
Liu et al. Parasites & Vectors 2014, 7:44
http://www.parasitesandvectors.com/content/7/1/44
RESEARCH Open Access
Chabertia erschowi (Nematoda) is a distinct
species based on nuclear ribosomal DNA
sequences and mitochondrial DNA sequences
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Abstract

Background: Gastrointestinal nematodes of livestock have major socio-economic importance worldwide. In small
ruminants, Chabertia spp. are responsible for economic losses to the livestock industries globally. Although much
attention has given us insights into epidemiology, diagnosis, treatment and control of this parasite, over the years,
only one species (C. ovina) has been accepted to infect small ruminants, and it is not clear whether C. erschowi is
valid as a separate species.

Methods: The first and second internal transcribed spacers (ITS-1 and ITS-2) regions of nuclear ribosomal DNA
(rDNA) and the complete mitochondrial (mt) genomes of C. ovina and C. erschowi were amplified and then
sequenced. Phylogenetic re-construction of 15 Strongylida species (including C. erschowi) was carried out using
Bayesian inference (BI) based on concatenated amino acid sequence datasets.

Results: The ITS rDNA sequences of C. ovina China isolates and C. erschowi samples were 852–854 bp and 862 -866 bp
in length, respectively. The mt genome sequence of C. erschowi was 13,705 bp in length, which is 12 bp shorter than
that of C. ovina China isolate. The sequence difference between the entire mt genome of C. ovina China isolate and
that of C. erschowi was 15.33%. In addition, sequence comparison of the most conserved mt small subunit ribosomal
(rrnS) and the least conserved nad2 genes among multiple individual nematodes revealed substantial nucleotide
differences between these two species but limited sequence variation within each species.

Conclusions: The mtDNA and rDNA datasets provide robust genetic evidence that C. erschowi is a valid strongylid
nematode species. The mtDNA and rDNA datasets presented in the present study provide useful novel markers for
further studies of the taxonomy and systematics of the Chabertia species from different hosts and geographical regions.
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Background
The phylum Nematoda includes many parasites that
threaten the health of plants, animals and humans on a
global scale. The soil-transmitted helminthes (including
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roundworms, whipworms and hookworms) are esti-
mated to infect almost one sixth of all humans, and
more than a billion people are infected with at least one
species [1]. Chabertia spp. are common gastrointestinal
nematodes, causing significant economic losses to the
livestock industries worldwide, due to poor productivity,
failure to thrive and control costs [2-6]. In spite of the
high prevalence of Chabertia reported in small rumi-
nants [7], it is not clear whether the small ruminants
harbour one or more than one species. Based on mor-
phological features (e.g., cervical groove and cephalic
vesicle) of adult worms, various Chabertia species have
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Table 1 Sequences of primers used to amplify
mitochondrial DNA regions from Chabertia erschowi and
Chabertia ovina from China

Primer Sequence (5′ to 3′)

For rrnS

CHOF TCGTTTAGTGGGTATGTGTGGTTCT (for C. ovina)

CHOR GCCTACTCCCTAACAAATGACGCTC (for C. ovina)

CHEF GTGGTTTTTAGGTTAGGGTTGAGTG (for C. erschowi)

CHER ACGCTCATACAAAGTAATAAACGCA (for C. erschowi)

For nad2

CHOF TTTGTGG(C\T)TAAGAGTGTT(G\A)GCTATT (for C. ovina)

CHOR GAGCCGTAATCAAACATAGTAAATC (for C. ovina)

CHEF TTTGTGG(C\T)TAAGAGTGTT(G\A)GCTATT
(for C. erschowi)

CHER ACCGTAATCAAACATAGTAAAATCT (for C. erschowi)

