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Abstract

Background: Anopheles pseudopunctipennis is an important malaria vector in the Neotropical region and the only
species involved in Plasmodium transmission in the Andean foothills. Its wide geographical distribution in America,
high preference for biting humans and capacity to rest inside dwellings after feeding, are attributes contributing to
its vector status. Previous reports have tried to elucidate its taxonomic status, distinguishing populations from
North, Central and South America. In the present study we used a mitochondrial marker to examine the
demographic history of An. pseudopunctipennis in northwestern Argentina.

Methods: Twelve localities were selected across 550 km of the distribution of this species in Argentina, including
two near the Bolivian border and several in South Tucuman, for sampling. A fragment of the cytochrome oxidase |
(COl) gene was sequenced and haplotype relationships were analyzed by a statistical parsimony network and a
Neighbor-Joining (NJ) tree. Genetic differentiation was estimated with Fst. Historical demographic processes were
evaluated using diversity measures, neutrality tests and mismatch distribution.

Results: Forty-one haplotypes were identified, of which haplotype A was the most common and widely distributed.
Neither the network nor the NJ tree showed any geographic differentiation between northern and southern

populations. Haplotype diversities, Tajima’s Dr and Fu & Li's F and D neutrality tests and mismatch distribution
supported a scenario of Holocene demographic expansion.

Conclusion: The demographic pattern suggests that An. pseudopunctipennis has undergone a single colonization

process, and the ancestral haplotype is shared by specimens from all localities, indicating mitochondrial gene flow.
Genetic differentiation was minimal, observed only between one northern and one southern locality. The estimated
time of the population expansion of this species was during the Holocene. These data suggest that regional vector

control measures would be equally effective in both northern and southern localities sampled, but also that
insecticide resistant genes may spread rapidly within this region.

Background

Malaria affects millions of people globally every year. In
2010, 216 million malaria cases were registered, 81% of
them in Africa [1]. Approximately half of the world’s
population lives in areas with some risk of malaria trans-
mission, and in America this number is 137 million
people [1,2]. Differences in transmission intensity, the
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presence of several competent mosquito vector species,
multiple parasite species, human migration and anthropo-
genic environmental changes, are some of the factors that
contribute to wide variation in malaria [2]. In addition, the
presence of a suitable vector with characteristics such as
endophily, anthropophily, endophagy, longevity, high titer
of sporozoites and high effective local vector population
size are essential for transmission to occur [3].

In the Americas, different malaria vectors are associated
with distinctive eco-regions [4]. Specifically Anopheles
(Anopheles) pseudopunctipennis Theobald is involved in
Andean foothills and coastal area malaria transmission [4].
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The eco-regional classifications consider the anthropogenic
environmental changes that can affect the distribution and
abundance of the vector and, therefore, the intensity of
Plasmodium transmission. For instance, the appearance of
An. pseudopunctipennis on the dry coast of Peru was dir-
ectly related to land use change from desert to irrigation
for sugar cane and rice, creating suitable new species habi-
tat [4].

An. pseudopunctipennis has an extensive distribution
from the USA to northern Chile and northwestern
Argentina, including the Caribbean Lesser Antilles,
Trinidad and Tobago and Hispaniola Island [5-8]. Since
the original description of this species by Theobald [9]
until its redescription by Rueda et al [10], several studies
have attempted to evaluate its taxonomic status [11-15].
Estrada- Franco et al. [8,13,14] detected two different geo-
graphical populations (Mexican and South American)
based on cross-mating experiments and fixed differences
at two enzyme loci. Manguin et al. [15] using electrophor-
etic analyses, reported the presence of three An. pseudo-
punctipennis populations: one from the southern United
States throughout Mexico and Guatemala; another ex-
tending from South America through Central America
and Belize, both sharing an area of overlap in eastern
Guatemala and southern Belize; and a third including only
populations from the island of Grenada. Currently, An.
pseudopunctipennis is considered to be a complex of at
least 2 species [10]. However, there is not much informa-
tion about demographic processes that could have lead,
via allopatry, to speciation.

