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Abstract

Background: The trematode parasite Fasciola hepatica causes important economic losses in ruminants worldwide.
Current spatial distribution models do not provide sufficient detail to support farm-specific control strategies. A
technology to reliably assess the spatial distribution of intermediate host snail habitats on farms would be a major
step forward to this respect. The aim of this study was to conduct a longitudinal field survey in Flanders (Belgium)
to (i) characterise suitable small water bodies (SWB) for Galba truncatula and (i) describe the population dynamics
of G. truncatula.

Methods: Four F. hepatica-infected farms from two distinct agricultural regions were examined for the abundance
of G. truncatula from the beginning (April 2012) until the end (November 2012) of the grazing season. Per farm, 12
to 18 SWB were selected for monthly examination, using a 10 m transect analysis. Observations on G. truncatula
abundance were coupled with meteorological and (micro-)environmental factors and the within-herd prevalence of
F. hepatica using simple comparison or negative binomial regression models.

Results: A total of 54 examined SWB were classified as a pond, ditch, trench, furrow or moist area. G. truncatula
abundance was significantly associated with SWB-type, region and total monthly precipitation, but not with
monthly temperature. The clear differences in G. truncatula abundance between the 2 studied regions did not result
in comparable differences in F. hepatica prevalence in the cattle. Exploration of the relationship of G. truncatula
abundance with (micro)-environmental variables revealed a positive association with soil and water pH and the
occurrence of Ranunculus sp. and a negative association with mowed pastures, water temperature and presence of
reed-like plant species.

Conclusions: Farm-level predictions of G. truncatula risk and subsequent risk for F. hepatica occurrence would
require a rainfall, soil type (representing the agricultural region) and SWB layer in a geographic information system.
While rainfall and soil type information is easily accessible, the recent advances in very high spatial resolution
cameras carried on board of satellites, planes or drones should allow the delineation of SWBs in the future.
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Background

Worldwide, the trematode parasite Fasciola hepatica
causes important economic losses in cattle due to reduced
animal productivity, loss of condemned livers and interfer-
ence with other diseases. In Western Europe, regional
herd-level prevalences between 20 and 80% are often re-
ported and the annual median cost of an infected cow has
been estimated to be up to € 300 [1,2].

There is an important spatial component in the epi-
demiology of fasciolosis because it depends on the pres-
ence of an intermediate host snail, which in turn depends
on specific climatic and environmental conditions for its
development. Although several aquatic snail species have
been reported as intermediate hosts for F. hepatica in
Western Europe [3-5], Galba truncatula is considered to
be by far the most important.

Several spatial distribution models are available that cap-
ture regional differences in F. hepatica occurrence [6-8].
However, they do not provide sufficient detail to be used
for farm-specific risk assessment, nor support farm-specific
control strategies. On the other hand, it has been shown
that combining farm management information with know-
ledge of the presence of G. truncatula can accurately pre-
dict farm infection status [9]. Management factors can
relatively easy be collected on a farm (e.g. through stan-
dardized questionnaires), but the judgement of suitable
habitats for G. truncatula is more difficult because the
snail’s distribution is highly variable depending on weather
and micro-environmental factors.

Currently, very high-resolution (VHR) remote sensing
images, either obtained by satellite or remotely piloted
aircraft systems (RPAS), are increasingly used in small-
scale risk mapping of vector-borne diseases [10,11]. RPAS
can capture landscape features at a spatial resolution up
to 0.01-0.2 m [12] and provide a promising tool for F. hep-
atica risk mapping. Nevertheless, developing a standard-
ized method to analyse VHR remote sensing images for
creating small-scale risk maps requires more information
on preferential habitats and temporal distribution of the
intermediate snail host. This information can help to se-
lect optimal sensors, image analysis methods and sam-
pling procedures for model validation. Therefore, we
carried out a longitudinal field survey in two distinct agri-
cultural regions in Flanders (Belgium) to (i) characterise
suitable small water bodies (SWB) for G. truncatula and
(ii) describe the population dynamics of G. truncatula.