For C. ovina

COF TGGTTGTGTGGTTTGGGCTCAT

rrnLR ATGTCCTCACGCTAAGACTGCC

rrnLF AGTTTGCTTCTGCCCAGTGA

ND5R ACCGTAACCTCGCCCATCCTG

ND5F ACGGCGTTAGTGGAGGAGGA

ND1R CCACTAACCAACTCCCTTTCACCC

ND1F ATTGGTGCTTTGCGGGCCAGT

ND2R CCATAAACCTTTAAAACCTCCC

ND2F TTGTTGGTTGGGAGACTATG

CYR AAAGGGTCCTCAACCAAACA

CYF CCTGTTTGGGGACCTTCTATTG

COR CCGCAGTAAAATAAGCACGAGA

For C. erschowi

COF ACCGACGGCTTATGGAAT

rrnLR AGTGCAACCCAACATTATACCCT

rrnLF TAAAGTTTGCTTCTGCCCAGTGATA

ND1R ATAATAGCCAACAAAAGCACCGACA

ND1F CTTGTCGGTGCTTTGCG

CYR CCGCCTCAATAAACATCTC

CYF TGGTCCAGATTATTGAAGG

COR TTACCCGTCAAATACAAAGT
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been described in sheep and goats in China, including C.
ovina, C. rishati, C. bovis, C. erschowi, C. gaohanensis sp.
nov and C. shaanxiensis sp. nov [8-10]. However, to
date, only Chabertia ovina is well recognized as taxo-
nomically valid [11,12]. Obviously, the identification and
distinction of Chabertia to species using morphological
criteria alone is not reliable. Therefore, there is an ur-
gent need for suitable molecular approaches to accur-
ately identify and distinguish closely-related Chabertia
species from different hosts and regions.
Molecular tools, using genetic markers in mitochon-

drial (mt) genomes and the internal transcribed spacer
(ITS) regions of nuclear ribosomal DNA (rDNA), have
been used effectively to identify and differentiate para-
sites of different groups [13-16]. For nematodes, recent
studies showed that mt genomes are useful genetic
markers for the identification and differentiation of
closely-related species [17,18]. In addition, employing
ITS rDNA sequences, recent studies also demonstrated
that Haemonchus placei and H. contortus are distinct
species [19]; Trichuris suis and T. trichiura are different
nematode species [20,21].
Using a long-range PCR-coupled sequencing approach

[22], the objectives of the present study were (i) to
characterize the ITS rDNA and mt genomes of C. ovina
and C. erschowi from goat and yak in China, (ii) to com-
pare these ITS sequences and mt genome sequences,
and (iii) to test the hypothesis that C. erschowi is a valid
species in phylogenetic analyses of these sequence data.

Methods
Parasites and isolation of total genomic DNA
Adult specimens of C. ovina (n = 6, coded CHO1-
CHO6) and C. erschowi (n = 9, coded CHE1-CHE9) were
collected, post-mortem, from the large intestine of a goat
and a yak in Shaanxi and Qinghai Provinces, China, re-
spectively, and were washed in physiological saline, iden-
tified morphologically [8,10], fixed in 70% (v/v) ethanol
and stored at −20°C until use. Total genomic DNA was
isolated separately from 15 individual worms using an
established method [23].