In Argentina, the historically wide geographical distribu-
tion of malaria appears to be reduced to the northwest,
where it is still an important endemic parasitic disease
[16-18]. Land use changes during the last century lead to
a different level of malaria transmission that was indirectly
linked to gradual changes in the yungas ecoregion, provid-
ing new breeding sites for the vector An. pseudopunctipen-
nis. Until the 40’s, the northern area of the yungas was a
preserved rainforest, whereas in the southern area cultiva-
tion included sugar cane, citrus and soybean crops. How-
ever, after the 40’s, the dynamics in the yungas were altered
and the northern area began to exhibit major landscape
modifications with severe forest exploitation, recurrent
occurrence of fires and the increased pressure of farming
[19] that required the presence of workers (a population
naive to malaria) in the area. These environmental alter-
ations indirectly imply climatic changes, and, combined
with human migration between southern Bolivia and
northwestern Argentina since the second half of the
20™ century, could explain the current distribution and
abundance of An. pseudopunctipennis mosquitoes and
the regional malaria endemicity [18].

The use of the cytochrome oxidase I gene (COI) for
population demographic analyses of Anophelinae species
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has been well-documented, i.e. Fairley et al. [20,21] in
Anopheles (Nyssorhynchus) aquasalis Curry and Anopheles
(Anopheles) punctipennis Say, and Mirabello & Conn [22]
and Pedro & Sallum [23] for Anopheles (Nyssorhynchus)
darlingi Root, among others. The effects of geographical
barriers and latitude can show not only differentiation
among populations but also possible barriers to gene flow
[21]. For instance, populations of An. darlingi from Central
and South America appear to be separate from Amazonia
and southern Brazil specimens, with the southern ones
considered more ancestral [22], and barriers to gene
flow were also detected along the Amazon River and in
southern Brazil [23].

In the present study, we analyzed the demographic his-
tory and population structure of An. pseudopunctipennis
from two areas of the yungas ecoregion of Argentina by
COI to elucidate the history of this species, as a first
attempt to compare populations throughout its range in
the Americas.

Methods

Mosquito collection

One hundred and sixty-five adult female An. pseudo-
punctipennis were collected from twelve localities in two
areas, northern and southern yungas, situated in Salta,
Jujuy and Tucumdn provinces, northwestern Argentina
(Figure 1, Table 1). These localities are included within
the An. pseudopunctipennis geographical range reported
by various authors [24-26]. The northern and southern
yungas can be differentiated by vegetation and latitude
[27,28]. The northern area is characterized by anthropic
activity, including timber harvesting and modification of
land for agriculture use. However, some relicts of native
vegetation represented by “palo blanco” and “palo amarillo”
trees (Calycophyllum multiflorum Griseb. (Castelo) and
Phyllostylon rhamnoides (Poiss.) Taubert), respectively, still
remain. The southern area, namely the “tipa and pacard”
forest, Tipuana tipu (Benth.) Kuntze and Enterolobium
contortisiliquum (Vell.) Morong, respectively, has been
modified by intensive sugar cane, soybean and citrus
plantations, displacing more traditional and sustainable
land use [27,28].

Collections were made by CDC light traps baited
with carbon dioxide in 2005, 2007 and 2008 from
16:00 h-12:00 h in the yungas covering a latitudinal
transect of ~550 km. Adult females were identified
using the taxonomic key of Wilkerson & Strickman [29]
and were deposited in the Instituto-Fundacién Miguel
Lillo Collection, Argentina (IMLA).

DNA extraction and sequencing

DNA extractions were carried out from whole individual
mosquitoes following the standard DNeasy Blood &
Tissue Handbook protocol (Qiagen, CA, USA). A 1200 bp
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Figure 1 Anopheles pseudopunctipennis localities. Collection localities of An. pseudopunctipennis in northwestern Argentina (yungas ecoregion):
1 =San Roquito-Tartagal, 2 = Aguas Blancas, 3 = El Oculto, 4 = San Ramdn de la Nueva Oran, 5 = Finca Yuto, 6 = Rosario La Frontera, 7 = Vipos, 8 =El
Cadillal, 9= Potrero Las Tablas, 10 = Capitan Caceres, 11 = La Florida, 12 = Sargento Moya (Tucumdn Sur).

