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Abstract

Background: Codon usage bias is an important evolutionary feature in a genome and has been widely documented
in many genomes. Analysis of codon usage bias has significance for mRNA translation, design of transgenes, new gene
discovery, and studies of molecular biology and evolution, etc. However, the information about synonymous codon
usage pattern of T. saginata genome remains unclear. T. saginata is a food-borne zoonotic cestode which infects
approximataely 50 million humans worldwide, and causes significant health problems to the host and considerable
socio-economic losses as a consequence. In this study, synonymous codon usage in T. saginata were examined.

Methods: Total RNA was isolated from T. saginata cysticerci and 91,487 unigenes were generated using lllumina
sequencing technology. After filtering, the final sequence collection containing 11,399 CDSs was used for our analysis.

Results: Neutrality analysis showed that the T. saginata had a wide GC3 distribution and a significant correlation
was observed between GC12 and GC3. NC-plot showed most of genes on or close to the expected curve, but only
a few points with low-ENC values were below it, suggesting that mutational bias plays a major role in shaping
codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also
identified twenty-three optimal codons in the T. saginata genome, all of which were ended with a G or C residue.
These results suggest that mutational and selection forces are probably driving factors of codon usage bias in

T. saginata genome. Meanwhile, other factors such as protein length, gene expression, GC content of genes, the
hydropathicity of each protein also influence codon usage.

Conclusions: Here, we systematically analyzed the codon usage pattern and identified factors shaping in codon
usage bias in T. saginata. Currently, no complete nuclear genome is available for codon usage analysis at the
genome level in T. saginata. This is the first report to investigate codon biology in T. sagninata. Such information
does not only bring about a new perspective for understanding the mechanisms of biased usage of synonymous
codons but also provide useful clues for molecular genetic engineering and evolutionary studies.
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Background

Codon usage bias (CUB) refers to the phenomenon where
synonymous codons are not used with equal frequencies
during translation of genes. CUB is a common phenomenon
in a wide variety of organisms, including prokaryotes and
eukaryotes [1-3]. Many factors have been reported to in-
fluence codon usage in various organisms. Weak natural
selection and mutational pressure are thought to be the
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main factors that account for the codon usage variation
among the genes in these organisms [4]. Genome-wide in-
vestigations of codon usage patterns has an immense im-
portance in understanding the basic features of molecular
organization of a genome. In addition, analysis of CUB
has many other important applied aspects, such as heter-
ologous gene expression [5], the determining of the ori-
gins of species [6], the design of degenerate primers [7],
the prediction of expression level of genes [8,9], as well as
the prediction of gene functions [10]. However, most of nu-
merous reports on CUB have focused on model organisms
and many microorganisms, such as Caenorhabditis, Dros-
ophila, Arabidopsis [11], yeast [12], Giardia lamblia [13],
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Entamoeba histolytica [14], Streptomyces [15], Borrelia
burgdorferi [16], and Saccharomyces cerevisiae [17]. For
example, in C. elegans it is observed that most favored co-
dons are ended with G and/or C (majority are C ending)
[18]. In contrast, there are few studies on tapeworms. 7.
saginata is an important parasitic tapeworm which is
widely distributed in the world [19]. The adult worms
mainly parasitize in the small intestines of humans [20,21].
T. saginata can cause great economic losses and endangers
public health [22,23]. However, the information about syn-
onymous codon usage pattern of 7. saginata remains un-
clear. In this study, we investigated the codon usage profile
of T. saginata through transcriptome data using a multi-
variate statistical analysis. Analysis of codon usage pattern
in T. saginata would provide a basis for understanding the
related mechanism for biased usage of synonymous co-
dons and for choosing appropriate host expression systems
for an optimized expression of target genes.

Methods

Ethics statement

This study was approved by the Animal Ethics Committee of
Lanzhou Veterinary Research Institute, Chinese Academy of
Agricultural Sciences (Approval No. LVRIAEC2009-2012).
The cattle from which Taenia saginata cysticerci were
collected for transcriptome sequencing, were handled in
accordance with good animal practices required by the
Animal Ethics Procedures and Guidelines of the People's
Republic of China.

