrated perspectives on host
health and demography because alternate mechanisms
may impact host survival and disease transmission dy-
namics differently [3]. For instance, if co-infections ele-
vate the risk of host mortality, Plasmodium may have
played a role in declines of North American bird popula-
tions following the introduction of WNV [24]. Interac-
tions with Plasmodium could also impact WNV
transmission. If a Plasmodium infection primes the im-
mune system against WNV, Plasmodium transmission
might lower the average host competence for WNV and
reduce the potential for WNV transmission. Alterna-
tively, existing Plasmodium infections could prolong or
intensify a WNV infection, increasing the transmission
potential or force of infection exerted by the host. Add-
itionally, if co-infection is associated with increased host
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mortality, WNV transmission could be impacted by a re-
duction in recovered hosts that act as sinks in the trans-
mission cycle [53]. Ultimately, controlled experimental
infection studies are necessary to understand WNV-
Plasmodium interactions, and test mechanisms that may
produce the inverse association between WNV serosta-
tus and Plasmodium infection status among avian hosts.
Such studies could shed more light on the implications
of potential interactions between these pathogens among
wild birds.

Conclusions

Our results indicate a negative association between West
Nile virus serostatus and Plasmodium parasites among
adult avian hosts within a suburban hotspot of WNV
transmission. The correlational nature of the data makes
it difficult to identify the mechanism driving this effect.
Nevertheless, these results highlight the potential for dir-
ect or indirect interactions between these common avian
pathogens. Such interactions may have important conse-
quences on host physiology and fitness that may ultim-
ately impact host populations. Further study involving
experimental infections are necessary to clarify the
mechanisms driving the negative association between
WNV and avian Plasmodium observed here. Identifying
these mechanisms represents a fundamental step toward
understanding the potential influence that ubiquitous
Haemosporida infections may have on the transmission
of a zoonotic pathogen such as WNV.

Additional file

Additional file 1: This supporting file contains a data summary
table, a phylogeny of haemosporidian parasite lineages based on
the cytochrome b gene, and full AICc summary tables presenting
the results of the analyses presented here.
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