Long-range PCR-based sequencing of mt genome
To obtain some mt sequence data for primer design, we
PCR-amplified regions of C. erschowi of cox1 gene by
using a (relatively) conserved primer pair JB3-JB4.5 [24],
rrnL gene was amplified using the designed primers rrnLF
(forward; 5′-GAGCCTGTATTGGGTTCCAGTATGA-3′)
and rrnLR (reverse; 5′-AACTTTTTTTGATTTTCCTT
TCGTA-3′), nad1 gene was amplified using the designed
primers nad1F (forward; 5′-GAGCGTCATTTGTTGG
GAAG-3′) and nad1R (reverse; 5′-CCCCTTCAGCAAAA
TCAAAC-3′), cytb gene was amplified using the designed
primers cytbF (forward; 5′-GGTACCTTTTTGGCTTT
TTATTATA-3′) and cytbR (reverse; 5′-ATATGAACAG
GGCTTATTATAGGAT-3′) based on sequences con-
served between Oesophagostomum dentatum and C. ovina
Australia isolate. The amplicons were sequenced in both
directions using BigDye terminator v.3.1, ABI PRISM
3730. We then designed primers (Table 1) to regions
within cox1, rrnL, nad1 and cytb and amplified from C.
ovina (coded CHO1) in four overlapping fragments: cox1-
rrnL, rrnL-nad1, nad1-cytb and cytb-cox1. Then we de-
signed primers (Table 1) to regions within cox1, rrnL,
nad5, nad1, nad2 and cytb and amplified from C. erschowi
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(coded CHE1) in six overlapping fragments: cox1- rrnL,
rrnL-nad5, nad5-nad1, nad1-nad2, nad2-cytb and cytb-
cox1. The cycling conditions used were 92°C for 2 min (ini-
tial denaturation), then 92°C/10 s (denaturation), 50 -58°C
(C. erschowi) or 56 -65°C (C. ovina)/30 s (annealing), and
60°C/10 min (extension) for 10 cycles, followed by 92°C for
2 min, then 92°C/10 s, 50 -58°C (C. erschowi) or 56 -65°C
(C. ovina)/30 s, and 60°C/10 min for 20 cycles, with a cycle
elongation of 10 s for each cycle and a final extension at
60°C/10 min. Each amplicon, which represented a single
band in a 1.0% (w/v) agarose gel, following electrophoresis
and ethidium-bromide staining, was column-purified and
then sequenced using a primer walking strategy [22].

Sequencing of ITS rDNA and mt rrnS and nad2
The full ITS rDNA region including primer flanking 18S
and 28S rDNA sequences was PCR-amplified from indi-
vidual DNA samples using universal primers NC5 (for-
ward; 5′-GTAGGTGAACCTGCGGAAGGATCATT-3′)
and NC2 (reverse; 5′-TTAGTTTCTTTTCCTCCGCT-
3′) described previously [25]. The primers rrnSF and
rrnSR (Table 1) designed to conserved mt genome se-
quences within the rrnS gene were employed for PCR
amplification and subsequent sequencing of this complete
gene (~ 700 bp) from multiple individuals of Chabertia
spp. The primers nad2F and nad2R (Table 1) designed to
conserved mt genome sequences within the nad2 gene
were employed for PCR amplification and subsequent se-
quencing of this complete gene (~ 900 bp) from multiple
individuals of Chabertia spp..

Sequence analyses
Sequences were assembled manually and aligned against
the complete mt genome sequences of C. ovina Australia
isolate [26] using the computer program Clustal X 1.83
[27] to infer gene boundaries. Translation initiation and
termination codons were identified based on comparison
with that of C. ovina Australia isolate [26]. The second-
ary structures of 22 tRNA genes were predicted using
tRNAscan-SE [28] and/or manual adjustment [29], and
rRNA genes were identified by comparison with that of
C. ovina Australia isolate [26].

Phylogenetic analyses
Amino acid sequences inferred from the 12 protein-coding
genes of the two Chabertia spp. worms were concatenated
into a single alignment, and then aligned with those of 14
other Strongylida nematodes (Angiostrongylus cantonensis,
GenBank accession number NC_013065 [30]; Angiostrongy-
lus costaricensis, NC_013067 [30]; Angiostrongylus vasorum,
JX268542 [31]; Aelurostrongylus abstrusus, NC_019571 [32];
Chabertia ovina Australia isolate, NC_013831 [26]; Cylicocy-
clus insignis, NC_013808 [26]; Metastrongylus pudendotec-
tus, NC_013813 [26]; Metastrongylus salmi, NC_013815
[26]; Oesophagostomum dentatum, FM161882 [17];
Oesophagostomum quadrispinulatum, NC_014181 [17];
Oesophagostomum asperum, KC715826 [33]; Oesopha-
gostomum columbianum, KC715827 [33]; Strongylus vul-
garis, NC_013818 [26]; Syngamus trachea, NC_013821
[26], using the Ancylostomatoidea nematode, Necator
americanus, NC_003416 as the outgroup [29]. Any regions
of ambiguous alignment were excluded using Gblocks
(http://molevol.cmima.csic.es/castresana/Gblocks_server.
html) [34] with the default parameters (Gblocks removed
1.6% of the amino acid alignments) and then subjected to
phylogenetic analysis using Bayesian Inference (BI) as de-
scribed previously [35,36]. Phylograms were drawn using
the program Tree View v.1.65 [37].