RNA extraction, cDNA library preparation and lllumina
sequencing

Total RNA was extracted from cysticerci using the Trizol
reagent (Invitrogen, Carlsbad,CA), following the manufac-
turers instructions. The quantity and quality of total RNA
was analyzed using Agilent 2100 RNA Nanochip (Agilent,
Santa Clara, CA, USA) and gel electrophoresis. A total of
16.1 pg of RNA was pooled for the preparation of the
¢DNA library.

The OligoTex mRNA mini kit (Qiagen) was used to
poly-T+ RNA after total RNA was collected according
to the manufacturers protocol. The mRNA was mixed
with fragmentation buffer and fragmented into short
fragments. cDNA was synthesized using the mRNA
fragments as templates. Short fragment (200 + 25 bp)
were gel extracted from an agarose gel and PCR amplified
for 15 cycles. Finally, the library was sequenced using the
[lumina HiSeq 2000 sequencer (Beijing Genomics Institute,
BGI, Shenzhen, Guangdong, China).

De novo assembly

Using Solexa/Illumina RNA-seq deep sequencing tech-
nology, we obtained a total of 55.49 million raw reads
(4.99 Gb). Further, raw reads were filtered to remove the
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low-quality reads. The filtration steps were as follows: 1)
remove adaptor sequence; 2) remove reads containing the
unknown nucleotide “N” over 10%; 3) remove low quality
reads containing more than 10 bases with Q-value < 20.
Then, the remaining high-quality reads were used for fur-
ther analysis. Transcriptome raw reads dataset has been
submitted to the NCBI (http://www.ncbi.nlm.nih.gov/
bioproject/PRINA260140).

Sequence data

In this study, a total of 91,487 T. saginata unigenes were
obtained. Based on a sequence similarity with known pro-
teins, a total of 59,262 unigenes were annotated. Up to
57,607 of which were annotated against the NCBI non-
redundant (Nr) protein database, 24,860 were assigned
to the protein database Clusters of Orthologous Groups
(COQ), 26,476 were assigned to the term annotation data-
base of Gene Ontology (GO), and 43,575 were assigned to
200 pathways in the database of Kyoto Encyclopedia of
Genes and Genomes (KEGG). Among the annotated uni-
genes, 61,941 coding sequences (CDS) were obtained by
the BLASTx algorithm [24]. All CDSs were analyzed using
the FrameDP software [25], which has the ability to self-
train directly on EST clusters instead of requiring curated
c¢DNA sets to train the underlying ESTScan and DE-
CODER software [26].

To minimise the sampling error, only CDS sequences
longer than 300 bp were used for this study. The final
sequence collection containing 11,399 CDSs was used
for our analyses.

Indices of codon usage

Codon usage in these genes was assessed using the pro-
gram codonW 1.4.4 (J Peden, http://codonw.sourceforge.
net). Relative synonymous codon usage (RSCU) is the ob-
served frequency of a codon divided by the frequency ex-
pected, if all synonyms for that amino acid were used
equally [27]. Thus, RSCU values close to 1.0 indicate lack
of bias whereas values more than 1 indicates that a codon
was used more frequently than expected, while the con-
verse is true for RSCU values less than 1. The effective
number of codons (ENC) method was used to quantify the
absolute codon usage bias of a CDS [28]. The values of
ENC range from 20 (when only one codon is used per
amino acid) to 61 (when all codons are used in equal prob-
ability). The predicted values of ENC were calculated as

29
ENC =2 _—
s s2 4 (1-s?)
where s represents the given (G + C)3; % value [28].

To determine the preferred codon for each synonym-
ous codon group, the ‘relative synonymous codon usage’
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RSCU values were calculated according to the formula
of previous reports [27].

gj .
ni )

