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Abstract

Background: The freshwater snail Biomphalaria acts as the intermediate host of Schistosoma mansoni, a globally
important human parasite. Understanding the population structure of intermediate host species can elucidate
transmission dynamics and assist in developing appropriate control methods.

Methods: We examined levels of population genetic structure and diversity in 29 populations of Biomphalaria
choanomphala collected around the shoreline of Lake Victoria in Uganda, Kenya and Tanzania, where S. mansoni is
hyper-endemic. Molecular markers were utilized to estimate the degree to which snail populations are genetically
differentiated from one another.

Results: High levels of snail genetic diversity were found coupled with evidence of geographically-determined
population structure but low levels of local inbreeding. The data are consistent with an effect of schistosome
infection on population structure of intermediate host snails, but other factors, such as habitat and historical
demographic changes, could also be important determinants of the degree of population genetic structure in
Biomphalaria choanomphala.

Conclusions: The low stratification of populations and high genetic diversity indicates potentially less local
compatibility with intermediate snail populations than previously theorized, and highlights the importance of
coordinated parasite control strategies across the region.

Keywords: Biomphalaria choanomphala, Schistosoma mansoni, Population structure, Population genetics
Background
Historically, the nature and dynamics of host-parasite rela-
tionships has attracted much scientific attention. Parasites
of human populations are an area of particular research
interest, given the medical interest in controlling their
transmission. As such, the genetic diversity and population
structure of hermaphroditic Biomphalaria freshwater snails
of the family Planorbidae, which are the obligatory inter-
mediate hosts of the globally important parasitic trematode
of humans, Schistosoma mansoni, have been the subject of
considerable study.
It is known that increased genetic diversity of the host

Biomphalaria population reduces the overall parasite
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transmission rate whereas reduced host genetic diversity
appears to benefit S. mansoni through an overall in-
crease in transmission rate [1-5]. It has also been shown
that schistosome infection in Biomphalaria reduces snail
fitness, but resistance to infection is itself also associated
with reduced offspring production, as often seen in other
planorbids [6]. As such, it has been predicted that the
natural Biomphalaria population structure would result
in a tightly coupled system whereby parasites and snails
co-adapt, resulting in localized compatibility and com-
parable population structures, but also driving local high
diversity [7]. Of course, parasites other than Schistosoma
could equally be implicated in driving diversity in such a
system, as Biomphalaria are known to serve as inter-
mediate hosts for a number of nematode and trematode
worms [8,9].
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Parasites such as S. mansoni are, however, not the only
external factor known to influence their host. Selection
driven by environmental factors, such as seasonality
or habitat type, has also been shown to affect freshwater
snail population differentiation [10-12]. There may also
be anthropogenic influences, for example, removal of
snails as part of disease control programs [13].
B. glabrata and B. pfeifferi are considered two of the

most important intermediate host snail species of S. man-
soni in the New and Old World, respectively, and most
previous work on snail-schistosome population structure
has focused on these species [14]. There are, however,
other regions of the world where intestinal schistosomiasis
is highly endemic, yet transmitted by other Biomphalaria
species [15], and fewer studies have focused on these
intermediate hosts. In this study we investigate the genetic
diversity and population structure of Biomphalaria choa-
nomphala from Lake Victoria, an important lacustrine
environment in East Africa, and a well-known regional
hot spot for transmission of S. mansoni [16-19]. The aim
of the study is to determine the population structure of
Biomphalaria choanomphala in this hyper-endemic re-
gion for schistosomiasis, at a large scale, to better under-
stand factors that may contribute to parasite transmission.

Methods
The degree of population differentiation of Biomphalaria
choanomphala in Lake Victoria was inferred from genetic
variation in two mitochondrial genes (cytochrome oxidase
sub-unit one (COI) and 16S ribosomal RNA (16S)), and
four bi-parentally inherited nuclear microsatellite loci.