Results
Nuclear ribosomal DNA regions of the two
Chabertia species
The rDNA region including ITS-1, 5.8S rDNA and ITS-
2 were amplified and sequenced from C. ovina China
isolates, and they were 852-854 bp (GenBank accession
nos. KF913466-KF913471) in length, which contained
367-369 bp (ITS-1), 153 bp (5.8S rDNA) and 231-
239 bp (ITS-2). These sequences were 862-866 bp in
length for C. erschowi samples (GenBank accession nos.
KF913448-KF913456), containing 375-378 bp (ITS-1),
153 bp (5.8S rDNA) and 239-245 bp (ITS-2).

Features of the mt genomes of the two Chabertia species
The complete mt genome sequence of C. ovina China
isolate and C. erschowi were 13,717 bp and 13,705 bp in
length, respectively (GenBank accession nos. KF660604
and KF660603, respectively). The two mt genomes con-
tain 12 protein-coding genes (cox1-3, nad1-6, nad4L,
cytb, atp6), 22 transfer RNA genes and two ribosomal
RNA genes (rrnS and rrnL) (Table 2), but the atp8 gene
is missing (Figure 1). The protein-coding genes are tran-
scribed in the same directions, as reported for Oesopha-
gostomum spp. [17,33]. Twenty-two tRNA genes were
predicted from the mt genomes, which varied from 55
to 63 bp in size. The two ribosomal RNA genes (rrnL
and rrnS) were inferred; rrnL is located between tRNA-
His and nad3, and rrnS is located between tRNA-Glu
and tRNA-Ser (UCN). Three AT-rich non-coding regions
(NCRs) were inferred in the mt genomes (Table 2). For
these genomes, the longest NCR (designated NC2;
250 bp for C. ovina China isolate and 240 bp for C.
erschowi in length) is located between the tRNA-Ala and
tRNA-Pro (Figure 1), have an A + T content of 83.75%
and 84%, respectively.

Comparative analyses between C. ovina and C. erschowi
The mt genome sequence of C. erschowi was 13,705 bp
in length, 12 bp shorter than that of C. ovina China
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Table 2 Mitochondrial genome organization of Chabertia erschowi (CE) and Chabertia ovina China isolate (COC) and
Australia isolate (COA)

Gene and region Positions and nt sequence lengths (bp) Initiation/termination codons

CE COC COA CE COC COA

cox1 2-1579 (1578) 2-1579 (1578) 2-1579 (1578) ATT/TAA ATT/TAA ATT/TAA

tRN A-Cys (C) 1583-1637 (55) 1583-1639 (57) 1583-1639 (57)

tRNA-Met (M) 1639-1697 (59) 1640-1699 (60) 1640-1699 (60)

tRNA-Asp (D) 1699-1758 (60) 1700-1758 (59) 1699-1759 (61)

tRNA-Gly (G) 1760-1816 (57) 1759-1814 (56) 1757-1814 (58)

cox2 1817-2512 (696) 1815-2510 (696) 1814-2509 (696) ATT/TAA ATA/TAA ATA/TAA

tRNA-His (H) 2512-2566 (55) 2512-2568 (57) 2511-2567 (57)

rrnL 2573-3542 (970) 2572-3533 (962) 2570-3531 (962)

nad3 3543-3881 (339) 3534-3869 (327) 3532-3867 (336) ATT/TAA ATT/TAA ATT/TAA

Non-coding region (NC1) 3882-3965 (84) 3870-3949 (80) 3868-3947 (80)

nad5 3967-5548 (1582) 3950-5531 (1582) 3948-5529 (1582) ATT/ TAA ATT/T ATT/TAT

tRNA-Ala (A) 5549-5603 (55) 5532-5588 (57) 5530-5586 (57)