J

fragment of COI gene was amplified by polymerase chain
reaction (PCR) using the UEA3 and UEA10 primer pairs
[30]. Each PCR reaction was carried out using a Ready-
To-Go-PCR Bead (GE Healthcare- Biosciences, NJ, USA)
and performed on a PTC-200 thermal cycler (BioRad,
Inc.). PCR products were purified with CentriSpin 40 col-
umns (Princeton Separation, NJ, USA) and ExoSAP-IT
(USB Corporation, Ohio, USA) and forward and reverse
sequencing was performed at the Applied Genomic
Technologies Core (Wadsworth Center, New York State
Department of Health) on an ABI PRISM 3700 automated
DNA sequencer.

Sequences for each individual sample were automatic-
ally aligned using Sequencher 3.0 (Gene Codes Corp,
MI, USA) and corrected manually. The contig se-
quences were grouped together and aligned using
MEGA version 3.1 [31]. In addition, the amino acid
sequences were inferred to check for the presence of
ambiguous stop codons that could suggest the pres-
ence of pseudogenes.

Few specimens were collected from the three most
southern localities (10—12; Table 1) and the distances
among them (7.45 — 9.9 km) are the lowest for all localities
(range is 7.45 - 553.81 km). Therefore, these specimens
were treated as a single population, TUCSUR (n = 7), for all
analyses.

Phylogenetic relatedness and demographic history
Statistical parsimony networks were constructed to assess
relatedness among the An. pseudopunctipennis COI haplo-
types using TCS 1.12 software [32] with a 95% connection
limit. Genetic variation within populations was assessed
by haplotype (%), sequence (K) and nucleotide diversity ()
indices using Arlequin 3.11 [33].

Statistical neutrality tests were performed to detect
departures of DNA sequence variability from the ex-
pectations of the neutral theory of evolution [34]. Tajima’s
D [35] is based on the difference between the estimates of
the number of segregating sites and the average number
of pairwise differences. The D and F tests proposed by Fu
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Table 1 Collection localities (name and geographical coordinates), number of An. pseudopunctipennis specimens (N)

and haplotype occurrences and frequencies, in northwestern Argentina

Sites Localities Latitude/longitude coordinates N Haplotypes Collector/s
North Yungas
1 San Roquito — Tartagal (SRT) 22°32'N, 63°49'W 20 A(9),B(1),B6(1),G(2)H(1) MJIDJ/EL/ACC
I(1),J(1), M(),RR( V), Y(1)
2 Aguas Blancas (AB) 22°43'N, 64°21'W 20 A(13),B(1),B3(1), MIDJ/EL/NV/ICH
B5(1),C(1),H(1), O(),P(1)
3 El Oculto (EO) 23°06'N; 64°31'W 20 A(14)B1(1),DM,N(1,RA) MJDJ/EL/NV/ICH
4 San Ramon de la 23°07'N, 64°19'W 19 A(15),B7(1),E(M),F(1),N(1) MIDJ/EL/NV/ICH
Nueva Oran (SRNO)
5 Finca Yuto 23°63'N, 64°46'W 18 A(12)B(1),B2(1)H1(1M)Q(1),Y(1)  MIDJ/EL/NV/ICH
South Yungas
6 Rosario de la Frontera (RF) 25°48'N, 64°58'W 20 A(12),B(3),CH(1),LL(1),Q(1),RR(1), MJIDJ/GBG/CAVA
SM,zZ1(1)
7 Vipos (VP) 26°30'N, 65°21'W 17 A(15),B4(1) MJDJ/GBG/CAVA
8 El Cadillal (EC) 26°36'N, 65°12'W 20 A(16),L(MV(),a2) MJDJ/GBG/CAVA
9 Potrero Las Tablas (PT) 26°54'N, 65°27'W 4 AMW(1)X(1),2(1) MJDJ/GBG/CAVA
Tucuman Sur (TUCSUR) A4),B8(1)K(M),T(1,U(1)
10 Capitan Caceres (CO) 27°10'N, 65°36'W 3 MJDJ, LO, GQ
1 La Florida (LF) 27°13'N, 65°33'W 2 MJDJ, LO, GQ
12 Sargento Moya (SM) 27°13'N, 65°39'W 2 MJDJ, LO, GQ