Sampling methodology and population selection
Snails were collected from 29 sites around the perimeter
of Lake Victoria, using hand held scoops (Figure 1).
Sampling was semi-quantified, with two collectors each
surveying a 50 m length of shoreline for approximately
20 minutes and collecting all Biomphalaria found. Sites
were selected to ensure an even geographical spread
along the lakeshore, in all three countries and in both
marsh and lake habitats; five localities were specifically
included because they incorporated both habitat types in
close proximity. All sites showed signs of human activity
near the shoreline. In order to compare sites of similar
population density, all sites selected had a high abun-
dance of Biomphalaria, defined as 30 or more individuals
collected, which accounted for the paucity of sites along
the eastern shoreline of the lake in Tanzania, where Biom-
phalaria densities were generally low.
Snails were putatively identified as B. choanomphala

or B. sudanica, based on shell morphology, as these are
the species thought primarily to inhabit Lake Victoria
[15]. However, recent taxonomic work has suggested
that all the Biomphalaria in Lake Victoria can be
considered a single species of which ecophenotypy of
shell form gives rise to the previously considered taxo-
nomic distinctions [20], and thus for the purposes of this
study, individuals were simply classed as being one of
the two morphotypes of B. choanomphala.
All collected snails (in total >30 per site, given the site

selection criteria) were exposed, as a group, to sunlight
for 2–4 hours to check for infection with Schistosoma
mansoni or other parasite cercariae [21]. A random sam-
ple of snails was examined in this way on subsequent
days, to ensure maximum reliability of infection testing.
After shedding, snails were placed in glass tubes con-
taining 95% ethanol solution.

DNA extraction, amplification and sequencing
Genomic DNA was extracted from between 10 and 12 in-
dividuals from each of the selected 29 populations, using a
standard CTAB extraction [22] with a final re-suspension
in pure water. The mitochondrial cytochrome oxidase
sub-unit one (COI) gene and the mitochondrial 16S sub-
unit of the ribosomal RNA gene were amplified using the
Folmer ‘universal’ primers [23] and modified 16ar and
16br primers [24], respectively. The four microsatellite loci
were Bpf1, Bpf2, Bpf3 and Bpf10 [25] – all nine of the
primers described in referenced paper were tested, but
the above four were the only ones which amplified suc-
cessfully and were polymorphic in the Lake Victoria
Biomphalaria choanomphala under examination here.
Mitochondrial (COI and 16S) amplifications were car-
ried out in 25 μl total volume, with 2.5 μl MgCl2
(20 mM concentration), 2.5 μl 5 × buffer, 2.5 μl pre-
mixed dNTPs (20 mM concentration), 1 μl each of for-
ward and reverse primer (10 pmol concentration) and
one unit of TAQ per reaction. Microsatellite reactions
were amplified in 12.5 μl total volume, with half of the
volumes stated above, and with forward primer concen-
tration of 50 pmol and reverse (fluorescently labeled)
primer concentration of 20 pmol. Cycling conditions in
all cases followed published methods [23-25].
Positively amplified products were purified using

Millipore PCR96 Cleanup kits on a vacuum manifold
(Millipore, Billerica, USA) as per manufacturer’s instruc-
tions, using pure water for washing and re-suspension.
Product concentration was quantified on a Nanodrop
ND-1000 Spectrophotometer (Nanodrop Technologies
Inc., Willington, USA), and sequencing reactions were
performed on mitochondrial purified PCR products using
an Applied Biosystems Big Dye Kit (version 1.1) and run
on an Applied Biosystems 3730 DNA Analyzer (Applied
Biosystems, Carlsbad, USA). Microsatellites were diluted
1:10 in HiDiformamide (Applied Biosystems, as above)
and analyzed using an ABI3730 automated sequencer,
using a GeneScan 500 LIZ size standard (both Applied
Biosystems, as above).