Non-coding region (NC2) 5604-5853 (250) 5589-5828 (240) 5587-5825 (239)

tRNA-Pro (P) 5854-5909 (56) 5829-5882 (54) 5826-5880 (55)

tRNA-Val (V) 5927-5982 (56) 5930-5984 (55) 5914-5970 (57)

nad6 5983-6417 (435) 5985-6416 (432) 5970-6401 (432) ATA/ TAA TTG/TAA TTG/TAA

nad4L 6420-6653 (234) 6418-6651 (234) 6402-6635 (234) ATT/ TAA ATT/TAG ATT/TAG

tRNA-Trp (W) 6681-6736 (56) 6655-6712 (58) 6639-6697 (59)

tRNA-Glu (E) 6739-6794 (56) 6740-6797 (58) 6725-6784 (60)

rrnS 6797-7492 (696) 6798-7493 (696) 6780-7479 (700)

tRNA-Ser UCN (S2) 7493-7547 (55) 7494-7548 (55) 7480-7536 (57)

tRNA-Asn (N) 7547-7603 (57) 7548-7605 (58) 7535-7593 (59)

tRNA-Tyr (Y) 7610-7666 (57) 7608-7664 (57) 7595-7652 (58)

nad1 7667-8539 (873) 7665-8537 (873) 7652-8524 (873) ATT/TAA ATT/TAA ATT/TAA

atp6 8539-9138 (600) 8538-9137 (600) 8525-9121 (597) ATT/TAA ATT/TAA ATT/TAG

tRNA-Lys (K) 9150-9211 (62) 9144-9206 (63) 9128-9191 (64)

tRNA-LeuUUR (L2) 9222-9276 (55) 9215-9269 (55) 9197-9252 (56)

tRNA-Ser AGN (S1) 9277-9335 (59) 9270-9327 (58) 9252-9304 (53)

nad2 9336-10175 (840) 9328-10167 (840) 9308-10147 (840) GTT/TAA ATT/TAA ATA/TAA

tRNA-Ile (I) 10176-10234 (59) 10175-10235 (61) 10151-10211 (61)

tRNA-Arg (R) 10235-10289 (55) 10240-10294 (55) 10215-10270 (56)

tRNA-Gln (Q) 10290-10345 (56) 10299-10353 (55) 10271-10326 (56)

tRNA-Phe (F) 10346-10403 (58) 10354-10412 (59) 10326-10385 (60)

cytb 10404- 11516 (1113) 10413-11525 (1113) 10385-11497 (1113) ATT/TAG ATT/TAA ATT/TAA

tRNA-Leu CUN (L1) 11517-11572 (56) 11529-11584 (56) 11501-11562 (62)

cox3 11573-12338 (766) 11585-12350 (766) 11557-12327 (771) ATT/T ATT/T ATT/TAA

tRNA-Thr (T) 12339-12397 (59) 12351-12404 (54) 12323-12377 (55)

nad4 12398-13627 (1230) 12405-13634 (1230) 12376-13608 (1233) TTG/TAA TTG/TAA ATT/TAA

Non-coding region (NC3) 13628 – 1 (75) 13635-1 (84) 13609-1 (75)
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isolate, and 23 bp longer than that of C. ovina Australia
isolate. The arrangement of the mt genes (i.e., 13 protein
genes, 2 rrn genes and 22 tRNA genes) and NCRs were
the same. A comparison of the nucleotide sequences of
each mt gene as well as the amino acid sequences
conceptually translated from individual protein-coding



Figure 1 Structure of the mitochondrial genomes for Chabertia.
Genes are designated according to standard nomenclature, except for
the 22 tRNA genes, which are designated using one-letter amino acid
codes, with numerals differentiating each of the two leucine- and
serine-specifying tRNAs (L1 and L2 for codon families CUN and UUR,
respectively; S1 and S2 for codon families AGN and UCN, respectively).
“NCR-1, NCR-2 and NCR-3” refer to three non-coding regions.
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genes of the two Chabertia are given in Table 3. The
greatest nucleotide variation between the C. ovina China
isolate and C. erschowi was in the nad2 gene (19.4% and
17.92%), whereas least differences (7.33%) were detected
in the rrnS gene, respectively (Table 3). The nucleotide
Table 3 Nucleotide and/or predicted amino acid (aa) sequenc
genes among Chabertia erschowi (CE) and Chabertia ovina Ch

