Wilke et al. Parasites & Vectors 2014, 7:468
http://www.parasitesandvectors.com/content/7/1/468

Parasites
&Vectors

RESEARCH Open Access

Population genetics of neotropical Culex
quinquefasciatus (Diptera: Culicidae)

André Barretto Bruno Wilke'", Paloma Oliveira Vidal*?, Lincoln Suesdek®* and Mauro Toledo Marrelli'*

Abstract

Background: Culex quinquefasciatus mosquitoes can be found in almost every major city of Brazil and are vectors
of filariasis and several arboviruses. Microsatellite markers have been widely used to uncover the genetic structure
of various groups of insect populations. The aim of this study was to glimpse the genetic structure of Cx.
quinquefasciatus in Brazil.

Methods: Nine populations were sampled across Brazil (one of them from a laboratory colony - COL) and another
one from Argentina and process regarding the variability of six microsatellite loci.

Results: The analyzed loci revealed moderate population genetic structure (mean Fy =0.12). Dendrograms of
genetic distances evidenced two major population clusters, respectively corresponding to the northern and
southern populations. The hybrid population Cx. pipiens/quinquefasciatus (from La Plata, Argentina) and the colony
population fell outside the major clusters. Those clusters were substructured and there was a significant correlation
between genetic and geographic distances and environmental variables (r=051; p > 0.001 and r=046; p > 0.004).

Conclusions: Multilocus cluster Bayesian analysis confirmed that populations are mutually distinct, and the set of
results point to genetic differences among populations. The presumable low gene flow among them may be due
to the large geographic distances (>1000 km) and to the environmental heterogeneity of the sampled areas. The
genetic structure observed in this study may lead to the best understanding of Cx. quinquefasciatus demographical

diversity as well as their genetic variations patterns in Brazil so far unknown.

Background

Culex pipiens species complex sharing morphological
similarities can be found in urban areas and are respon-
sible for the transmission of several pathogens [1,2]. One
member of this complex, Culex quinquefasciatus, is
adapted to live in tropical and subtropical areas while
Cx. pipiens mosquitoes lives in temperate regions [3].
Cx. quinquefasciatus is well established in Brazil and can
be found in almost all major cities [4]. This mosquito
transmits lymphatic filariasis caused by Wauchereria
bancrofti (Spirurida: Onchocercidae), most cases occur
in tropical regions of the planet, 800 million people live
in endemic areas and 120 million people are infected [5].
There is active transmission of filariasis in the state of
Pernambuco, Brazil [5,6]. This species can also transmit
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several arboviruses such as West Nile Virus and Saint
Louis encephalitis [7-11].

Cx. quinquefasciatus mosquitoes are able to survive in
polluted waters where there are no natural predators,
which leads to excessive growth of the population [12].
This phenomena may be due to phenotypic plasticity
and might have a role in environmental adaptation and in-
secticide resistance with implications that made chemical
interventions no longer effective for the control of mos-
quito populations [13-22]. Therefore, a better knowledge
of the genetic structure of insect populations is required
for the development of effective strategies for vector
control. Molecular markers have been widely used at the
resolution of taxonomic studies and population genetics
issues of several insect groups [23-27].

Microsatellites were utilized to seek for population vari-
ations in Cx. quinquefasciatus mosquitoes on Hawaii that
are associated with landscape altitude variations which
lead to population structures caused by spatial interactions
among vector, host and parasite. Disease patterns are
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interconnected with elevation gradient structuration and
therefore there are epidemiologically important outcomes
[28]. Hybrid Cx. quinquefasciatus/pipiens mosquitoes can
be found in Uruguay, northern Argentina and western of
Brazil while Cx. pipiens can be found in the southern
regions of Latin America [29].

Morais et al. [30] found that Brazilian populations’ of
Cx. quinquefasciatus from tropical regions had wing
shapes distinct from subtropical populations, sorting out
the northern populations (tropical zone) of southern
populations (sub-tropical zone), also demonstrated by
the use of ace-2 molecular marker. This event can be
explained by greater gene flow among populations of the
same region than between regions, indicating a barrier,
yet to be confirmed [30].