> gij
j

where gij is the observed number of the ith codon for
jth amino acid which has #; type of synonymous codons.
The codon with RSCU value more than 1.0 has positive
codon usage bias, while the value <1.0 has relative nega-
tive codon usage bias. When RSCU value is equal to 1.0, it
means that this codon is chosen equally and randomly.
The GC content of first, second and third codon pos-
ition (GC1, GC2 and GC3 respectively) were then calcu-
lated. GC12 is the average of GC 1 and GC2, and was
used for analysis of neutrality plots (GC12vsGC3) [29].
The codon adaptation index (CAI) was used to estimate
the extent of bias toward codons that were known to be
preferred in highly expressed genes. A CAI value is between
0 and 1.0, and a higher value means a likely stronger codon
usage bias and a potential higher expression level [30].

RSCU =

Correspondence analysis(CA)

Correspondence analysis (CA) has been widely used to
explore codon usage variation among genes. CA is a so-
phisticated multivariate statistical technique in which
the codon usage data (59 codons) are plotted in a multi-
dimensional space of 59 axes (excluding Met, Trp and
stop codons) and then it identifies the axes which repre-
sent the most prominent factors contributing to variation
among genes [31,32].

Determination of optimal codons

We selected 5% of the total genes with extremely high
and low CAI values which were regarded as the high
and low expression genes datasets, respectively. Codon
usage was compared using Chi squared contingency test
of the two groups, and codons whose frequency of usage
were significantly higher (P <0.01) in highly expressed
genes than in genes with low level of expression would
be defined as the optimal codons [33].

Statistical analysis

CodonW 1.4.4 software was used to analyze the indices
of codon usage. Correlation analysis was carried out
using the Spearman’s rank correlation analysis method
wrapped in the multianalysis software SPSS version 19.0.

Results

Codon usage in T. saginata

The pattern of synonymous codon usage in the 7. saginata
has been shown in Table 1. The genomic G + C content for
T. saginata is 43.61%. Although the genome would thus
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appear to be slightly A+ T rich, overall codon usage is
biased toward C- and G-ending codons (32 codons were
frequently used codons, 18/32 of the frequently used co-
dons end with G or C), suggesting the compositional con-
straints are not the most important factor in shaping the
codon usage variation among the genes.

In general, the pattern of codon usage is similar among
closely related organisms, but differs significantly among
distantly related species, such as Escherichia coli, Saccha-
romyces cerevisiae and Drosophila melanogaster [34]. In
this study, patterns of codon usage are compared in 7.
saginata and T. pisiformis (Table 1) [35], and we found
that there are high similarities between them. With the ex-
ception of UCA and GGA, the two species have the same
preferred codon for all amino acids.

Nucleotide content of genes

The GC content of the T. saginata genes varied from
31% to 80.2% with a standard deviation(SD) of 3.67. The
GC content of 11399 genes were mainly distributed be-
tween 45% and 55% (Figure 1), this distribution pattern
of genes is very similar to T. pisiformis [35]. To under-
stand the nucleotide distribution, we concatenated all
genes to one sequence, which comprised 532,4389 codons.
The GC content in 3 codon positions (GC1, GC2, and
GC3) was 0.534, 0.439, and 0.535, respectively. This ana-
lysis showed that the GC content at second position is dif-
ferent from the GC content at the first and third position.
GC1 was extremely close to GC3, and GC2 was the lowest
of all 3 codon positions. The average GC content of all co-
dons was 0.503.

Neutrality analysis is a useful way to revealing the rela-
tionship between GC12 and GC3 and then examining the
mutation-selection equilibrium in shaping the CUB. In
neutrality plot, if the correlation between GC12 and GC3
is statistically significant and the slope of the regression
line is close to 1, mutation bias is assumed to be the main
force shaping codon usage. Conversely, selection against
mutation bias can cause a narrow distribution of GC con-
tent and no correlation between GC12 and GC3 [29,36].
To analyze relations among the three codon positions,
neutrality plots (GC12 versus GC3) were performed for T.
saginata. It was observed that T. saginata genes had a
wide range of GC3s (0.7 to 98.40) and there is a significant
correlation between GC12 and GC3 (r = 0.123, p <0.01)
(Figure 2), suggesting mutation and selection are probably
both acting to codon usage bias in T. saginata genome. In
addition, the significantly positive correlation in neutrality
plots indicated intragenomic GC mutation bias affects the
GC content at all codon positions in a similar manner.