Gene Nucleotide length (bp) Nucleotide difference (%

CE COC COA CE/COC CE/COA COC/

atp6 600 600 597 14.33 14.83 5.00

nad1 873 873 873 13.63 13.97 4.35

nad2 840 840 840 19.40 20.12 3.93

nad3 339 336 336 17.40 17.70 6.55

nad4 1230 1230 1233 17.64 18.82 5.43

nad4L 234 234 234 11.97 12.39 4.70

nad5 1582 1582 1582 17.51 17.32 4.87

nad6 435 432 432 19.08 19.31 5.56

cox1 1578 1578 1578 11.98 12.86 4.06

cox2 696 696 696 13.36 13.65 4.89

cox3 766 766 771 14.75 14.01 5.06

cytb 1113 1113 1113 16.80 16.89 4.67

rrnS 696 696 700 7.33 7.71 1.86

rrnL 970 962 962 13.61 13.92 3.20
sequence difference between the entire mt genome of C.
ovina China isolate and that of C. erschowi was 15.33%.
Sequence difference between the entire mt genome of C.
ovina Australia isolate and that of C. erschowi was
15.48%. Sequence difference between the entire mt
genome of C. ovina China isolate and that of C. ovina
Australia isolate was 4.28%.
The difference in the concatenated amino acid se-

quences of the 12 protein-coding genes of the C. ovina
China isolate and those of C. erschowi was 9.36%, 10%
between those of the C. ovina Australia isolate and those
of C. erschowi, and 2.37% between those of the C. ovina
China isolate and those of C. ovina Australia isolate. The
amino acid sequence differences between each of the 12
protein-coding genes of the C. ovina Australia isolate
and the corresponding homologues of C. erschowi ranged
from 0.57-17.92%, with COX1 being the most conserved
and NAD2 the least conserved proteins (Table 3). Phylo-
genetic analyses of concatenated amino acid sequence
data sets, using N. americanus as the outgroup, revealed
that the Chabertia and Oesophagostomum were clustered
together, with absolute support (posterior probability
(pp) = 1.00) support (Figure 2).
Sequence variation in complete nad2 gene was assessed

among 15 individuals of Chabertia from goats and yaks.
Sequences of the six C. ovina China isolate individuals
were the same in length (840 bp) (GenBank accession
nos. KF913472-KF913477). Nucleotide variation among
the six C. ovina China isolate individuals was detected at 18
sites (18/840; 2.1%). Sequences of the nine C. erschowi indi-
viduals were the same in length (840 bp) (GenBank acces-
sion nos. KF913484-KF913492). Nucleotide variation also
e differences for mt protein-coding and ribosomal RNA
ina isolate (COC) and Australia isolate (COA)

) Number of aa aa difference (%)

COA CE COC COA CE/COC CE/COA COC/COA

199 199 198 11.06 14.57 7.54

290 290 290 5.17 8.62 3.79

279 279 279 17.92 17.20 2.15

112 112 112 16.96 16.07 7.14

409 409 410 14.67 17.80 4.88

77 77 77 7.79 7.79 0

527 527 527 14.42 13.66 2.47

144 143 143 15.97 17.36 1.40

525 525 525 0.57 0.57 0

231 231 231 0.87 0.87 0

255 255 256 3.14 2.35 1.17

370 370 370 9.73 9.73 1.08

- - - - - -

- - - - - -



Figure 2 Inferred phylogenetic position of Chabertia within Strongylida nematodes. Analysis of the concatenated amino acid sequence
data representing 12 protein-coding genes by Bayesian inference (BI), using Necator americanus (NC_003416) as the outgroup.
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occurred at 23 sites (23/840; 2.7%). All 15 alignments of the
nad2 sequences revealed that all individuals of Chabertia
differed at 182 nucleotide positions (182/840; 21.7%).
Phylogenetic analysis of the nad2 sequence data revealed
strong support for the separation of C. ovina and C.
erschowi individuals into two distinct clades (Figure 3A).
Sequence variation in complete rrnS gene was assessed

