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Not “out of Nantucket”: Babesia microti in
southern New England comprises at least two
major populations
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Abstract

Background: Deer tick-transmitted human babesiosis due to Babesia microti appears to be expanding its distribution
and prevalence in the northeastern United States. One hypothesis for this emergence is the introduction of parasites
into new sites from areas of long-standing transmission, such as Nantucket Island, Massachusetts.

Methods: \We developed a typing system based on variable number tandem repeat loci that distinguished individual
B. microti genotypes. We thereby analyzed the population structure of parasites from 11 sites, representing long-standing
and newly emerging transmission in southern New England (northeastern United States), and compared their
haplotypes and allele frequencies to determine the most probable number of B. microti populations represented by
our enzootic collections. We expected to find evidence for a point source introduction across southern New England,
with all parasites clearly derived from Nantucket, the site with the most intense longstanding transmission.

Results: B. microti in southern New England comprises at least two major populations, arguing against a single source.

England as well as long distance introduction events.

The Nantucket group comprises Martha's Vineyard, Nantucket and nearby Cape Cod. The Connecticut/Rhode Island
(CT/RI) group consists of all the samples from those states along with samples from emerging sites in Massachusetts.

Conclusions: The expansion of B. microti in the southern New England mainland is not due to parasites from the
nearby terminal moraine islands (Nantucket group), but rather from the CT/RI group. The development of new
B. microti foci is likely due to a mix of local intensification of transmission within relict foci across southern New
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Background

Babesiosis due to Babesia microti (Apicomplexa:Spor-
ozoea) was first recognized as a zoonosis in 1969 when a
resident of Nantucket Island, Massachusetts, sustained a
malaria-like illness. Nearly a dozen cases were identified
from Nantucket by 1976, leading to its colloquial name
at the time, “Nantucket fever”. The white-footed mouse,
Peromyscus leucopus, was incriminated as a main reser-
voir, with deer ticks (Ixodes dammini; also known as the
northern population of Ixodes scapularis) as the vector
[1,2]. Classic epidemiological and ecological studies by
Spielman and Piesman described the enzootic cycle of
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B. microti on Nantucket and elsewhere in coastal New
England, subsequently providing the basis for our
rapid understanding of that of the spirochetal agent of
Lyme disease (Borrelia burgdorferi), once I dammini
was incriminated as the vector of that bacterial zoonosis.
Other animals (shrews, voles, chipmunks, squirrels) have
been found infected by B. miicroti but their reservoir cap-
acity remains largely undescribed [1,3]. The potential for
enzootic transmission of B. miicroti would seem to rest
mainly on the presence of a suitable Ixodes sp. vector and
small rodents or insectivores.

For the first two decades after the index case of
Nantucket fever, babesiosis was considered a rare infec-
tion that affected residents of the terminal moraine sites
of New England and New York (Nantucket, Martha’s
Vineyard, Cape Cod, Block Island, eastern Long Island),
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as well as a focus in the upper Midwest [4]. In addition,
babesiosis was thought to affect only those people who
were elderly, immune compromised or asplenic, thereby
limiting its perceived public health significance despite
the fact that those individuals sustained severe com-
plications with a case fatality rate of 6- 9% [5]. In young,
healthy individuals, infection with B. microti is usually
asymptomatic and treatment may not be indicated.
However, asymptomatic infection in healthy individuals
threatens our blood supply, and more than 160 babesiosis
cases have been acquired by transfusion. Many transfusion
recipients are immunocompromised or have comorbidi-
ties and thus severe disease may result; about 20% of these
cases are fatal. Babesiosis is now considered the greatest
threat to our blood supply due to an infectious agent [6].
Accordingly, our perception of the clinical significance of
babesiosis has changed over the last two decades.