Methods

Study area and small water bodies

The study was conducted in four dairy cattle farms in
Flanders in 2012; two farms in the region of Bruges and
two farms in the region of Zoersel. These are two different
agricultural regions characterised in Bruges by clay ground
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and in Zoersel sand/loam soils (Databank Ondergrond
Vlaanderen, www.dov.vlaanderen.be).

All farms had a liver fluke history based on bulk tank
milk ELISA and farm pastures contained permanent and
transient potential habitats for G. truncatula. These hab-
itats are small water bodies (SWB) and are defined as
objects on a grazing pasture that contain temperate or
permanent freshwater with a surface >0.5 m?. Five differ-
ent SWB types were classified based on water presence
and shape characteristics and literature review [13-15]
(Figure 1). Per farm, 12 to 18 SWB were selected for
monthly examination (April-November).

Snail collection

All four farms were examined for freshwater snails from
April to November 2012 on a monthly basis from the
beginning until the end of the grazing season. A 10 m
transect analysis with a search period of 15 min per per-
son [16] was used to sample each habitat. All retrieved
snails were morphologically identified according to Dev-
riese et al. [17] and Gittenberger et al. [18]. The lengths
of the G. truncatula snails were measured in order to
differentiate juvenile (<4.5 mm) from adult specimens
(>4.5 mm) [19]. After the measurement, the snails were

e M
SWB-type |Description Example
Pond Round/oval object with a surface
> 1m?
Ditch Elongated object and width > 1.5
m; running or standing water
Trench Elongated object and width < 1.5
m; can dry out
Furrow Elongated, usually wide (> 1.5 m)
object
containing moist, saturated
zones and/or standing water
(moist drainage channel); can
dry out
Moist area | Poorly delineated moist area
that can contain footprints of
cattle; can dry out, isolated from
other SWBs.
Figure 1 Definition of five types of small water bodies (SWB)
that were identified on the farms and investigated for the
presence of Galba truncatula.
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released in their natural habitats in order to disturb as
little as possible the G. truncatula population dynamics.

Infection status cattle

Faecal and blood samples were taken from 5-8 animals
per age category (adult cows, first season grazing calves
and, if present, second season grazing calves) in each farm.
Samples were taken before grazing season (April 2012),
after grazing season (November 2012) and in winter
(March 2013) to investigate the concurrent F. hepatica in-
fection dynamics in the herd. Faecal samples were assessed
by the sedimentation/flotation technique [20] and copro-
antigen ELISA (Bio-X Diagnostics, Jemelle, Belgium). Se-
rum samples were assessed for F. hepatica antibodies with
the SVANOVIR® F. hepatica-Ab ELISA (Boehringer
Ingelheim Svanova, Uppsala, Sweden) according to the
manufacturer’s instructions.

Collection of weather factors and SWB characteristics
Two main components were monitored to describe the
abundance pattern of G. truncatula in each SWB: wea-
ther factors and SWB characteristics.

Weather factors were monitored during the whole
study period (April-November). Data of daily minimum,
maximum and mean temperature were obtained from
the closest meteorological station provided by the Royal
Meteorological Institute, Belgium (RMI). These stations
were located at a maximal distance of 18 km from the
farms monitored. In Bruges, a mobile weather station
(Campbell scientific) was set up and monitored precipi-
tation, soil (5 ¢m in the soil), surface (5-15 c¢m above
the soil) and air temperature (95—-105 cm above the soil).
The data from the mobile weather station were used to
validate the data from the RML

SWB characteristics were monitored monthly from
August to November using a checklist that included man-
agement factors and (micro-)environmental characteristics
of the SWB. For management factors, whether SWBs were
fenced or mowed at the time of visit was recorded. The
(micro-)environmental factors monitored were: water flow
(yes/no), trampled soil (yes/no), pH and temperature of
soil and water and the occurrence of potential indicator
plants: rushes/sedges (ie. Juncaceae, Cyperaceae), reed-
like species (Phragmites sp., Typha sp.) and buttercups
(Ranunculus sp.).