among 15 individuals of Chabertia from goat and yak.
Sequences of the rrnS gene from the six C. ovina China
isolate individuals were the same in length (696 bp)
(GenBank accession nos. KF913478-KF913483). Nucleo-
tide variation among the six C. ovina China isolate indi-
viduals was detected at seven sites (7/696; 1.0%).
Figure 3 Inferred genetic relationships of 15 individual Chabertia spe
on mitochondrial rrnS (A) and nad2 (B) sequence data, using Necator amer
Sequences of the rrnS gene from the nine C. erschowi
individuals were the same in length (696 bp) (GenBank
accession nos. KF913457-KF913465). Nucleotide vari-
ation also occurred at 6 sites (6/696; 0.9%). All 15 align-
ments of the rrnS sequences revealed that all individuals
of Chabertia differed at 56 nucleotide positions (56/696;
8.05%). Phylogenetic analysis of the rrnS sequence data
revealed strong support for the separation of C. ovina
and C. erschowi individuals into two distinct clades
(Figure 3B).
The ITS-1 and ITS-2 sequences from 10 individual

adults of C. ovina China isolate were compared with that
of 6 individual adults of C. erschowi. Sequence variations
cimens. The analyses were carried out by Bayesian inference (BI) based
icanus as the outgroup.
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were 0–2.9% (ITS-1) and 0–2.7% (ITS-2) within the two
Chabertia species, respectively. However, the sequence
differences were 6.3-8.2% (ITS-1) and 10.4-13.6% (ITS-2)
between the C. ovina China isolate and C. erschowi.
Discussion
Chabertia spp. is responsible for economic losses to the
livestock industries globally. Although several Chabertia
species have been described from various hosts based on
the microscopic features of the adult worms (e.g. cervical
groove and cephalic vesicle), it is not clear whether C.
erschowi is valid as a separate species due to unreliable
morphological criteria. For this reason, we employed a
molecular approach, so that comparative genetic analyses
could be conducted.
In the present study, substantial levels of nucleotide dif-

ferences (15.33%) were detected in the complete mt gen-
ome between C. ovina China isolate and C. erschowi, and
15.48% between C. ovina Australia isolate and C. erschowi.
These mtDNA data provide strong support that C. erschowi
represents a single species because a previous comparative
study has clearly indicated that variation in mtDNA se-
quences between closely-related species were typically 10%-
20% [13].
The difference in amino acid sequences of the con-

catenated 12 proteins encoded by the complete mt gen-
ome between C. ovina China isolate and C. erschowi is
9.36%, and 10% between the C. ovina Australia isolate
and C. erschowi. This level of amino acid variation is
higher than those of other nematodes. Previous studies
of other congener nematodes have detected low level
differences in 12 protein sequences. For example, differ-
ences in amino acid sequences between A. duodenale
and A. caninum is 4.1% [29,38], and between Toxocara
malaysiensis and Toxocara cati is 5.6% [39], and be-
tween O. dentatum and O. quadrispinulatum is 3.22%
[17]. In addition, substantial levels of nucleotide differ-
ences (6.3%-8.2% in ITS-1 and 10.4-13.6% in ITS-2)
were also detected between C. ovina China isolate and
C. erschowi. These results also indicate that C. erschowi
is a separate species from C. ovina. This proposal was
further supported by phylogenetic analysis based on
mtDNA sequences (Figure 3), although, to date, only
small numbers of adult worms have been studied mo-
lecularly. Clearly, larger population genetic and molecu-
lar epidemiological studies should be conducted using
the mt and nuclear markers defined in this study to fur-
ther test this proposal/hypothesis.
Conclusion
The findings of this study provide robust genetic evi-
dence that C. erschowi is a separate and valid species
from C. ovina. The mtDNA and rDNA datasets reported
in the present study should provide useful novel markers
for further studies of the taxonomy and systematics of
Chabertia spp. from different hosts and geographical
regions.
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