It is still not well known how Cx. quinquefasciatus
mosquitoes are demographically distributed, in addition
to the paucity of information on their genetic variations.
Recent studies indicate that this species varies region-
ally and thus different control approaches are needed
[29,30]. A better understanding of the mosquito popula-
tion genetic structure might be useful to anticipate vector
borne disease distribution patterns and play a decisive role
in epidemiological interventions [31]. Herein, we seek
to estimate the genetic diversity of Cx. quinquefasciatus
populations in Brazil by analyzing ten populations from
several regions with distinct climatic and geographical
characteristics.

Methods

Collection of specimen - mosquito samples

Adult Cx. quinquefasciatus mosquitoes were captured
from ten sampling localities (Table 1, Figure 1) using a
battery powered aspiration device near breeding sites
during February and March (rain season) in 2008 [32].
Each captured mosquito was identified by taxonomic
keys and stored in silica until processed for DNA extrac-
tion [2,30], they were then processed with taxon-specific

Table 1 Mosquito populations, collecting sites and
geographic coordinates

Population Origin Coordinates

RBR Rio Branco - AC 10°1"17.47"S/67°46'36.43"W
BEL Belém - PA 1°34'30.83"5/48°27'58.97"W
coL Séo Paulo - SP 23°34'0.44"S/46°43'57.61"W
LPL La Plata - Argentina 34°55'2.86"S/57°56'57.13"W
TER Teresina - Pl 5°6'22.28"5/42°46"28.18"W
PLA Pontes e Lacerda - MT 15°15'42.29"S/59°17'59.74"W
Svi Santa Vitoria - RS 33°3033.51"5/53°19"16.71"W
CHA Chapeco - SC 27°3'23.01"5/52°35'9.32"W
PET Sao Paulo - SP 23°29'1.07"5/46°30"14.41"W
PIN Sao Paulo - SP 23°38'48.31"5/46°43'37.07"W
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Figure 1 Map of South America showing mosquito population
capture sites (n=10). Coloured dots indicate microsatellite-based
genetic clustering of populations.

PCR primers, ace-2 locus to distinguish and characterize
populations and zones of hybridization [30]

Populations

All mosquito populations were collected from urban
areas with different climate and urbanization charac-
teristics. RBR’ mosquito inhabit an equatorial region
with temperatures ranging between 25-40°C, located in
the Amazon region. The BEL population is located in
the banks of the Amazon River, with only 6.5% of home
sewage connected to the collection network resulting in
an abundance of breeding sites. COL is the laboratory
colony, highly monomorphic as a result of high levels of
inbreeding due to isolation in the laboratory since 1980.
LPL population comprises of hybrid mosquitoes from a
hybridization zone between Culex quinquefasciatus/
pipiens in La Plata, Argentina. The TER population re-
sides in a semi humid tropical area, located in the transi-
tion zone between the semi-arid northeast of Brazil and
the Amazon rainforest, as well as PLA located in a tran-
sition zone between Cerrado and the Amazon rainforest.
SVI is located in the extreme south of Brazil, and has a
temperate climate. CHA is located in the Uruguay River



Wilke et al. Parasites & Vectors 2014, 7:468
http://www.parasitesandvectors.com/content/7/1/468

basin with an annual average temperature of 19.60°C.
PET mosquitoes were collected in a linear park with
12.5 million m? located within the city of Sio Paulo. PIN
population was collected in a highly urbanized area,
subject to selective pressures caused by humans and is
highly anthropophilic.

DNA extraction and microsatellite amplifications
Thirty adult females of each population were used to
perform the genomic DNA extraction, according to
the DNeasy Blood and Tissue kit (Qiagen, California,
USA). Six microsatellite primers previously utilized in Cx.
quinquefasciatus were selected (Table 2) [31,33]. These six
primers, named: CA-115 - GT-14 - GT-108 - GA-12 - CA-
118 - ATG-09, were fluorescent-labeled (FAM - HEX -
NED) and tested in our Cx. quinquefasciatus populations.
Amplification reactions (PCR) were performed as in
Edillo et al. [31] and Smith et al. [33], in an AG-22331
Thermocycler Eppendorf (Hamburg Germany). After the
PCR amplification multiplex dilutions were performed
using three fluorescent-labeled primer (FAM, HEX and
NED), where 3 pL of PCR product of each primer was
added to 21 pL ultra-pure water for each sample for a
final volume of 30 pL. A second dilution was performed
with 2 pL of diluted PCR product resuspended in 7.5 pL
of Formamide HI-DI (Applied Biosystems, Warrington,
UK), 0.5 pL of molecular size standard GeneScan 500
LIZ (Applied Biosystems, Warrington, UK) was added
for a final volume of 10 pL. Samples were processed in
the ABI 3730 automatic sequencer (Applied Biosystems,
Foster, CA, USA).