Within the last decade, the northeastern U.S. has ex-
perienced a rising incidence of disease, although there is
some confounding due to the fact that few states man-
dated reporting, and babesiosis only became nationally
reportable in 2011. There has been a marked expansion
of the geographic range of human disease. Cases have
now been diagnosed in all New England states, north
into Maine, west into the upper Hudson River valley,
eastern Pennsylvania and New Jersey and as far south as
Maryland [7-9]. This expansion has not been limited to
the northeastern U.S. The Midwestern foci in Minnesota
and Wisconsin has also intensified in transmission and
expanded in distribution [10,11]. The biological basis
for the expanded distribution remains undescribed. The
public health burden of Lyme disease has changed sig-
nificantly within the last 30 years, generally as a result of
the expanded range and increased density of the tick
vector, a function of dispersal by birds, habitat fragmen-
tation, and burgeoning deer herds. However, the dra-
matic change in Lyme disease risk over time was not
accompanied by that of babesiosis, at least until the last
decade. For example, Westchester County, perhaps the
epicenter of Lyme disease risk since the late 1980s, did
not identify babesiosis in residents there until 2001 [12].
This lag in risk relative to Lyme disease was thought to
be consistent with the mode of dispersal of the two in-
fections, because B. burgdorferi could be transported by
reservoir competent birds and subadult I dammini
infesting them; B. microti would inefficiently be intro-
duced to new sites because birds are likely not reservoirs
for this protozoan and transported nymphs would not
seek competent hosts as adult ticks. The empiric evi-
dence for a recently expanded geographic distribution of
zoonotic B. microti is a paradox given these consider-
ations. To determine whether the expanded distribution
of zoonotic B. microti reflects the introduction of para-
sites from longstanding sites of transmission into new
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sites, we compared the genetic diversity of parasites from
Nantucket and Martha’s Vineyard with that of those from
mainland New England sites, including more recently
established sites of transmission. In particular, we devel-
oped variable number tandem repeat (VNTR) markers
based on the published B. microti genome [13], and used
the resulting allele frequencies to determine the most
probable number of B. microti populations represented
by our enzootic collections. Limited genetic diversity
across our sampling sites would provide evidence for
a “transport-introduction” hypothesis to explain the re-
cently expanded distribution of B. microti babesiosis.

Methods

Sources of B. microti DNA

Archived collections of tick or small mammal blood
samples were mainly from long-standing field studies of
L dammini population biology [4,14,15] in coastal New
England. Martha's Vineyard and Nantucket Island were
the sites first experiencing zoonotic babesiosis [16].
B. microti was documented in rodents from Ipswich
(Essex County), Sandy Neck and Great Island (Cape Cod,
Barnstable County), Prudence Island and Block Island,
Rhode Island; and coastal Connecticut by the 1980s
[17-19]. In contrast, Dover (Norfolk County) and Grafton
(Worcester County) in central Massachusetts are newly
emergent transmission sites: the first cases of likely
authochthonous babesiosis occurred in Norfolk County
in the mid 2000s and, to date, there have been none doc-
umented in Grafton, even though there has been low
level enzootic transmission there since at least 2002
(unpublished). Rodent blood was stored at -20C or dried
on filter paper. Drag sampled host seeking nymphal deer
ticks were stored desiccated, in 70% ethanol, or frozen until
analysis; extracted DNA was also archived. DNA was ex-
tracted from blood using a DNEasy kit (Qiagen). Ticks
were macerated individually and then extracted using a
HOTSHOT protocol [20]. Extracted DNA was screened
for the presence of B. microti DNA by PCR using the
BmITS1F/BmITSIR primer set [21].

Identification and evaluation of tandem repeat markers

The B. microti genome (GenBank FO082871, FO08272
and FO082874) was searched for tandem repeats using
the Tandem Repeats Finder (http://tandem.bu.edu/trf/trf.
basic.submit.html). Primers targeting the flanking se-
quence were designed using Primer3 [22]. Amplification
was done using Picomaxx (Agilent Technologies) high
fidelity taq polymerase using a step-down cycling protocol;
the concentration of each primer was 0.5 micromolar in
each 15 uL reaction. Template concentration was not
measured; 1.5 uL was added directly from the HOTSHOT
extract. Amplification cycles were started at 65C, decreas-
ing by 1 degree each cycle until 55C then 55 cycles were
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run at the 55C annealing temperature. The forward primers
were fluorescently labeled using either FAM or HEX
(Integrated DNA Technologies). Amplicons were then
mixed with either the GeneScan500 (Applied Biosystems)
or MapMarker1000 (BioVentures) ladders, depending on
the expected size range, and sent to University of Maine
Sequencing Facility at Orono, ME for accurate sizing on a
capillary-based sequencer. The resulting data was an-
alyzed by hand using PeakScanner (Applied Biosystems)
and STRand software [23].