MJDJ: Maria Julia Dantur Juri, EL: Enrique Laci, NV: Neri Vianconi, JCH: Juan Carlos Hitzamatzu, GBG: Guillermina Begofa Galante, CAVA: Cecilia Adriana Veggiani

Aybar, LO: Luis Oroio and GQ: Gabriela Quintana.

& Li [36] require data from intraspecific molecular poly-
morphism. Fu’s Fs test [37] is based on the haplotype
frequency distribution and the R, statistic [38] is based on
the difference between the number of singletons per se-
quence and the average number of nucleotide differences.
DnaSP v 5 [39] was used for all these calculations.

A mismatch analysis for each partition (north—south)
and overall was carried out using Arlequin 3.11. The
analysis compares the frequency distribution of pairwise
differences between haplotypes with that expected under
a model of population expansion [40-42]. To quantify the
smoothness of the mismatch distribution, the raggedness
(r) statistic was calculated and its significance was assessed
using 10,000 replicates [43].

Population genetic structure and gene flow

Genetic differentiation between populations of An. pseu-
dopunctipennis was estimated by Fst using Arlequin 3.11
[33]. The Fgt values were used as distance measures to
create a NJ tree by DNAsp 4.50.3 [39]. Nei’s Gsr values
were calculated to estimate population differentiation
based on differences in allele frequencies and Nei’s Nm,
the mean per generation estimate of the absolute number
of migrants exchanged among populations [44]. The
population structure was evaluated by analysis of mo-
lecular variance (AMOVA) in Arlequin 3.11 [33]. The
hypothesis tested whether the northern and southern

yungas represented distinct groups. A spatial analysis of
molecular variance (SAMOVA) was performed, which
combined genetic differentiation and geographical dis-
tance to define groups of geographically homogeneous
populations and those with maximum differentiation
from each other [45]. In addition, isolation by distance
(IBD) was tested using a nonparametric Mantel with
the web-based computer program IBDWS v.3.16 [46].

Results
A fragment of 625-bp of the mitochondrial COI gene,
from nucleotides 615-1269 was obtained. No stop codons
were detected, indicating the mitochondrial origin of the
DNA. All COI sequences are available at GenBank under
accession numbers KC110039-KC110079. Forty-one hap-
lotypes were identified, seven of which (A, B, H, Q, RR, V
and Y) were shared between all northern and southern
localities, accounting for 76.9% of the sequences. The
dominant haplotype, A, represented 61.21% of the
specimens, and was found in all localities (Table 1).
Haplotype B was detected in four localities (SRT, AB,
FY and RF) from the northern and southern areas.
Unique haplotypes were distributed in all the localities.
Nucleotide and haplotype diversity values are depicted
in Table 2. The highest haplotype diversity was in PT
(1.0), followed by SRT (0.805). In general, the nucleotide
diversity values were low and similar between populations
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Table 2 Haplotypes and nucleotide diversity values and segregating sites of An. pseudopunctipennis in