Statistical analysis

First, a negative binomial regression model with robust
standard errors was used to assess univariate relation-
ships between snail abundance (dependent variable) and
small water body, weather, pasture and (micro-)environ-
mental variables (independent variables). The observed
snail counts indicated different SWB preferences accord-
ing to the region. However, the amount of available data
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was not sufficient to test the interaction term between
SWB-type and region. Next, variables available over the
whole study period (April-November) were used in a
multivariate model with the same structure as described
above. The choice of the negative binomial model was
based on explorative work where the relationship with snail
abundance was first modelled using a multivariate Pois-
son model. The x2 goodness-of-fit test as well as dis-
persion parameter indicated strong overdispersion in
the Poisson model. A negative binomial model fitted the
data significantly better, as indicated by the dispersion par-
ameter in this model. A Vuong-test [21] was applied to
compare the negative binomial with a zero-inflated nega-
tive binomial model. The test was not significant, sug-
gesting the negative binomial model provided an adequate
model fit. Finally, a generalized estimating equations (GEE)
approach was used to account for repeated observations
within search location and provide population-averaged
parameter estimates [22]. Standard errors and statistical
significance were based on Wald tests. All analyses were
carried out with the GENMOD procedure in SAS version
9.3 (SAS Institute Inc., Cary, NC, USA).

Results

Snail habitats

In total, 54 SWB were selected for monthly snail collec-
tion and contained 9 ponds, 13 ditches, 11 trenches, 15
furrows and 6 moist areas. There was a difference in dis-
tribution of SWB-type between the regions as we searched
31 SWB in Bruges and 23 SWB in Zoersel. The number of
collected G. truncatula per SWB-type and region is shown
in Figure 2.

Snail sampling

In total 953 G. truncatula snails were found. Other fresh-
water snails identified were Planorbis sp. (N = 2309), Succi-
nea sp. (N = 838), Lymnaea palustris, Lymnaea stagnalis,
Radix sp. and Bythinia sp. The abundance and category of

I Bruges [] Zoersel

© 3001

=

= -

€

£ 200+

©

2

3

S 1004

5}

o

g I

= O-Jl T T

Trench Pond Moist area  Furrow Ditch
Small water body - type

Figure 2 Observed number of Galba truncatula per small water
body-type and region.
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G. truncatula collected over the study period is shown in
Figure 3. A peak of adult G. truncatula was observed for
both regions in July. In Bruges, a second peak of G. trunca-
tula, mostly juveniles, was observed in October/November
whereas the population in the region of Zoersel appeared
to die off.

Factors associated with the intermediate host abundance
Temperature and rainfall data obtained from the RMI
showed high correlations with the data obtained from
the self-placed mobile weather station (Pearson R =0.97
for both monthly temperature and rainfall), indicating
that we could rely on RMI data to make inferences on
the whole study area and to use in the statistical model.
In addition, the average temperature of soil and surface
were highly correlated with air temperature (Pearson R =
0.97 and 0.98, respectively), suggesting that we could use
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air temperature solely to explore potential relationships
between temperature and snail abundance.

The results of the multivariate negative binomial re-
gression model are given in Table 1. Over the 4 sampled
farms, G. truncatula was significantly associated with
SWB-type, region and total monthly precipitation, but not
with monthly temperature. Pairwise comparison indicated
that trenches contained significantly more G. truncatula
than the other SWB-types and ponds contained more G.
truncatula than ditches, while other comparisons were
not significantly different. The region of Bruges showed
significantly higher G. truncatula abundances than the re-
gion of Zoersel. Total monthly rainfall was positively as-
sociated with snail abundance. The univariate negative
binomial regression models to assess the relationship of
G. truncatula abundance with management and (micro-)
environmental variables showed that abundance of G.
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Figure 3 Mean monthly precipitation and temperature (A) and overall abundance of juvenile and adult G. truncatula snails (B) in the

region of Bruges and Zoersel during the study period.
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Table 1 Multivariate negative binomial regression model
to evaluate the associations between snail abundance
and predictor variables monitored throughout the study
period
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Table 2 Results from univariate negative binomial
regression models to evaluate the associations of G.
truncatula abundance with management and (micro-)
environmental variables

Variable Regression Standard P-value  Variable Regression Standard P-value
coefficient error coefficient error