Relation between ENC and GC3
To understand the relation between nucleotide compos-
ition and codon bias of T. saginata sequences, the values
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Table 1 Codon usage in T. saginata and T. pisiformis
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T. saginata T. pisiformis T. saginata T. pisiformis
AA Codon N RSCU N RSCU AA Codon N RSCU N RSCU
Phe uuu 99671 097 33874 093 Ser ucu 89398 .11 26049 1.12
uuc 106107 1.03 39075 1.07 ucc 97503 1.21 27379 118
Leu UUA 38856 045 12571 041 UCA 82438 1.02 23335 1
UuG 97522 113 33937 1.12 UCG 72259 09 21063 09
Ccuu 107259 1.24 39632 13 Pro ccu 85183 1.1 25765 112
Ccuc 119595 138 41428 1.36 ccc 79819 1.03 23072 1.01
CUA 52511 061 17904 0.59 CCA 88760 1.14 26002 1.13
CUG 103594 12 36893 1.21 CCG 56540 0.73 16969 0.74
lle AUU 109448 13 41232 1.32 Thr ACU 88533 1.13 29031 117
AUC 96607 1.15 36117 1.16 ACC 89404 1.14 27437 1.11
AUA 47039 0.56 16259 0.52 ACA 77048 0.98 23542 0.95
Met AUG 113948 1 ACG 58709 0.75 18939 0.77
Val GUU 95565 1.12 35811 1.19 Ala GCU 122134 1.21 45524 13
GUC 85970 1 29881 0.99 GCC 111542 1.1 38284 1.09
GUA 45908 0.54 16165 0.54 GCA 95661 0.95 31761 091
GUG 115101 134 38575 1.28 GCG 73950 0.73 24715 0.7
Tyr UAU 55514 0.81 21083 0.81 Cys uGu 55868 0.99 17870 0.96
UAC 81868 1.19 30723 1.19 UGC 57522 1.01 19338 1.04
His CAU 62791 0.95 21227 097 Arg CGU 74482 133 26854 142
CAC 68855 1.05 22602 1.03 CGC 67662 12 24579 13
Gln CAA 102281 0.96 32614 092 CGA 67187 12 22254 118
CAG 110043 1.04 38283 1.08 CGG 41070 073 13883 0.74
Asn AAU 111522 1.07 38069 1.05 Ser AGU 76215 0.94 21586 093
AAC 97493 093 34636 0.95 AGC 66542 0.82 20367 0.87
Lys AAA 115265 092 41472 0.88 Arg AGA 44857 0.8 13883 0.74
AAG 135856 1.08 52821 112 AGG 41815 0.74 13184 0.7
Asp GAU 147181 1.1 54522 1.1 Gly GGU 108511 138 36512 1.36
GAC 120957 09 44541 09 GGC 86502 1.1 30139 1.12
Glu GAA 152714 091 56449 093 GGA 76898 0.98 27580 1.03
GAG 181548 1.09 65410 1.07 GGG 41741 0.53 13277 049

N: the number of codons; RSCU: Relative synonymous codon usage. The frequently used codons are displayed in bold.

of ENC were plotted against the fraction of GC at the
third codon position (GC3s) (Figure 3) [28]. The ENC
values of different genes ranged from 21.0 to 61, indicat-
ing that there are significant differences in codon bias
among these genes. From Figure 3 it is obvious that a
very considerable proportion of points lies near to the
expected curve, which indicates that ENCs of most
genes were close to the expected values based on their
GC3s. Meanwhile, there are also some points with low
ENC lying below the expected curve suggesting these
genes have additional codon usage bias that is inde-
pendent of GC3s. To obtain a more accurate estimate
for the difference observed and expected ENC values,
we calculated (ENCexp-ENCobs)/ENCexp. The frequency

distributions of (ENCexp-ENCobs)/ENCexp are shown
in Figure 4. Interestingly, the peak located in 0-0.05
of (ENCexp-ENCobs)/ENCexp value and most genes
have -0.05-0.1 of (ENCexp-ENCobs)/ENCexp values indi-
cating that most genes have ENC:s slightly difference with
expected ENC values from their GC3s. These results sug-
gest that most genes have observed ENCs close to the ex-
pected ENC based on GC3s, though a significant number
has much lower observed ENCs.