Figure 1 Map of the 29 study sites around Lake Victoria. “Single habitat” sites (marked by grey circle) denote an area with a single habitat
(lake or marsh); “Joint habitat” sites (marked by black circle) indicate localities where a marsh and lake habitat were found together, and snails
collected separately from each.
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Population analyses
The overall framework of the population genetics ana-
lyses were designed to examine the population struc-
ture, diversity, demography, phylogeography and spatial
correlations of the B. choanomphala populations sur-
veyed from Lake Victoria [2].
COI and 16S mitochondrial sequences were aligned

using MUSCLE on the web (http://www.ebi.ac.uk/Tools/

http://www.ebi.ac.uk/Tools/msa/muscle/
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msa/muscle/) and edited visually in MacClade v 4 [26].
The aligned sequences were then compared and reduced
to unique haplotypes, and the proportion of each haplo-
type per population was recorded. The 16S data contained
many gap-rich regions, for which it was impossible to be
assured of homology; any region with a gap was therefore
removed from the alignment before calculating genetic
distances amongst sequences. There was only one indel
region in the COI alignment, of a single codon repeat, in
three haplotypes, which was therefore easily alignable and
retained for haplotype analysis.
Measures of population differentiation were calculated

from mitochondrial sequence data using analysis of mo-
lecular variance (AMOVA), F-statistics, mismatch analysis,
Tajima and Fu’s tests for neutrality and a Mantel z-test for
correlation by distance. Each AMOVA was conducted
using “country” as the primary grouping, to investigate the
level of variation partitioned between each country, versus
between populations within each country and within each
population. “Country” was deemed to be a potentially im-
portant geographical factor given that each country in the
region undertakes different levels of schistosomiasis con-
trol initiatives, thus potentially influencing the level of
parasitism experienced by local snails. All tests were exe-
cuted in Arlequin v 3.2 [27].
A distance-based, neighbor-joining tree was created in

Paup* 4.0 [28] for the unique haplotypes that remained
when indels were removed from the alignment from
each gene, using the GTR + gamma model of sequence
evolution, determined to be the most appropriate model
through likelihood testing, also in Paup* 4.0. Median-
joining networks were constructed using Network 4.6
[29] based on the gap-free unique haplotypes.
The number and proportion of private microsatellite

alleles per population was calculated using the web-
based version of Genepop [30]. Calculations of FST and
tests for Hardy-Weinberg equilibrium (through estima-
tion of FIS values per population and per locus) and link-
age disequilibrium amongst loci were also done using
Genepop. The loci were also tested for evidence of pre-
vious bottlenecking events by comparing the allelic di-
versity against the observed and expected heterozygosity,
using the program Bottleneck [31].

Results
In total, over 300 Biomphalaria choanomphala were ana-
lyzed from the selected 29 populations. Both the mitochon-
drial markers and the microsatellites revealed high levels of
genetic variation overall, but also significant population
structuring throughout the lake as described below.

Mitochondrial data
The COI and 16S sequences were very genetically variable
with 127/308 (CO1) and 181/300(16S) unique haplotypes/
total number of sequences respectively. Haplotypes were
not highly divergent (0.002-0.058 pairwise distance for COI
haplotypes and 0.000-0.047 for 16S). GenBank accession
numbers for these datasets are HM769132-HM769258 for
COI and HM768950-HM768980 and HM768982-
HM769131 for 16S. When unalignable regions with gaps
were removed from the analysis of the 16S sequences, the
number of unique haplotypes was reduced from 181 to 64.
Many common haplotypes were spread throughout the
lake, but others were locally restricted and there was high
variation in the haplotype richness of the sites: overall,
intra-site haplotype diversity estimates varied from 0.200-
0.982 for COI and 0.378-1.000 for 16S, where zero indi-
cates complete homogeneity and one indicates maximum
diversity.
Figure 2 shows the geographical distribution of the five