northwestern Argentina

Sites Localities H/N Hd Pi K S
North Yungas
1 San Roquito- Tartagal 11/20 0.805 (0.090) 0.00179 (0.00034) 1.173 9
2 Aguas Blancas 8/20 0.589 (0.130) 0.00163 (0.00056) 1.068 9
3 El Oculto 5/20 0.505 (0.126) 0.00102 (0.00033) 0668 5
4 San Ramon de la Nueva Oran 5/19 0.385 (0.139) 0.00080 (0.00034) 0.526 5
5 Finca Yuto 7/18 0.568 (0.138) 0.00147 (0.00045) 0.960 7
Overall North 28/97 0.579 (0.062) 0.00135 (0.00021) 0.887 27
South Yungas
6 Rosario La Frontera 7/20 0.636 (0.116) 0.00194 (0.00081) 1.268 11
7 Vipos 3/17 0.227 (0.129) 0.00054 (0.00034) 0.352 3
8 El Cadillal 4/20 0.363 (0.131) 0.00104 (0.00042) 0678 5
9 Potrero Las Tablas 4/4 1.000 (0.177) 0.00229 (0.00056) 1.500 3
10 Tucuman sur 4/7 0.714 (0.181) 0.00262 (0.00117) 1714 6
Overall South 18/68 0.503 (0.076) 0.00142 (0.00035) 0.929 25
Total 41/165 0.547 (0.048) 0.00138 (0.00019) 0.904 44

H: Number of H: Haplotypes, N: Number of sequences obtained, Hd: Haplotype diversity (Standar Deviation), Pi: Nucleotide diversity (Standar Deviation), K: Average
number of nucleotide differences, S: Number of segregating sites. Tucuman sur includes the following localities: Capitan Caceres, La Florida and Sargento Moya.

and groups, slightly higher and more heterogeneous in the
south but insignificantly so. Pairwise Fs7 values were used
to create the NJ tree. The Fsrvalues ranged from 0-0.177,
and there was only one significant value, indicating a
moderate differentiation (0.036) between the FY (Jujuy
Province) and EC (Tucumdn Province) localities, which
are 66 km apart.

Nei’s Gsrand Nm values detected low pairwise genetic
differentiation and moderate gene flow between the
north and south. The highest value (Gsz=0.14210) was
between Potrero Las Tablas (PT) and Vipos (VP), both
in the south, separated by 50.5 km. Estimates of gene
flow (N,,) varied widely between populations, ranging
from 1.51 to 614.50; the lowest was between Potrero Las
Tablas (PT) and Vipos (VP) (N, ~ 1.51). Negative values
were related to small population sizes and lack of gene
flow [44,47]. In our study, PT is represented by only four
individuals, which might be providing a false inference
and misinterpretation of results.

AMOVA findings were consistent with the apparent
lack of structure within An. pseudopunctipennis in the
yungas. Variation among the northern and southern
groups was almost negligible (®sc = —0.00429). The popu-
lations differed significantly from each other (@ct = 0.442)
and were responsible for 97.4% of the variance, although
the value was non-significant. The remaining difference
(3.54%) was explained by non-significant differentiation of
haplotypes within populations (@st =0.016). SAMOVA
did not show any geographical limit within populations,
and k=3 was the partition providing the highest signifi-
cant Fcr (0.27), although it did not separate the northern-

southern populations. Instead, TUCSUR (southern) and
RF (northern) group separately from the other localities
(grouping together). The Mantel test was not significant
(R=0.0181, p=0.385) showing that there was no geo-
graphic association with the genetic differentiation.

The statistical parsimony network revealed a star-like
topology (Figure 2). A was the most abundant haplotype
and the only one found in all localities, and was designated
as ancestral. The second most common haplotype (B) was
distributed in the north and the south. Twenty-seven
haplotypes were connected to the ancestral haplotype by
one mutational step and 31 haplotypes were represented
by a single individual. The maximum number of mutational
steps observed in the network was six, between haplotypes
A (found in all localities) and CH (restricted to locality 6,
Rosario La Frontera).

Tajima’s D and Fu & Li’s F and D neutrality tests showed
significant negative values in the northern and southern
populations (Table 3) and there were also indications of a
recent population expansion for the complete data set. On
the other hand, Fu’s Fs test estimated negative values in
both areas and overall, although none were significant.