Correspondence analysis

In this thesis, we further investigate the synonymous
codon usage variation among genes of T. saginata by
correspondence analysis in RSCU. The first two axes
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Figure 1 The distribution of G+ C contents in Taenia
saginata genes.

explain low fractions of the total variation(6.6%and 4.9%,
respectively), and the next two axes accounts for 4.1%
and 3.3%, respectively. The plot of the first and second
axis of each gene is shown in Figure 5A. The distance
between genes on the plot is a reflection of their diver-
sity in RSCU. To investigate the effect of GC content of
genes on codon usage bias, different GC contents of
genes are color coded. The genes, GC content of which
is more than or equal to 60%, are plotted in green, and
less than 45% is plotted in red. Blue dots indicate the
genes which the GC content is between 45 and 60%. In
Figure 5A, the high and low GC content of genes separ-
ate along the primary axis. Correspondence analysis
shows the distribution of genes in the multidimensional
space, and also shows the corresponding distribution of
synonymous codons (Figure 5B). Figure 5B shows the
separation of different bases ending codons along the
two axes. The separation of codons on the first axis ap-
pears to be largely due to frequency differences in G/C
and A/T ending codons. Further calculations revealed a
significant correlation (r = 0.6573, P <0.0001) between

1.0p.

GC12

0.0 0.2 04 0.6 0.8 1.0

GC3s
Figure 2 Neutrality plots (GC12 vs GC3s).

e L " M a M
0.0 0.2 0.4 0.6 0.8 1.0
GC3s
Figure 3 Distribution of effective number of codons (ENC) and
GC3s of Taenia saginata genes. The solid line (shown in green)

indicates the expected ENC value if the codon bias is only due
to GC3s.

the GC content of individual genes and their positions
on the first axis. In addition, the gene positions on axis 1
were strongly correlated with the GC3s value (r = 0.8253,
P <0.0001) and significantly negatively correlated with
ENC (r = -0.2322, P <0.0001). From the above results, we
found that genes with higher GC and GC3s content
values and lower ENC values, which located at the left
side of the first axis, indicated a stronger codon bias. This
proved that the major factor influencing the codon usage
bias among Taenia saginata genes was the nucleotide
composition of the genes.

In order to analyze the codon usage of different kinds
of gene, we selected the hydrophobic genes with gene
scores >5, the aromatic genes with gene scores =0.15,
ribosomal genes and other genes from 11399 genes. The
distribution of the four types of genes were shown in
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Figure 4 The frequency distribution of effective number of
codons (ENC) ratio.
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Figure 5 Correspondence analysis of relative synonymous codon usage for Taenia saginata genes. A. The distribution of genes is shown
along the first and second axes. Green, blue and red dots indicate genes with G + C content more than or equal to 60%, more than or equal to
45%, but less than 60% and less than 45%, respectively. B. The distribution of codons on the same two axes as shown in Panel A. Codons ending
with A and T are shown in red, Codons ending with C and G are shown in green. C. Red dots, yellow dots, green triangles and blue dots
indicate ribosomal genes, genes with a Aromo value more than or equal to 0.15, genes with a Gravy value higher than 5 and other

Figure 5C. We employed a multivariate analysis of vari-
ance (MANOVA) and found that there was a statistically
significant difference among four types of genes in codon
usage (p < 0.01).