Fragment size determination and statistical analyses

Fragment sizes were determined with GeneMarker soft-
ware package (Softgenetics). A parametric t-test was per-
formed for each population, aiming to quantify genetic
differentiation. Hardy-Weinberg equilibrium deviations

Table 2 Selected Culex quinquefasciatus primers
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and genetic variation indices were obtained utilizing
GENEPOP V4.0 (http://genepop.curtin.edu.au/) [34,35].
Multilocus genotypes of each individual were then proc-
essed by the program Arlequin [36]; Fy values were gen-
erated to survey the level of genetic structure between
populations. Genetic isolation by geographic distances
and pairwise multilocus number of migrants (Nm)
between populations per generation were estimated in
GENEPOP 4.0 utilizing regression of pairwise Fg/(1-Fy)
and the geographical distances were shown for a
straight-line in kilometers [35]. The selected environ-
mental variables allowed us to examine how environmental
factors might be associated with genetic variations of Cx.
quinquefasciatus. The selected parameters incorporate
annual trends and environmental characteristics of collec-
tion sites (mean annual temperature, annual precipitation,
altitude, inhabitants and Human Development Index) [37].
Correlations between genetic, geographic distances and
environmental variables were estimated with Statistica
v7.0 software.

The software Structure 2.3.4 [38] was utilized to ap-
point the amount of genetic clusters enclosed into the
data. To define the value of K, from 1-12 twelve runs
were made using default settings, the formula AK=m
([L”K])/s [L (K)] was applied [39].

Results

Genetic diversity

Hardy-Weinberg Equilibrium Test was performed for all
six microsatellite loci. It was observed after Bonferroni
correction [40] that heterozygosity was lower than
expected in 36 of 60 tests that could be conducted
(p <0.00083) and the mean F;; value was 0.34. Out of
the 150 possible tests, significant linkage disequilibrium
was revealed only between locus ATG-09 and GT-14 in
the RBR sample suggesting the loci were not in linkage
(Table 3).

Primers Sequence 5-3' Allele Size (bp) Number of Alleles
F: GTCGTCAAACTGCCAATAA

CxqA115 86-296 30
R: GCGGAAATAGAACAAACG
F: TGTTAGCCTAGTGGGAAGGTG

CxqGT14 106-200 18
R: AATCCACCATGCACGGATAC
F: CGTG ATAGGCTTCTTTC

CxqGT108 106-316 27
R: TCTTCCTTAACTTTACCCACTC
F: ACCCGTTCTGGCAACACTG

CxqGA12 110-188 17
R: TGGTGCGGATGGACGTT
F: ACCCCGAGCCAACCTTAT

CxqA118 112-254 26
R: CCCCCATTTCACACCTGT
F:.CCACTCAAACTAAAACACCACA

CxqATG9 108-300 26

R: AATGCCATAACCATCGTCAT



http://genepop.curtin.edu.au/

Wilke et al. Parasites & Vectors 2014, 7:468
http://www.parasitesandvectors.com/content/7/1/468

Table 3 Six microsatellite loci in Culex quinquefasciatus mosquitoes’ genetic diversity
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Locus Population No. of alleles Observed heterozygosity (%) Expected heterozygosity (%) Fis P
GT-108 ACR 1 50 78 03636 0