Intercept —-0.532 0.577 0.37 Fencing 0.320
SWB-type < 0.001 Yes —0.592 0.460
Trench 3.823 0.732 < 0.001 Partial —-0.057 0217
Pond 1.292 0.548 0.019 No - -
Moist area 0.831 0.699 0.235 Mowed 0.010
Furrow 0.879 0.509 0.084 Yes —0.621 0.240
Ditch - - No - -
Region < 0001 Water flow 0399
Zoersel —2.754 0.552 Standing water —0.299 0.354
Bruges - - Running water - -
Total monthly 0.006 0.003 0.028 Trampled 0.896
rainfall (mm) Yes ~0.049 0379

No - -
truncatula was positively associated with soil and water ~ Rushes/sedges 0572
pH and the occurrence of Ranunculus sp. and negatively  VYes 0.186 0330
associated with mowing, water temperature and reed-like g B} B}
species. No association was observed with fencing, water ., <0.00]
flow, trampling, soil temperature and the presences of

Yes —0.855 0253
rushes/sedges (Table 2).

No - -
Infection status of cattle Ranunculus sp. 0016
Between 15 and 23 animals spread over the age categor-  Ves 0616 0.255
ies present at each farm were sampled. The results of g B B
the CoPro-antlggn ELISA (results noti showg) a.md sedi- o ot 0399 0,066 <0.00]
mentation-flotation method were highly similar. The ,

. . . Soil pH 0.704 0.239 0.003

results of the sedimentation-flotation method and F.
hepatica antibody ELISA are shown in Figure 4. The 'Vatertemperature (O —0.074 0024 0002
average number of animals shedding eggs was remark-  Soil temperature ('O -0.005 0036 0.902

ably higher in March (21%) than November (3%). The
antibody-ELISA showed systematically a higher percent-
age of positive animals. The highest number of positive
cows was observed in November, while in March still
30% of the cows tested positive. No clear difference in
prevalence was found between the two regions.

Discussion

A technology to reliably assess the spatial distribution of
intermediate host snail habitats on farms would be a
major step forward towards the development of farm-
specific risk maps and management of fasciolosis. Our
study confirms previous studies that there are important
differences in G. truncatula abundance between SWB-
types [13,14]. Overall, most snails were found in trenches.
This may be a surprising result because trenches mostly
did not contain water. However, due to their limited width
they were often covered by vegetation, staying moisturized

underneath. G. truncatula were also found in all other
types, although to a lesser extent. Nonetheless, the ob-
served differences in G. truncatula abundance between
SWB-types can be region-specific. First, we observe that
despite taking into account SWB-type in our regression
model, the region in itself remained an important factor
to explain differences in population size and dynamics.
Similarly, in another cross-sectional survey in Belgium,
Caron et al. [3] found that the geographical location was
the best explanatory variable for the presence of G. trun-
catula in ponds, in contrast to type and depth of the pond
that were no significant explanatory variables.

Our study failed to assess the importance of reservoir
(permanent) habitats vs. extension (temporary) habitats
of G. truncatula [23]. It is difficult to discriminate between
these types of habitats based on a simple definition. Most
of the sampled habitats in our study had the possibility of
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Figure 4 F. hepatica prevalence in the four investigated farms at three time points by means of two diagnostic methods.

drying out. Because extension habitats need to be con-
nected to reservoir habitats an unambiguous delineation
or discrimination of both is often difficult. After a litera-
ture review, we used the classification of SWB as de-
scribed in Figure 1 and maintained that throughout the
study.

For the prediction of fasciolosis, it is generally assumed
that rainfall is an important determinant of annual risk,
whereas temperature in particular determines when pas-
ture becomes dangerous [24]. Our study confirms the
effect of rainfall on the magnitude of the snail population,
which reached peak levels following high rainfall in a par-
ticular month. Considering the effect of temperature, it is
known that a temperature above 10°C is essential for egg
laying by G. truncatula [25]. Recent studies have looked at
the effects of temperature on snail growth and the devel-
opment of eggs, miracidial and intramolluscan stages of F.
hepatica [26-28] whereas no studies are available on the
effects on the population dynamics of G. truncatula. Our
study suggest that in regions with a temperate climate,
once temperature is higher than 10°C, rainfall is the main
driver of G. truncatula abundance and temperature has
no large influence.