PR-bias plot

If mutation bias is the cause of codon bias, GC or AT
should be used proportionally among the degenerate
codon groups in a gene. In contrast, natural selection for
codon choice would not necessarily cause proportional
use of G and C (A and T) [37]. To investigate whether

these biased codon choices are restricted in highly
biased genes, the relation between G and C content and
between A and T content in four-fold degenerate codon
families were analyzed by PR2 bias plot (Figure 6). The
four-codon amino acids are alanine, arginine (CGA,
CGT, CGG, CGQ), glycine, leucine (CTA, CTT, CTG,
CTC), proline, serine (TCA, TCT, TCG, TCC), threo-
nine, and valine. Our results showed that C and T were
used more frequently than G and A in T. saginata. This
observation indicated that both mutation bias and other
factors (eg. selection) contribute to codon bias.
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Figure 6 PR2-bias plot [A3/(A3 + T3) against G3/(G3 + C3)]. Red
open circle indicate the average position for each plot. Average
position is x = 04384 + 0.09663, y = 0.438562 + 0.09486.

A\

0.8 1.0

Gene expression level and synonymous codon usage bias
Codon adaptation index (CAI) has been extensively used
as a predictor of gene expression level [8,9]. The set of
reference sequences used for calculating CAI values in
this study are genes that encode ribosomal proteins. The
expression level of genes of T. saginata was assessed
through CAI values, which varied from 0.055 to 0.952
with a mean value of 0.22 and a standard deviation of
0.03504-. It was found that there was a significantly nega-
tive correlation between the gene expression level
assessed by CAI value and ENC values (r = -0.1808 and
p<0.0001) (Figure 7), and three significantly positive
correlations between CAI value and GC3s, GC content
and the positions of genes along axis 1 (r = 0.2437,
0.1009 and 0.4211, respectively, P <0.0001). The results
indicated that the genes with higher expression level had
a greater degree of codon usage bias and prefer the co-
dons with C or G at the synonymous position.

-
=]
T

0 1 1 L 1 J
0.0 0.2 0.4 0.6 0.8 1.0

CAl

Figure 7 Plot of ENC versus gene expression level for
Taenia saginata.
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Protein length and synonymous codon usage bias

The results of correlation analyses between protein
length and axis 1 coordinates, ENC and CAI values
showed that the 3 correlation coefficients (r=-0.1163,
0.1433 and —-0.081, respectively, P < 0.01) all significantly
correlated (Figure 8), which suggested a general tendency
of more biased genes with shorter length to have higher
expression level.

Effect of the hydrophobicity and aromaticity of encoded
protein on codon bias

Numerous studies have shown that hydrophobicity and
aromaticity of encoded protein play important roles in
shaping codon usage of some species. In order to investi-
gate if the same thing is happening to T. saginata, we per-
formed a correlation analysis to evaluate whether Gravy
and Aromo values were related to ENC values. The correl-
ation analyses between the hydrophobicity of each protein
and ENC value showed that the correlation coefficients
(r=-0.0883, P <0.001) were significantly correlated. The
aromaticity of each protein was not significantly correlated
with ENC (r =0.0097, P > 0.05). The analysis results indi-
cated that variation in codon usage were associated with
the degree of hydrophobicity, but not with the aromatic
amino acids .

Optimal codons

The average RSCU values of high/low expressed gene sam-
ple group are listed in Table 2. Twenty-three codons were
determined to be the optimal codons, which were sig-
nificantly more frequent among the highly expressed
genes (P <0.01) according to the chi-square test. Almost
all of optimal codons (except GGU and CGU) ended with
G or C, indicating that codon usage in T. saginata was
biased to G- or C-ending synonymous codons.