The mismatch distribution for the complete data set is
presented in Figure 3. The population expansion model
was not rejected in either case (p=0.058, 0.126 and
0.088, respectively), which was consistent with a model
of sudden expansion for each partition.

To calculate the time of population expansion, £ =1/2 p
was used, where 1 is the mutation rate per site per gener-
ation [22,40]. The mutation rate in Drosophila was used:
10’8/site/year [48] and 10 generations/year [49]. The
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Figure 2 Statistical parsimony network of 41 haplotypes of An. pseudopunctipennis. Letters represent the haplotypes observed in twelve
localities shown in Table 1. Single mutational events are indicated by lines, and missing or undersampled haplotypes by filled black ovals.
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analysis was done for all the samples, since there were no
evidence for different populations. The estimate of T was
0.924 giving an expansion estimated to 7, 392 years ago
(95% CI, 32—15, 872), in the Holocene.

Discussion

The present study shows very little genetic structure of
the malaria vector Anopheles pseudopunctipennis in the
yungas ecoregion of Argentina based on one mitochon-
drial marker. Therefore, the hypothesis of genetic differen-
tiation or restriction of gene flow between the northern

and southern yungas areas of Argentina is rejected, and
there appears to be a single metapopulation in this region
of northwestern Argentina. The AMOVA analysis did not
reveal significant genetic differentiation when populations
were grouped by distinct ecotype, the north and south
divisions. Similarly, no boundaries were defined by
SAMOVA for the complete data set. Previous findings
in An. pseudopunctipennis in North, Central and South
America showed deep population structure within this
group using other molecular markers [8,13-15]. Our
results suggest that An. pseudopunctipennis from the

Table 3 Indices and statistics used to measure An. pseudopunctipennis polymorphisms

Sites Localities H/N D D* F* Fu’s R?
North Yungas
1 San Roquito- Tartagal 11/20 —2.04083* -2.39168 —2.65401* —9.594 0.0583
2 Aguas Blancas 8/20 —1.99058* —2.75174* —293379* —4.721 0.0830
3 El Oculto 5/20 —1.60863 —2.01240 -2.19139 -2.175 0.1055
4 San Ramon de la Nueva Oran 5/19 —1.96578* —2.75581* —2.92267* -2913 0.1094
5 Finca Yuto 7/18 -1.79140 —2.33361 -251578 -3.955 0.0851
Overall North 28/97 —2.56303*** —5.84694** —547713** —41.203 0.0205
South Yungas
6 Rosario La Frontera 7/20 —2.09572* —2.96623** —3.14728** —2.682 0.1209
7 Vipos 3/17 -1.70573 —2.25481 -241419 -0.963 0.1709
8 El Cadillal 4/20 —1.58577 -1.21271 -1.51924 -0.882 0.1026
9 Potrero Las Tablas 4/4 —0.75445 —0.75445 —0.67466 —2.367 0.1443
10 Tucuman sur 4/7 -1.52412 —-1.60880 —1.73234 -0428 0.2259
Overall South 18/68 —2.57256%** —5.36858** —5.17929** —18.985 0.0344
Total 41/165 —2.66941%** —6.84292** —6.08110** —70.455 0.0153

H: Number of Haplotypes, N: Number of sequences obtained, D: Tajima’s Statistic, D*: Fu and Li D* Statistic, F*: Fu and Li F* Statistic, Fu’s: Fu’s Fs Statistic,

R?: Ramos-Onsins & Rozas, p < 0.05, **p < 0.02, ***p < 0.001.

Tucuman sur includes the following localities: Capitdn Caceres, La Florida and Sargento Moya.
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Figure 3 Observed and simulated mismatch frequency distributions under population expansion model for Anopheles pseudopunctipennis.
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yungas is a unique population with COI mitochondrial
gene flow among localities with similar demographic
history. However, to test whether the current degradation
of the natural ecosystem and landscape change is affecting
the population further studies focused on markers with a
faster mutation rate would be desirable [8,13-15].