The amplicon from each potential tandem repeat locus
was assessed for size differences between laboratory
B. microti strains originating from Spooner, Wisconsin
and Nantucket Island, Massachusetts, as well as the
expected size from the genome posted on GenBank. If
the marker was invariant among these samples, it was
rejected. Markers were also rejected for failure to amplify
well or for amplification of multiple bands. The final 9
loci were multiplexed for amplification as follows: BMV1
and 2, BMV 4 and 5, BMV 8 and 10, and BMV 13 and
23. BMV 20 was amplified alone. Samples that did not
amplify well with the multiplex assays were repeated with
each locus individually before being deemed a failure.
The ability to detect multiple peaks was evaluated by
mixing DNA from 2 samples with different genotypes
together at varying concentrations. Minor peaks were
counted if they were greater than 40% of the major peak.
Samples that had more than 2 loci that failed to amplify
to were excluded from further analysis. Babesia microti is
haploid in the mammalian host but has diploid stages in
its tick host [24]. As with recent malarial population
structure studies ([25-27] among others), we simplified
the genetic analysis by assuming that parasites are hap-
loid. Samples that had multiple peaks were assumed to
be due to infection with two separate parasites and were
treated as such. Twenty five samples had 2 peaks in more
than one locus. These were excluded from the analysis
because we were unable to definitively identify the geno-
type of each haploid.

The fidelity of the markers was evaluated in 2 ways. In
the laboratory, the well characterized GI (Harvard) strain
[28] has been continuously cycled from hamster to
subadult deer tick to hamster since its isolation from
a Nantucket human case in 1981. Parasites at each stage
(bloodstream infection, engorged larvae, molted infected
nymphs) were typed to determine whether scoring the
markers was sensitive to changes in ploidy over the trans-
mission cycle. To determine the long term stability of the
markers in the field, field samples (host-seeking ticks or
rodent blood) collected on Nantucket Island from 1986
to 2013 were compared. Diversity indices and diversity
permutation tests were calculated using PAST [29] and
expressed with the 95% confidence interval around the
index.
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Identification of population clusters

The most probable number of populations (K) was esti-
mated using the program Structure [30]. Structure uses
a Bayesian approach in which it assigns individuals prob-
abilistically to a predefined number of populations based
on allele frequencies and without prior knowledge of
geographic sampling. It is not straight forward to deter-
mine the optimal number of populations (K) for a given
data set. We therefore calculated delta K, which is the
second order rate of change in the likelihood of K. Simu-
lation studies have shown that the modal value of this
distribution represents the uppermost level of structure
or the "true" K of a given set of data [31]. The height of
the modal value indicates the strength of the signal de-
tected by Structure. The probable evolutionary relation-
ships (lineages) among our samples were analyzed using
Phyloviz [32]. This program uses the eBURST algorithm
to attempt to identify groups of related organisms and
their founding genotype. It then creates a radial diagram
predicting the patterns of descent to the other genotypes
in the group.

In all years, mammals were collected under permits is-
sued by the respective state divisions of fish and wildlife.
Prior to 2003, when we were at Harvard University,
mammalogy fieldwork did not require institutional ani-
mal care and use committee approval; all fieldwork since
2003 was conducted under research protocols approved
by the Tufts University IACUC.

Results

Nine VNTR loci were identified that could be reliably
amplified and demonstrated to have size differences be-
tween the Massachusetts, Wisconsin and the sequenced
genome (a Connecticut isolate). (Table 1) The attributes
of the markers were examined using data from field col-
lections of mice and ticks from Nantucket Island from
1987-2013. (Table 2) In general, the rate of failed ampli-
fications was low (5% or less). However, BMV20 showed
a markedly greater rate of failure (29%) compared to the
other loci. Failure to amplify BMV20 in these samples
was consistent even when we redesigned the primers to
anneal to alternate nearby locations on the gene. BMV20
appeared to have a null mutant in these samples and was
treated as a separate allele in the analyses.