There was a clear difference in the number of genera-
tions of G. truncatula in the 2 studied regions. In Zoersel,
there was only 1 clear generation over the study period
with a peak in abundance in July. This suggests that ‘sum-
mer infection’ [29] is likely the main transmission pattern
in this region. Summer infection was also the predomin-
ant transmission pattern in another study recently con-
ducted in Sweden [30]. In Bruges, there were 2 clear peaks
in abundance: one in July and one in October. Whereas
the first peak can result in the ‘summer infection” trans-
mission pattern, the second peak consisted mainly of
juvenile snails. This generation could form the basis of an
important overwintering snail population and suggests
‘winter infection’ [29] could potentially play a more

important role in transmission than previously thought in
this region.

Exploration of the relationship of G. truncatula abun-
dance with (micro-)environmental variables revealed in-
teresting associations. First, we found a positive association
with soil and water pH. This contrasts with often retrieved
statements that G. truncatula prefers mildly acidic soils
[31]. Nonetheless, positive associations between G. trunca-
tula and soil pH have been reported previously [3,32]. The
association with plant species contributes to knowledge of
the use of indicator plants to evaluate suitability of habitats
for G. truncatula [13] while the negative association
with mowed pastures may suggest that mowing could
be used as a pasture sanitation strategy to reduce F.
hepatica risk [6].

The clear differences in G. truncatula abundance be-
tween the 2 regions studied did not result in comparable
differences in F. hepatica prevalence in the cattle. Al-
though the herd prevalence of F. hepatica is lower in
Zoersel than Bruges [33], the within-herd prevalence of
the studied farms was not. This could be caused by the
fact that, in contrast to Zoersel, the cattle in Bruges had
received annual flukicide treatment for several years and
this may thus have reduced the impact of the environ-
mental risk. On the other hand, in Zoersel we found other
snail species such as Succinea sp. in a higher relative pro-
portion, and other snail species naturally infected with
F. hepatica have been recently documented [4,5,34,35].
It has been suggested these species may play an import-
ant role in transmission when G. trumncatula is not
abundant [36].

Our study suggests that farm-level predictions of G.
truncatula risk and subsequent risk for F. hepatica oc-
currence would require several layers in a geographic in-
formation system (GIS). Besides a layer with rainfall and
soil type (representing the agricultural region), a layer
with SWB localisation will be needed. This SWB layer
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forms the bottleneck of the map and new classification
methodologies are needed to identify these small water
bodies, which mostly cannot be found on regular hydrol-
ogy maps. The recent advances in the very high spatial
resolution cameras carried on board of satellites, planes
or drones allow the delineation of the SWBs [37]. Im-
ages with a spatial resolution at cm level are now readily
available and can be used for a rapid assessment on the
pastures. Drones provide the advantage that they can be
used at any time required, in contrast to satellites that
have to be programmed beforehand. Moreover images
resulting from the satellite may be influenced by cloud
contamination. In terms of spectral resolution, standard
Red Green Blue (RGB) camera’s provide sufficient spec-
tral information to create a baseline map of the presence
of the SWBs at farm level, however, investigations should
determine whether for example cameras with near-infrared
channels can provide added value that can be used to de-
lineate the SWBs. The raw images could then be translated
into SWBs, using either pixel-based classification methods
or segmentation algorithms [38].

This last step could also provide new definitions of
SWB and thus avoid uncertainties related to the termin-
ology used [39]. Indeed, the current studies investigating
G. truncatula habitats use different definitions [13,14],
greatly hampering comparison of study results.

Conclusions

Farm-level predictions of G. truncatula risk and subse-
quent risk for F. hepatica occurrence would require a
rainfall, soil type (representing the agricultural region) and
SWB layer in a geographic information system. While
rainfall and soil type information is easily accessible, the
recent advances in very high spatial resolution cameras
carried on board of satellites, planes or drones should
allow the delineation of SWBs in the future.
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