most abundant COI and 16S (“A” and “B”maps in Figure 2,
respectively) haplotypes (without removal of indels) per
population across Lake Victoria, as compared to the fre-
quency of other shared haplotypes and “private” haplotypes
(i.e. haplotypes only observed at one site). The map reveals
patterns of higher and lower haplotype sharing versus
uniqueness within and between localities and countries; for
example, Kenyan sites tended to share haplotypes whereas
Ugandan sites, especially those in the central and western
regions of the lakeshore, had high proportions of private
haplotypes. Maps showing the distribution of all the hap-
lotypes for COI and 16S, plus a full list of haplotype fre-
quencies per site, can be found in the supplementary
information (See Additional file 1: Figure S1, Additional
file 2: Figure S2, Additional file 3: Table S1 and Additional
file 4: Table S2 for COI and 16S respectively).
The phylogenetic trees for COI and 16S (Figure 3) were

consistent, as would be expected from linked loci, and
showed few deep divisions, but several more recent pro-
cesses of divergence. These supported the hypothesis of
geographical structuring, as divergent clades tended to be
made up of haplotypes from the same country, or limited
to two out of the three countries. The networks for each
mitochondrial marker were difficult to analyze visually due
to the large number of haplotypes (See Additional file 5:
Figure S3 for COI and Additional file 6: Figure S4 for 16S).
However there appeared to be evidence of geographical
clustering by country; for both markers, the most abundant
and geographical widespread haplotype (H1 for COI and
H2 for 16S; the network software utilized the gap-free data-
set) was a central node within each respective network.
The majority of the variation, for both the COI and the

16S data, was explained at the population level based on
the analysis of molecular variance (AMOVA), which sought
to determine how diversity was partitioned among and be-
tween the different sites. For these data, all three levels of
structure (intergroup, intragroup and intrapopulation) were
statistically significantly differentiated (see Table 1).

http://www.ebi.ac.uk/Tools/msa/muscle/


Figure 2 Distribution of abundant, shared and private haplotypes around Lake Victoria study sites. “A” shows data for COI haplotypes;
“B” shows data for 16S haplotypes (with gap dataset).
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When pair-wise fixation index (FST) values were calcu-
lated between each of the populations in turn, the ma-
jority demonstrated significant levels of differentiation,
for both types of molecular marker. The range in values
was 0.000-0.921 for COI and 0.000-0.845 for 16S. For the
16S data, all but one of the non-significant FST values were
between sites in the same country, once again demonstrat-
ing geographically defined structuring of the populations
for this gene. All but one paired site showed significant
differentiation between the populations from lake versus
marsh habitat, indicating even small-scale geographical
segregation. Full tables of the pairwise FST values and their
significance can be found in the supplementary informa-
tion (See Additional file 7: Tables S3 and Additional file 8:
Tables S4 respectively for COI and 16S).
All of the populations conformed to the assumptions of

the neutral hypothesis, as tested for by Tajima’s D statistic
for the 16S data; one population, T001, deviated signifi-
cantly (p <0.001) from assumptions of normality when the
COI data was analyzed. However, this population also had
a significant result for the sum of squares mismatch ana-
lysis (p <0.001), suggesting that demographic change, such
as population expansion, may have biased the neutrality
test. No other populations, for either marker, came out as
significant in the mismatch analysis.
The relationship with geography was elucidated through

the significance of the Mantel z-test for both the COI and
16S data (p =0.001, for both), meaning that the genetic
and geographical distances between the populations was
positively correlated; in other words, sites closer together
were more likely to be genetically similar, even if the
composition of distinct haplotypes differed per site (as
seen in Figure 3 and Additional file 1: Figure S1). This
demonstrated an overall relationship between genetic dif-
ferentiation and geographic distance, on top of the local-
ized differentiation already described, such as between
marsh and lake habitats (Additional file 5: Figure S3 and
Additional file 6: Figure S4).