The BMV loci are stable enough to provide consistency
through a short transmission cycle, as amplicon size
remained unchanged from all stages in the laboratory from
the initial infection within a hamster to the larvae through
the molt to nymphs and the resulting secondary infection
(data not shown). Analysis of the Nantucket field samples
showed that one genotype, 49¢, remained dominant over a
26 year time span. (Figure 1) More than half (56%) of the
samples collected had genotypes that were detectable over
multiple decades. Three of the loci, BMV1, 2 and 13, were
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Table 1 The VNTR loci used in the study and the observed (or predicted for the genome) amplicon sizes from the

initial screen for variability

Locus Repeat length Repeat motif Primers (5' to 3') Observed size (bp)
Genome MA Wi

BMV1 6 AGTTCT or AGGTCA F- CAATCTATGAGGCATGCGATTC 346 340 340
R- CTAAAAGGCCCGATGGTTCA

BMV2 6 TATAAC F-TCCAGTGACAATGACATATTTAAGCA 400 405 392
R- TGTCCTCATTCTGAGCCACAGT

BMV4 11 TTAGCTATGGG F- ACCACCACCAGGCCTCTATG 405 361 295
R- CTGGACCATGATTTGGTTGA

BMV5 9 GCTGTATTT F- AGGCCCCTGTTCATCACATG 415 317 317
R- GGAATAGCCTCGAGTCCAGA

BMV8 10 ACATACAGCG F- AGGCCAGTGGAGCAGAGAAG 262 327 295
R- CAAGCAATCGTCGCTGTATG

BMV10 3 GAT F- TTIGTTGGTGTCCGGGTTGTA 303 305 298
R- ATGCTATTGCCTCGCAACCT

BMV13 15 TCCTTACTAGCCTTA F- ACCGCTCCCGCACTTTAGTA 351 520 443
R- CCTGCGGGTTCTACCACTCT

BMV20 6 ATACTA F- CAGGGTTTATGCGAAGAGTGG 713 713 754
R- GTGCTGCAGGCTTCGATGTA

BMV23 5 ATATA F- CCGCCTCTCCTATTCCCCTA 322 275 270

R- GAAGAACAGTTGGATGACTTCG

MA Massachusetts, WI Wisconsin.

extremely stable and showed almost no variability over
26 years of sampling. The most diverse locus was BMV4 in
which 16 different alleles were detected with a Simpson's
index of diversity 0.69 [0.63, 0.75]. Interestingly, the diver-
sity of parasites (and particularly the representation of mis-
cellaneous haplotypes) appeared to increase over time.
Samples were collected from 9 different sites across
New England (Figure 2) representing sites with long-
standing transmission, Martha's Vineyard, Nantucket
Island, Ipswich, Great Island, Sandy Neck, Block Island,

Table 2 The diversity of the B. microti VNTRs on Nantucket
Island, MA

Locus Size range No. alleles Diversity No. failed
(bp) amplification (%)

BMV1 340 1 nd 0

BMV2 405 1 nd 0

BMV4  308-473 16 069 [063,0.75] 3 (2%)

BMV5  299-347 5 0.17[0.11,026] 0

BMV8  171-245 3 0.031[003007] O

BMV10  299-311 5 0451[037,052] 0O

BMV13  505-520 2 0.01 [0.01, 0.05] 7 (5%)

BMV20  647-725 9 0.28 [0.22, 041] 39 (29%)

BMV23  243-280 4 0.08 [0.04, 0.15] 7 (5%)

Prudence Island, mainland Rhode Island and Connecticut,
and two with recent emergence of transmission, Dover and
Grafton. From these, 387 samples were genotyped, and 190
unique types were obtained. (Table 3; Additional file 1)
The Simpson’s diversity indices for the markers were large
for every field site. They ranged from 0.51 [0.37, 0.63]
on Great Island to 0.98 [0.97, 0.98] on nearby Martha's
Vineyard.

1004

B 28a
Bl 44b
[ 49d
Bl 49e
Il 55¢
] misc

percent total

1987 88

199899 2000-05
Years

2010-13

Figure 1 The distribution of genotypes of B. microti collected
on Nantucket by decade. The contribution of the major genotypes
is expressed as a percent of the total number of samples during

that time.
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Figure 2 Collection sites across southern New England.