When compared to other neotropical malaria vectors,
the genetic differentiation between two populations of the
malaria vector An. albimanus from Colombia showed
similar results [50]; in spite of the deep population structure
of the species, low genetic differentiation was observed
between Caribbean and Pacific populations that corres-
pond to different biogeographical regions. Loaiza et al.
[51] studying An. albimanus populations from southern
Central America founded significant genetic structure
between populations from Costa Rica and western Panama
compared with those from central-eastern Panama,
whereas in our study, divergence within groups was
shallow and statistically insignificant.

In addition, the low nucleotide diversity and the absence
of isolation by distance observed for An. pseudopunctipen-
nis is similar to results obtained for An. darlingi and An.
albimanus by Mirabello & Conn [22], by De Merida et al.
[52] and by Molina Cruz et al. [53], linking this to small
effective migration rates and effective population size and
/or genetic drift. The fact that in An. pseudopunctipennis
nucleotide diversity was low, but not haplotype diversity,
can be explained by rapid population growth from ances-
tral populations.

The Nm values between northern and southern popu-
lations showed not only high gene flow between them
(Nm > 1) but also negative values (Nm <1) related to low
gene flow, where significant population differentiation
could occur through genetic drift. The more ancestral
and diverse haplotypes of An. pseudopunctipennis were
observed in both the north and south. As reported by
Mirabello & Conn [22], Molina-Cruz et al. [53] and
Kambhampati & Rai [54], older populations have a

higher diversity; this seems to be the case for San
Roquito-Tartagal (northern area) and Potrero Las Tablas
and Tucumén Sur (southern area). On the basis of the
presence of shared haplotypes between northern and
southern populations, An. pseudopunctipennis has under-
gone an extensive expansion population process. In fact,
the presence of a dominant haplotype represents an
ancestral lineage, because older haplotypes have had
more time to spread, leading to a higher frequency and
geographic distribution [55]. Furthermore, mismatch
distribution for the entire group exhibited a unimodal
pattern, suggesting that demographic expansions occurred.
Although Pleistocene population expansion has been
detected in other Neotropical anophelines, such as An.
darlingi (Amazonian region of Brazil) [22,56], Anopheles
marajoara showed a more recent population expansion in
Brazil, when it was compared to An. darlingi [57]. This
difference may reflect the contraction and re-expansion
cycles of Amazonian savanna, which created differences
in the availability of habitats for breeding of these two
species [58,59]. Unfortunately, few data from southern
Argentina during the Holocene are available, although
the Andean glaciations are correlated with the amount
of available moisture more than a fall in temperature
[59]. Immature stages of An. pseudopunctipennis are
commonly found in riverside pools colonized by fila-
mentous algae of the genus Spirogyra in the foothills of
the mountainous Mesoamerica region [60-62]. There-
fore, one hypothesis that could be tested is that climatic
oscillations during the Pleistocene together with modifica-
tions in vegetation could favor the presence of breeding
sites for this species during the Holocene.

The development of alternative breeding sites, or the
increase of new suitable breeding sites because of the
anthropic alterations of natural habitats, such as develop-
ment of crops [60], may be a concern due to the possibility
of colonization of new areas where the vector (or new vec-
tors) was absent before. Thus, malaria vector surveillance
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should be included in the strategies of disease control in
the area.

Conclusion

This is the first report of the use of the mitochondrial
COI gene to study the population demography of An.
pseudopunctipennis in America, although the study was
restricted to the Argentinian distribution. Results do not
support the existence of northern and southern An.
pseudopunctipennis population differentiation. Instead,
this metapopulation seems to have undergone a single
colonization process, without differentiation between
northern and southern localities, with fairly high gene flow
among them and evidence of a Holocene expansion.

In summary, this research reports the pattern of the
genetic variability and gene flow among northwestern
Argentinian localities of An. pseudopunctipennis. This
study provides important baseline data that suggest that
similar vector control measures should work in both the
north and south, and also, if insecticide resistance evolves,
it would likely spread fairly rapidly in this area.
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