Microsatellite data
The microsatellite data were tested for departures from
Hardy-Weinberg equilibrium (HWE), linkage disequilib-
rium and for an excess of heterozygosity relative to allelic
diversity, which would be consistent with populations hav-
ing recently passed through a bottleneck.
As with the mitochondrial data, based on an AMOVA,

the majority of the variation in microsatellite genotype
was explained at the population level; values of differen-
tiation at the intragroup and intrapopulation were both
highly significant (explaining 10.55% and 89.13% of the
total variation observed, respectively: Table 2). Much less
variation was explained between country-level groups
for the microsatellite data (0.31%) than for either of the
mitochondrial genes, but instead there was a larger pro-
portion of diversity within populations (>89%). Pairwise
FST values ranged from 0.000-0.298, but fewer values were
significant between populations, compared to the mito-
chondrial data. The full matrix of pairwise FST values and
their significance can be found in the supplementary infor-
mation (Additional file 9: Table S5). Supporting the FST



Figure 3 Neighbor-joining trees of COI (“A”) and 16S (“B”) data. The level of bootstrap support is indicated by the color of the circle on the
node; only support values >50% are shown.
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values in suggesting low gene flow between populations,
17 out of the 28 populations with microsatellite data had
private alleles at one or more loci, and the proportions of
private alleles across all populations and alleles was highly
significant (Fisher’s method, p = <0.001). The microsatel-
lite data also supported the mitochondrial evidence for
genetic spatial autocorrelation, as the Mantel z-test was
significant (p = 0.017).
Intrapopulation tests however showed low levels of in-

breeding within populations, based on the calculations of
FIS values per locus as well as across all loci. FIS values,
across all loci, per population, ranged from −0.186 to
0.168 (Table 3), with a mean value across all populations
of 0.019, indicative of random mating. More generally, all
populations conformed to the assumptions of HWE in
terms of observed and expected heterozygosity, supporting
the hypothesis that there are low levels of selfing.
There was also no evidence for linkage disequilibrium

between the loci, suggesting that the alleles considered
are not closely associated in the genome and are mixing
randomly during gamete production. Four populations
(K013b, T001, T027b and U028), when tested for



Table 1 Analysis of molecular variance (AMOVA) results for COI and 16S data

Source of variation Degrees of freedom Sum of squares Variance
components

Percentage
of variation

p-value

COI sequences

Among countries 2 173.35 0.6646 12.75 < 0.0001

Among populations, within countries 26 512.68 1.5774 30.26 < 0.0001

Within populations 279 829.10 2.9717 57.00 < 0.0001

Total 307 1515.12 5.2137 100.00

16S sequences

Among countries 2 155.88 0.5893 10.00 < 0.001

Among populations, within countries 26 524.77 1.5935 27.04 < 0.0001

Within populations 271 1005.55 3.7105 62.96 < 0.0001

Total 299 1686.20 5.8933 100.00
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evidence of a past bottleneck, showed heterozygote excess
(p = 0.031 for all four), but this value was not signifi-
cant once the Bonferroni correction for multiple tests
was applied.

Discussion
Population structure of Biomphalaria choanomphala in
Lake Victoria
The populations studied here were characterized by high
intrapopulation diversity as well as high levels of popula-
tion structure, with low levels of gene flow as inferred
from molecular data and negligible inbreeding. High di-
versity is consistent with what would be expected if para-
sitism were strongly influencing population structure [3,7],
and the low FIS values and apparent random mating ob-
served here further supports this hypothesis. The snails
collected for this research were examined for infection
with schistosomes and other parasites in the field as part
of a different study; however, without more accurate and
consistent methods such as molecular probes [32] for the
detection of infected snails (and indeed, infection with po-
tentially more than one parasite species [33]) and infected
snail populations, it is difficult to determine whether para-
sitism is indeed a key driver of population structure in this
system. Similarly, future studies should seek to use genetic
markers which are known to correlate to parasite resist-
ance or susceptibility, which were not available when this
study was conducted, but have since been identified in sev-
eral studies [34,35]. Even so, the challenges of modifying
Table 2 Analysis of molecular variance (AMOVA) results for m