The most probable number of populations (K) based
on the sampled genetic variability was estimated using
the program STRUCTURE. Delta (K) clearly demon-
strates that the most likely number of populations for
our New England data set is 2. (Figure 3) All Connecticut
and Rhode Island samples were grouped together with
the addition of mainland Massachusetts samples from
Sandy Neck, Dover, Ipswich and Grafton. The second
population consisted of samples from Nantucket, Great
Island and most of the Martha’s Vineyard samples
(Figure 4). Martha's Vineyard yielded samples from
both populations; it may be that Martha’s Vineyard
comprises the source for the two main B. microti popu-
lations demonstrated for southern New England, although
we cannot exclude the possibility that the presence of

the “mainland” population there represents a reverse
introduction.

Phyloviz analysis also yielded two main clusters of
samples (Figure 5), similar to those derived from the
Structure analysis. Samples from Martha's Vineyard,
Nantucket and Great Island comprise one cluster, while
the samples from Connecticut, Rhode Island, Dover and
Grafton, Massachusetts comprised the second. The sam-
ples from Sandy Neck did not cluster with either group.
Samples from Ipswich were split between the two
clusters. Although most of the samples from Martha's
Vineyard were grouped together with the Nantucket and
Great Island samples, a number of them fell all by them-
selves. None, however, clustered with the Connecticut
and Rhode Island samples. Thus, an analysis that uses an

Table 3 Field sites sampled and the Simpson's index of diversity for identified genotypes

Samples Collection years No. types Diversity No. with multiple types
Established sites of transmission
Martha's Vineyard 92 1999-2013 79 0.98 [0.97, 0.98] 19 (21%)
Nantucket 127 1986-2013 52 0.89 [0.85, 0.93] 30 (24%)
Great Island 58 1986, 1993 10 0.51[0.37,0.63] 17 (29%)
Sandy Neck 4 1988 4 nd 1 (25%)
Ipswich 10 1999, 2010 9 0.86 [0.79, 88] 5 (50%)
Block Island " 1997-1998 8 0.80 [0.56, 0.85] 3 (27%)
Prudence Island 35 1998-2000 19 0.90 [0.84, 0.92] 8 (30%)
Connecticut 1 1997-2014 " 0.90 [0.78, 0.90] 2 (18%)
Mainland Rhode Island 4 2003 3 nd 0
Emerging sites of transmission
Grafton 1 2008-2014 7 0.76 [0.51, 0.83] 5 (45%)
Dover 16 2012-2013 8 0.71 [0.53, 0.83] 2(13)
Total 387 190 0.97 [0.96, 0.98]
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Figure 3 The most probable number of populations (K) as
calculated by Structure. Bottom: The log probability for each
number of populations (K); error bars represent the variance around
each log probability, LnP(D). Top: Delta K of the number of
populations (K); the modal value indicates the real K.

algorithm to analyze lineages as opposed to allele fre-
quencies would suggest the existence of more than 2 dis-
tinct B. microti populations, and that mainland sites
of transmission do not derive from either Nantucket
or Martha’s Vineyard, where human babesiosis due to
B. microti was first recognized.

Discussion

Our capacity to describe the population structure of
B. microti has been hindered by the conserved nature
of its genes. Sequencing of B. microti 18StDNA, beta-
tubulin, and ITS have demonstrated limited sequence
diversity globally [33] and we previously were not able
to reliably discriminate strains from Nantucket and
Spooner, Wisconsin. With the availability of the B. microti
genome [13], we developed an assay for typing B. microti
based on variable number tandem repeats (VNTRs).
Tandem repeat regions (or minisatellites) are portions
of genes which rapidly evolve due to slip strand errors
in replication, and have been used as the basis for typ-
ing diverse organisms, providing valuable insight into
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the ecology and epidemiology of the related Babesia
bovis [34], Theileria parva [35], and Plasmodium falcip-
arum [36,37]. Our VNTR markers appear to be ideal
for molecular epidemiologic studies to analyze the zoo-
notic B. microti epidemic over time and space. Lever-
aging an extensive archive of Nantucket field samples
we find that two markers, BMV1 and BMV2 did not
change at all (no apparent production of new alleles) over
26 years. In contrast, BMV4 was highly variable yielding
16 different alleles (Simpson's index of diversity = 0.69).
This balance of stability and variability in our VNTR
marker set allows for measuring diversity without the loss
of genotypic characterization due to homoplasy.