4000 6000 8000 10000

Protein Length

c L
0 2000

Figure 8 Plot of ENC versus protein length for Taenia saginata.
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Table 2 Translational optimal codons of T. saginata
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AA Codon High RSCU(N) Low RSCU(N) AA Codon High RSCU(N) Low RSCU(N)
Phe uuu 0.69 (2341) 1.23 (3032) Ser ucu 0.80 (1672) 1.26 (2823)
yuc 1.31 (4441) 0.77 (1907) uce 1.51 (3157) 0.87 (1951)
Leu UUA 0.20 (540) 0.90 (1844) UCA 0.74 (1540) 1.32 (2967)
uuG 0.96 (2598) 1.35 (2759) ucG* 6 (2216) 0.79 (1772)
Cuu 0.95 (2570) 1.34 (2750) AGU 0.85 (1770) 1.03 (2318)
cucr 1.97 (5332) 0.79 (1628) AGC* 1.03 (2150) 0.73 (1640)
CUA 041 (1099) 0.74 (1516) Pro ccu 091 (1919) 1(2292)
cuG* 1.52 (4118) 0.88 (1804) ccex 1.32 (2776) 0.74 (1399)
lle AUU 1.02 (2797) 143 (3065) CCA 0.89 (1875) 145 (2734)
AUC* 1.61 (4442) 0.78 (1677) CCG 0.87 (1821) 0.60 (1139)
AUA 0.37 (1025) 0.79 (1702) Thr ACU 0.96 (2294) 1(2521)
Met AUG 1.00 (4032) 1.00 (3118) ACC* 149 (3545) 083 (1731)
Val GUU 0.67 (1925) 140 (2912) ACA 0.70 (1678) 1.25 (2607)
GUC* 1.14 (3248) 0.79 (1635) ACG 0.85 (2015) 1 (1486)
GUA 0.37 (1061) 0.77 (1598) Ala GCU 1.00 (3271) 1(3013)
GUG* 1.82 (5203) 1.05 2177) GCC* 1.38 (4515) 0.80 (1840)
Tyr UAU 0.50 (1151) 3 (1851) GCA 0.71 (2315) 1.28 (2935)
UAC* 1.50 (3424) 0.87 (1414) GCG* 0.92 (3009) 0.62 (1417)
His CAU 0.65 (1279) 1.23 (1936) Cys UGy 0.79 (1441) 1.08 (1673)
CAC* 1.35 (2642) 0.77 (1216) UGC* 1.21 (2188) 0.92 (1416)
GIn CAA 0.71 (2117) 8 (3336) Trp UGG 1.00 (2015) 1.00 (1293)
CAG* 1.29 (3842) 0.82 (2309) Arg cGU* 0 (2637) 0.93 (1267)
Asn AAU 0.79 (2261) 1.28 (3935) [acloy 1.88 (3105) 0.61 (830)
AAC* 1.21 (3495) 0.72 (2199) CGA 0.99 (1639) 1.03 (1414)
Lys AAA 0.62 (2293) 0 (4690) CGG 0.71 (1176) 0.63 (858)
AAG* 1.38 (5114) 0.90 (3805) AGA 0.34 (567) 1.62 (2220)
Asp GAU 0.87 (3333) 1.24 (4539) AGG 048 (795) 8(1612)
GAC* 1.13 (4308) 0.76 (2767) Gly GGU* 40 (3673) 8 (2195)
Glu GAA 0.56 (2716) 3(6131) GGC* 146 (3819) 0.80 (1487)
GAG* 1.44 (6946) 0.87 (4759) GGA 0.66 (1742) 1.39 (2572)
GGG 048 (1252) 0.62 (1158)

Comparison of codon usage frequencies between highly and lowly expressed sequences of T. siginata genes. AA: amino acid; N: number of codons; RSCU: Relative
synonymous codon usage. Codon usage was compared using Chi squared contingency test to identify optimal codons. Asterisk denote codons that occurred

significantly more often (P <0.01).