BEL 13 63.3 87 0.2764 0.0003

CcoL 3 36.7 39.7 0.0754 0.0203

PLA 1 66.7 88.7 0.2521 0

TER 12 56.7 83.7 0327 0.0019

PLA 11 56.7 88 03614 0

SV 9 63.3 80.7 02173 0.0622

CHA 10 50 85.7 04141 0

PET 10 70 82 0.1488 0.0778

PIN " 50 83.3 04049 0
ATG-09 ACR 8 60 69.7 0.1414 0.0487

BEL 10 36.7 70.7 0.4855 0

CcoL 3 0 12.7 1,000 0.0003

PLA 14 60 85.7 0.304 0

TER 7 46.7 69.7 0335 0.006

PLA 9 76.7 73 -0.0529 0.1283

SV 8 76.7 84 0.0907 0.1593

CHA 14 50 86.7 04284 0

PET 8 86.7 79 —-0.0983 0

PIN 12 70 83 0.16 0.0296
CA-118 ACR 6 36.7 53 0311 0.0245

BEL 13 533 88 0.399 0

COL 3 0 12.7 1,000 0.0002

PLA 7 40 60.3 0.3409 0

TER 6 20 64 0.692 0

PLA " 40 823 05177 0

Svi 9 46.7 82 04349 0

CHA " 46.7 77.3 0.4007 0

PET 7 26.7 383 0.3085 0.0027

PIN 9 56.7 75.7 0.2536 0.0003
GT-14 ACR 10 26.7 713 0.6297 0

BEL 13 433 74 04178 0

CcoL / / / / /

PLA 5 59 488 0.8824 0

TER 5 345 66.2 04834 0.0004

PLA 5 36.7 70.7 0.4863 0.0003

SV 5 17.8 62.8 0.7202 0

CHA 5 28 704 0.6084 0

PET 5 35.7 62.5 04334 0.0002

PIN 5 345 71.7 05246 0
GA-12 ACR 6 70 73.7 0.0492 0502

BEL 10 70 74.7 0.0624 0.0247

COL 2 46.7 50.3 0.0794 0.7243

PLA 4 759 61 —0.2457 0.0002
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Table 3 Six microsatellite loci in Culex quinquefasciatus mosquitoes’ genetic diversity (Continued)

TER 5 533
PLA 7 56.7
SV 6 56.7
CHA 7 433
PET 8 66.7
PIN 5 50
A-115 ACR 12 57.7
BEL 13 76.7
CcoL 3 0
PLA 12 533
TER 5 286
PLA 5 56.7
SvI 6 30
CHA 9 40
PET 5 50
PIN 6 36.7

73 02716 0.0001
75 0.2485 0

583 0.0286 0.1255
67.7 0.3653 0.0011
7.7 0.0698 0.2929
68.3 0.2738 0.0085
82.3 0.3023 0.0009
837 0.0863 0.2186
613 1,000 0

82.3 0.3564 0

66.8 0.5765 0.0002
753 0.2519 0.0621
64 0.5364 0

64 0.3797 0.0005
583 0.1454 0.0017
573 0.3652 0.0219

Inbreeding coefficient (F;). In bold, significant P value (a = 0.05) after Bonferroni correction rejects the Hardy-Weinberg equilibrium. p <0.00083.

The COL population was monomorphic, sharing the
same allele in most individuals, in the loci CA-118 and
ATG-9, 56 alleles from 60 have the same fragment size.
Population RBR had thirty alleles with the same size
(106 bp) for the locus GT-14 and was not found in any
other population. COL showed the same phenomenon
with A-115 locus, where 28 alleles have 296 bp and can
only be found in this population.

Genetic differentiation

In order to quantify levels of genetic structure among
populations the Fy index (genetic heterogeneity) was
used. The Fy mean value was 0.12 indicating moderate
genetic structuring, pairwise Fy value comparisons
between populations ranged from 0.08 to 0.29 and all of
them were statistically significant (P < 0.01; Table 4).

Table 4 Lower diagonal shows pairwise F; estimates

Genetic distance

Statistically significant correlation was detected between
genetic distance (estimated as Fy/(1 - Fy)) and geo-
graphic distance between populations (r = 0.51; r* = 0.26;
p=0.001) as well as statistically significant correlation
between genetic distance and Environmental Variables
(r=046; r*=021; p>0.004) (Figure 2). The Pairwise
multilocus estimated number of migrants (Nm) between
populations per generation was 2.60736.