Since the recognition of B. microti babesiosis on
Nantucket Island during the early 1970s and its sub-
sequent characterization as “Nantucket fever”, this is-
land has reported a large proportion of all nationally
recognized cases [38,39]. The early force of B. microti
transmission there stimulated the hypothesis that the
guild of I dammini-maintained microbes was originally
to be found in the terminal moraine sites that were once
contiguous with (given lower sea levels) or quickly rein-
vaded from southern refugia, likely Georges’ Island, after
the retreat of the Laurentide ice sheet [40] about 6,000-
12,000 years before present. Any newly recognized sites,
particularly on mainland New England, were thought to
represent introduction from original transmission sites
such as Nantucket. Our analysis, however, clearly refutes
anecdotal suggestions that Nantucket Island itself is the
source of the recent geographic expansion of B. microti
in New England. Parasites from the sites with emerging
populations, Dover and Grafton, are more closely related
to those from Connecticut and Rhode Island than those
from Nantucket Island, a consistent finding by both
methods of analysis (Structure and Phyloviz).

The haplotypes of B. microti collected across New
England comprise at least two distinct populations. Para-
sites from the coastal islands of Massachusetts, Martha's
Vineyard and Nantucket, along with samples from Great
Island (25 km north of Nantucket, on Cape Cod) are
grouped together (Nantucket group). Distinctly separate
from these are all the parasites from Connecticut and
Rhode Island, which includes samples from their coastal
islands, Block Island and Prudence Island, (CT/RI group).
The island of Martha's Vineyard yielded the most diverse
population of parasites. Most of the samples clustered
closely with those from Nantucket. However, Structure
analysis groups some individual samples from Martha's
Vineyard with CT/RI group, and for some samples no
clear decision was made. Based on haplotypes, Phyloviz
places these samples as singlets or doublets (unique haplo-
types or those found only twice) with no clear connection
to either main group. The presence of greater parasite di-
versity on Martha’s Vineyard may relate to the continuous
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survival of large tracts of oak woodland and scrubland for
the past 1000 to 2000 years [41], whereas virtually all of
Nantucket had been converted to sheep pasture by the
mid 1800s. The deer tick was not present on either island
during the first third of the 20™ century. An arthropod
survey on Nantucket [42] lists only Dermacentor variabilis
and the description of I muris (Nantucket is the type
locality) does not mention other ticks [43]. Intensive
D. variabilis control programs on Martha’s Vineyard by
Harvard’s Burt Wolbach during the late 1920s, continued
by Marshall Hertig into the early 1940s [44], document
the presence of “I. scapularis” on adjacent Naushon Island
but not on the Vineyard, where I muris was present. In-
deed, in a seminal report describing “Cytoecetes microti”,
now known as Anaplasma phagocytophilum [45,46]
Tyzzer noted the presence of Babesia in splenectomized
voles from Martha’s Vineyard, suggesting its enzootic
transmission by L muris [15]. Parasites maintained by the
nidicolous tick, 1. muris, would have been limited in their
local distribution with few opportunities for recombin-
ation, due to the confinement of all 3 stages on rodents or
within their nests. With the establishment of the 3-host
tick I dammini, presumably from nearby Naushon [47],
small isolated natural foci could expand due to dispersal

by the more diverse I dammini hosts; such foci would
then coalesce across the adaptive landscape of each island,
as we have suggested for the agent of tularemia on
Martha’s Vineyard [48]. Then too, the Nantucket land-
scape has changed even within the last 30 years, with
greater portions of low-lying heathland overgrown by
scrub oak thickets, thereby promoting denser popula-
tions of ticks and mice.