Discussion

Codon usage bias is an important and complex evolution-
ary phenomenon, and it exists in a wide variety of organ-
isms, from prokaryotes, to unicellular and multicellular
eukaryotes. Some hypotheses are proposed to explain the
origin of codon usage bias, among which neutral theory
[38] and the selection-mutation-drift balance model
[27,39] are the most representative ones. According to
neutral theory, mutations at degenerate coding positions
should be selectively neutral, thus resulting in random
synonymous codon choice. In the selection-mutation-drift

model, codon bias is thought to be determined by a bal-
ance between mutation pressure, genetic drift, and weak
selection. In other words, if a gene experiences a highly se-
lective pressure, such as high expression, it may be in-
clined to stronger codon usage bias. However, in recent
years, with the completion of genome projects of many or-
ganisms, the two hypotheses are not sufficient to explain
codon usage anymore. Many other factors have been
reported to influence CUB, including gene length [11],
GC-content [40,41], recombination rate [40,42,43], gene
expression level [11,18,42], RNA structure [44-46], protein
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structure [47], intron length [48], population size [49],
evolutionary age of the genes [50], environmental
stress [51], the hydrophobicity and the aromaticity of
the encoded proteins [52,53], and so on. In this study,
the factors involved in shaping codon usage of the Taenia
saginata genome at least includes gene expression level,
gene compositional constraint, protein length, as well as
the hydrophobicity of each protein (slightly).

Nucleotide composition could be one of the most im-
portant factors in shaping codon usage among genes and
genomes. GC-rich organisms, such as Bacteria, Archea,
Fungi. Triticum Aestivum, Hordium vulgare and Oryza
sativa [36,54], tend to use G or C in the third position.
And meanwhile, AT-rich organisms show a preference for
A or T in third position, such as Onchocerca volvulus,
Mycoplasma capricolum and Plasmodium falciparum
[55-57]. The genomic G + C content for T. saginata is
43.61%. Although the genome would thus appear to be
slightly A + T rich, overall codon usage is biased toward
C- and G-ending codons (Table 2), this is similar to that
in Giardia lamblia [13].

Previous studies have found significant negative cor-
relations between protein length and CUB in variety of
organsims, such as yeast [58], Caenorhabditis elegans
[11], Drosophila melanogaster [41], Arabidopsis thaliana
[11] and Silene latifolia [59]. Similar results have also been
found in T. saginata. There is an explanation proposed by
Moriyama and Powell for this phenomenon: namely, if
shorter proteins could perform similar functions to those
of longer ones, longer proteins become energy-expensive
and disadvantageous, thus the selection constraint acts to
reduce the size of highly expressed genes, dominantly de-
termines the relationship between codon bias and gene
length [60].

As we know, it is difficult to quantify the expression
level of genes in a differentiated multicellular eukaryote,
where genes are expressed at different levels in different
tissues and at different developmental stages. In the T.
saginata genome, the expression level of an individual
gene is lacking. It is known that EST counting is efficient
for assessing gene expression level. Nevertheless, due to
the limitation of EST numbers and rough prediction of
gene expression level by counting ESTs, so we use the
“Codon Adaptation Index” to evaluate the expression level
of examined genes. CAI has been widely used to examine
the expressivities of genes by many researchers and has
now been considered as a well-accepted measure of gene
expression [8,9].

In this study, we identified 23 codons as the optimal
codons. Most of all optimal codons in the T. saginata
genome end with G or C. This is very similar to the pattern
observed in other eukaryotic genomes, such as Dictyoste-
lium discoideum [61], D. melanogaster [62], C. elegans
(18], Giardia lamblia [13] and Schizosaccharomyces pombe

Page 9 of 11

[34]. The identification of optimal codons may provide
useful clues for molecular genetic engineering and evolu-
tionary studying.

Conclusions

For the first time, we have reported the pattern of codon
usage bias in the T. saginata genome and its causative
factors. Evidence suggests that the codon usage pattern
in T. saginata appears to be the result of a complex equi-
librium between different forces, namely mutation bias,
natural selection, the GC content of genes, protein length,
gene expression level and hydropathicity. Meanwhile, 23
optimal codons were identified, all of which ended with ei-
ther a G or C residue, this will be useful for cloning and
expression of foreign genes in the organism. Such infor-
mation from this study will provide a better understanding
of the characteristics of synonymous codon usage in T.
saginata and its molecular evolution, and provide a new
resource to underpin the development of urgently needed
treatments and control.
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