The dendrogram of genetic distances based on the
allelic variability of the six microsatellite loci (GT-108,
ATG-09, CA-118, GT-14, GA-12, CA-115) for 10 popu-
lations of Cx. quinquefasciatus is presented in Figure 3.
The dendrogram revealed two clusters, which corre-
sponded geographically to Northern and Southern sam-
pling sites. Population samples LPL (hybrid population)

Population RBR BEL coL LPL TER PLA svi CHA PET PIN
RBR -

BEL 0.046 -

coL 0.236 0310 -

LPL 0.136 0.075 0.344 -

TER 0.052 0.058 0.281 0.146 -

PLA 0.052 0.033 0.290 0.090 0.045 -

SVI 0.116 0.087 0.353 0.089 0.137 0.064 -

CHA 0.100 0.107 0.270 0.105 0.129 0.052 0.052 -

PET 0.050 0.116 0.263 0.146 0.106 0.067 0.099 0.043 -

PIN 0.098 0.083 0.293 0.086 0.116 0.035 0.046 0.027 0.050 -

The statistical significance of F; estimates was assessed using 10000 permutations. All comparisons were statistically significant (p < 0.01).
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Figure 2 Fst (Fst/(1-Fst) upon environmental variables and linear distance. A-Linearized F; values (F./(1-Fs) upon environmental variables
between pairs of populations, showing a significant IBD effect (r=0.46; p > 0.004) between analyzed populations. B-Linearized Fg; values (Fs/(1-F)
upon linear distance (in km) between pairs of populations, showing a significant IBD effect (r=0.51; p > 0.001) between analyzed populations.
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and COL (laboratory colony) were not grouped with any
other populations, and the population COL proved to be
the most distinct from the other populations, all results
were statistically significant.

Bayesian cluster analyses

The multilocus cluster Bayesian analysis of all 10 popu-
lation samples together indicate genetic structuration
among Cx. quinquefasciatus’ populations (delta k =10)
(K value = 10) (Figure 4A). A second multilocus cluster
Bayesian analysis was made without COL because it was
no longer considered as a sylvatic population (colony
was originated in 1980) and LPL was removed because

RBR
BEL
TER
sV
CHA
PIN
PET

LPL
coL

I_rl

01 0.2 0.3
FS!

Figure 3 Genetic distance dendrogram of Culex quinquefasciatus
populations. Statistically significant for all iterations.

it is actually a hybrid population between Cx. pipiens
X Cx. quinquefasciatus (delta k=8) (K value =2) [30]
(Figure 4B).

Discussion

Microsatellite markers were polymorphic and exposed a
significant regional differentiation, which is compatible
with the population structuration hypothesis for Cx.
quinquefasciatus. Population structure comprised a clear
North—south dichotomy in clustering. Such interpret-
ation is in accordance to Morais et al. [30], who first
noted that this species varies geographically in the
Neotropics using morphometric wing characters [29].

The presence of correlation between genetic and geo-
graphic distances suggests that genetic isolation by dis-
tance might occur but considering that samples came
from different biomes, ecological components are also
an influential factor on population structure genetic
characteristics as seen in Figure 2. However, our inter-
pretations are yet limited since Brazilian territory was
not homogeneously covered, and thus, it may represent
several distinct scenarios.

Concerning the northern cluster the geographic and
genetic distances did not correlate. For example, TER
and PLA although being 2100 km apart, they appeared
adjoining in the dendrogram. This discrepancy may be
an indirect result of environmental constraints; because
both are located in similar ecosystems (transition be-
tween semi-arid to rain forest). RBR population is lo-
cated in a remote region of Brazil where urban mobility
is mostly by boat or plane, leading to an isolated
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Figure 4 Multilocus cluster Bayesian analysis of microsatellite genotypes. A-Multilocus cluster Bayesian analysis of microsatellite genotypes
(K=10). Each of the 300 individuals included in the analysis is represented by a vertical line (each population is composed of 30 mosquitoes) divided
into segments of colors that represent the probability of each individual to belong to any of the genetic clusters. 1- RBR, 2- BEL, 3- COL, 4- LPL, 5- TER,
6- PLA, 7- SVI, 8- CHA, 9- PET and 10- PIN. B-Multilocus cluster Bayesian analysis of microsatellite genotypes (K values = 2). Each individual is represented
by a vertical line and each population is composed of 30 mosquitoes. The populations COL and LPL have not been included in this analysis. Each of
the 240 individuals from the remaining populations was represented by a vertical line, divided into segments of colours that represent the probability

of each individual to belong to any of the genetic clusters. 1- RBR, 2- BEL, 5- TER, 6- PLA, 7- SVI, 8- CHA, 9- PET and 10- PIN.

scenario, which might have increased the genetic differ-
entiation found in that population.