Source of variation Degrees of freedom S

Microsatellite data

Among countries 2 9

Among populations,
within countries

23 8

Within populations 286 4

Total 311 5
markers for use on field populations of less well-studied
African Biomphalaria remain.
We would also expect parasite populations to adapt to

local snails, thus mirroring to some extent their popula-
tion structure. We used a Mantel test [36] to compare
the population structure of B. choanomphala from the six
sites from which there were published data on schistosome
population structure [19], and found no correlation. Not-
withstanding the limitation of the small number of sites,
this conforms to other studies where parasite populations
were much less differentiated than those of the intermedi-
ate host, suggesting local compatibility in this context is be-
ing overshadowed by other factors such as high parasite
migration [36,37]. Definitive host migration has been put
forward as a factor that might homogenize parasite popula-
tions across a wide area, and this is compatible with the
Lake Victoria context, where human populations are
known to move widely throughout the region [18].

Role of other factors influencing population structure
Given the possibility of parasitism as a driver for population
structure in Lake Victoria snail populations, it is important
to consider what other factors might be influential in this
system, and particularly how these differ from previous
studies of Biomphalaria in other settings. Such consider-
ations link back to parasitism, and particularly control of
schistosomiasis in human populations, in terms of gaining
a better understanding of drivers for distribution and abun-
dance of host snails under different conditions. Studies of
icrosatellite data

um of squares Variance components Percentage
of variation

p -value

.51 0.0057 0.31 0.237

8.36 0.1900 10.55 < 0.0001

59.05 1.6051 89.13 < 0.0001

56.93 1.8008 99.99



Table 3 Diversity estimates per site for COI, 16S and microsatellite data

Site General information COI sequences 16S sequences Microsatellite data

Shedding Habitat Gene diversity Nucleotide diversity Gene diversity Nucleotide
diversity

Average
gene div.