Located in the southern branch, the SVI population
presented lower genetic variability probably because it is
located in the southernmost border of geographic distri-
bution (temperature fluctuations may be limitrophe for
Cx. Quinquefasciatus) [30]. Comparatively, CHA and
PIN populations were highly polymorphic, arguably be-
cause of an ancestral polymorphism retention, favoured
by the fact that environmental constraints are not so
restrictive as those of SVL

Apart from the main dichotomy in the dendrogram, one
cannot make deep interpretations regarding the lower
clusters up to the present time. Concerning the discrepant
samples, COL is a highly inbred and monomorphic
laboratory colony and thus appeared to be eccentric; LPL
is a hybrid population between Cx. quinquefasciatus/
pipiens [29] and was genetically distinct from all Brazilian
natural populations.

Bayesian analysis confirmed the results obtained by
the dendrogram and F correlation showed significant
differences among populations and thus low genic flow.
The great distances (>1000 of range in km between
populations) and distinct biomes might block migratory
flows, if there is gene flow it occurs in a smaller geo-
graphic scale.

The deficit of heterozygotes, found in all loci, can be
explained by a number of non-mutually excludable
factors: Population substructure (Wahlund effect),
inbreeding and genetic drift [41]. The possibility that
some loci are under selective pressure, although remote,
cannot be discarded. Our interpretation of the results is
equivalent to those of da Costa-Ribeiro et al. [42].

Taken together, our exploratory findings suggest that
Cx. quinquefasciatus has a complex population structure
and a broad genetic variability. This thought is compa-
tible with the available epidemiological and biological
data of the species. Cx. quinquefasciatus mosquitoes can
be found in urban habitats where there is a great ther-
mal range, manmade selective pressures and several
kinds of available breeding sites, features that can lead to
temporal variations of clustering and population differ-
entiation [42]. Insects of epidemiological importance
might be dispersed, expanding its borders when associ-
ated with humans. Aedes aegypti mosquitoes can be
disseminated by ground transportation as roads and
railways are likely to spread dengue virus beyond the
normal reach of mosquitoes but are unlikely to spread
dengue virus over large areas [42].

Interactions between vector, host and pathogen can
change patterns of disease transmissibility resulting in se-
lection, genetic drift and hybridization [43-45]. Parasite
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and host bond can undergo effects caused by vectors, the
most usual effect is the genetic diversity of parasites
caused by the variation in the genetic structure of vectors.
Parasite strains may be transmitted beyond primary to
secondary host populations increasing population num-
bers of parasites, thus resulting in the decrease of gen-
etic diversity caused by genetic drift or the recurrence
of more virulent strains, or the outgrowth of resistance
proportioned by the high levels of genetic diversity [46].
Cx. quinquefasciatus vector competence is genetically
interconnected to Wuchereria bancrofti causing signifi-
cant differentiation among populations [43].

Population genetic analyses can be useful to enlighten
demographic and dispersal trends in mosquitoes, leading to
uncovering disease patterns and epidemiological changes in
transmission dynamics [47,48].

Sunil et al. [49] found that environmental and ecological
factors are not the main causes for the genetic differenti-
ation between populations of Anopheles culicifacies, an
important vector of malaria in Southeast Asia.

Kothera et al. [44] suggest that models of disease
transmission can be achieved by population genetics and
epidemiological data, therefore, improving the efficacy of
mosquito control methods. Venktesan & Rasgon [46] state
that population dynamics and spread of Culex tarsalis
mosquitoes may have an association in the invasion of
North America by WNV. Fonseca et al. [50] showed that
mosquitoes from the Culex pipiens complex from North
America and Europe have distinct epidemiological patterns
that can lead to changes in their vectorial capacity, becoming
new efficient vectors if introduced into new areas.

Conclusions

The understanding of population structure of Cx. quinque-
fasciatus mosquitoes, as well as their territorial variations
and genetic characteristics might help to predict the intro-
duction of this mosquito into new areas that can lead to
disease outbreaks, it could also help with the development
of new control strategies. Further studies should aim at
better understanding of population and demographical
dynamics for smaller geographic scales where there is the
possibility of migration and a more intense gene flow.
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