Private alleles FIS

K001a N Marsh 0.836 0.005 0.746 0.005 0.885 0.000 −0.010

K002a N Marsh 0.712 0.001 0.978 0.011 0.878 0.029 −0.001

K006a N Marsh 0.855 0.014 0.500 0.005 0.790 0.079 −0.077

K006b N Lake 0.889 0.026 1.000 0.043 0.843 0.000 0.119

K013b N Lake 0.909 0.014 0.879 0.012 0.710 0.139 0.025

K020b N Lake 0.933 0.004 0.800 0.006 0.825 0.000 0.083

K029 N Lake 0.818 0.015 0.583 0.004 0.828 0.000 0.034

T001 Y Marsh 0.978 0.017 0.867 0.017 0.754 0.016 −0.186

T011 N Lake 0.927 0.009 0.933 0.016 0.738 0.015 0.073

T016 N Marsh 0.964 0.016 0.727 0.008 0.743 0.000 −0.077

T026a N Marsh 0.964 0.009 0.891 0.005 0.636 0.019 −0.112

T027a N Marsh 0.782 0.010 0.923 0.018 0.848 0.014 −0.180

T027b N Lake 0.733 0.003 0.956 0.033 0.735 0.050 0.038

T033a N Marsh 0.778 0.002 0.711 0.014 0.738 0.000 0.026

T033b Y Lake 0.778 0.004 1.000 0.021 0.758 0.014 0.134

T036a N Marsh 0.618 0.008 0.818 0.016 0.744 0.013 0.092

T040 N Lake 0.727 0.003 0.978 0.011 0.803 0.033 0.168

T064a N Marsh 0.491 0.002 0.889 0.022 0.783 0.000 0.112

U005 N Lake 0.864 0.011 0.982 0.027 0.819 0.013 0.101

U012 N Marsh 0.639 0.010 0.911 0.020 0.845 0.000 0.058

U020 N Marsh 0.756 0.006 0.583 0.007 0.806 0.028 0.116

U021 N Marsh 0.844 0.015 0.378 0.002 0.754 0.000 −0.119

U023a N Lake 0.644 0.004 0.978 0.033 0.818 0.000 −0.039

U023b Y Marsh 0.346 0.004 1.000 0.028 0.878 0.016 0.109

U028 Y Lake 0.200 0.000 1.000 0.025 0.857 0.015 0.014

U030b N Marsh 0.982 0.016 0.982 0.028 0.877 0.000 −0.104

U030c N Lake 0.473 0.002 0.844 0.014 NA NA NA

U037 Y Lake 0.836 0.005 0.978 0.019 0.833 0.012 0.091

U046 N Lake 0.712 0.001 1.000 0.030 0.868 0.025 0.050

Information on infection status with schistosomes and the habitat type are also given. “N” stands for “No” and “Y” represents “Yes”. “div.”stands for diversity and
“FIS” indicates the inbreeding co-efficient.
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B. pfeifferi in Madagascar, for example, revealed high
levels of interpopulation variation but, in contrast to
what we observed here, consistently low levels of intra-
population genetic differentiation [11]. This was ex-
plained as being due to the combination of low levels of
migration combined with habitat stochasticity; B. pfeif-
feri are also known to be frequent in-breeders, which
would assist in maintaining a metapopulation with sea-
sonal local extinction events [38].
In contrast, Lake Victoria possesses very different en-

vironmental conditions; as a very large, permanent lake,
it rarely experiences the kind of environmental pertur-
bations that characterize temporally transient ponds
and streams. Such homogeneity of habitat, with associ-
ated infrequent extinctions and opportunity for genetic
drift, could account for the high levels of intrapopula-
tion diversity that are maintained in Lake Victorian B.
choanomphala [2]. This applies mainly to the lake habi-
tats; indeed, this study showed significantly lower
levels of gene and nucleotide diversity in the marsh
habitats. However, in both lake and marsh populations,
the tests for bottleneck events were uniformly negative,
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suggesting that sudden demographical events are not
overwhelmingly contributing to the patterns of diver-
sity of Lake Victoria Biomphalaria.

Effect on transmission of intestinal schistosomiasis
Although the low population structure in S. mansoni ob-
served previously in this region counters the hypothesis
of highly specialized local parasite compatibility [19] for
both host and parasite, certain B. choanomphala haplo-
types were widespread around the lake. This suggests that,
as seen in B. pfeifferi from elsewhere in Africa, there may
be a risk of transmissive genotypes becoming widely suc-
cessful, if there is selection for traits independent of para-
site susceptibility [39].
Another factor to consider is human-mediated

changes to parasite populations: all three countries bor-
dering Lake Victoria have initiated efforts to control
schistosomiasis in human populations through mass
treatment campaigns, although these initiatives are not
synchronized and differ in their degree of coverage.
The low levels of population structuring seen in the
parasite [19] are likely a function of high terminal host
migration and rapid dispersal of the parasite into novel
localities [36,40]; if some populations of S. mansoni ex-
perience more intense selection pressure based on fre-
quent mass drug administration campaigns, and given
the generally transmissive snail populations, there is a
risk that these highly adapted forms of S. mansoni will
be able to spread rapidly throughout the region. This
emphasizes the need for coordinated control strategies,
both at the level of human treatment as well as im-
proved water access and sanitation, throughout lake-
shore communities in the region.

Conclusions
In summary, our analysis observed high genetic diver-
sity of B choanomphala snails, yet also high population
structuring; the high levels of observed inter- and in-
trapopulation diversity are consistent with parasitism
as an influencing factor, but further investigation is
needed, utilizing new tools to detect infection and new
markers directly associated with resistance or suscepti-
bility, in order to confirm the role of parasitism in driv-
ing high diversity in this system. Moreover, other
factors, such as environmental and demographical sta-
bility may also contribute to the observed population
structure. From a public health perspective, population
genetic surveys of intermediate hosts should seek to
increase the scale of their focus, as parasite transmis-
sion is likely influenced by factors, such as human mi-
gration and national treatment campaigns, that act on
a national or even regional level. Public health initia-
tives should take such issues of scale into consideration
when designing control strategies.
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