The history of zoonotic babesiosis due to B. microti is
a function of the expanded distribution of dense infesta-
tions of I dammini [15]. (It is noted that many consider
L dammini to simply be L scapularis , but northern pop-
ulations are genetically more homogenous than are
those from more southerly sites [49-51] which represent
ticks with limited anthropophily [52]). The stability and
intensity of populations of deer ticks depend on that
of deer [53]. Deer had largely been extirpated in New
England by the late 1800s and forests were replaced by
farmland [54] where the deer tick likely became very
rare. Hence, early explanations of the origins of the
Lyme disease and babesiosis epidemic emphasized the
early report from Wolbach’s group [55] of the presence
of “I scapularis” on the Elizabeth Islands just north of
Martha’s Vineyard because deer and forests had been
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protected there since the first days of colonization [56];
Naushon, the largest of the Elizabeth Islands, was
thought to be the main postcolonial deer tick refugium
until deer returned in numbers to other sites. Deer were,
in fact, not completely extinct elsewhere in New England.
Small remnant populations remained in numerous sites
across New England, on Cape Cod, in the Berkshires, as
well as sites in Connecticut and New York State [57].
These sites could have maintained unnoticed deer tick
populations with their microbial guild; the absence of re-
ports of collections of deer ticks from elsewhere does not
imply evidence of absence in such sites. Isolated collec-
tions of I dammini were in fact documented from Long
Island, New Haven CT, and Cape Cod MA in the 1930s,
and as far inland as Walpole, MA in 1949 [47]. Accord-
ingly, the presence of a second major group of B. microti
haplotypes (CT/RI) on the mainland should not be
considered surprising. Infestations of deer ticks may
have remained unrecognized until deer became locally
abundant. Human babesiosis would emerge as the local
force of transmission changed as a function of tick
density, although increased suburbanization also was
required to expose humans to infected ticks. A similar
scenario of widely distributed relict populations across
the northeastern U.S., with recent expansion from such
cryptic sites as a result of greater deer tick density due to
deer abundance and habitat change, has also been sug-
gested for B. burgdorferi [58]. Inasmuch as our study was
limited to convenience samples from southern New
England, it is likely that additional distinct popula-
tions will be found across the range of enzootic B. microti
in the Northeast. It would be particularly illuminating to
analyze parasites from Shelter Island (eastern Long
Island), where babesiosis cases were first identified at
nearly the same time as those on Nantucket and Martha’s
Vineyard.

Interestingly, parasites from Sandy Neck, a 7 km long x
1 km wide barrier beach 8 km due north of Great Island,
were quite unique and did not consistently group with
either population. Based on allele frequences, Structure
placed Sandy Neck parasites with the CT/RI population
(Figure 4). However, the haplotypes found there were
unique and significantly different than those found else-
where (Figure 5). Sandy Neck formed no more than
4,000 years ago [59] from accretion on the Barnstable mo-
raine and comprises old stands of maritime pitch pine and
oak forest. It was one of the early Massachusetts sites with
a stable infestation of I dammini and ecological studies of
the tick began there in 1983. The unique B. microti alleles
suggest isolation from Cape Cod (the barrier beach is con-
nected at one side and physically separated for most of its
length by a great salt marsh) and southern New England
in general. However, we only analyzed a limited number
of samples from that site and none that were recently
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acquired, and thus additional sampling may disprove the
hypothesis of allopatry.

The fact that Ipswich yielded B. miicroti haplotypes
from both populations is puzzling. The Ipswich area is
adjacent to a major stopover for migratory birds (Parker
River National Wildlife Refuge [60]) and indeed Ipswich
was the northernmost zoonotic site (Lyme disease and
babesiosis) in New England during the late 1980s [61],
with a large distributional gap between that site and
southern Massachusetts. Northward transport of in-
fected nymphal ticks by migratory birds would be the
most logical hypothesis to explain the development of
foci north of the coastal infestations. However, if such
ticks fed to repletion and developed to adults in the new
site, they would not feed on reservoir competent hosts
because adult deer ticks have never been found on ro-
dents or insectivores. Although the reservoir compe-
tence of mustelids and carnivores (both possible hosts
for adult deer ticks) for B. microti has not been formally
explored, we have never detected natural infection in
skunks, raccoons (these two hosts have their own seem-
ingly specific Babesia spp. [33]), domestic dogs, and cats
(unpublished) and they are unlikely candidates to initiate
transmission in a new site. Deer are not susceptible to
B. microti infection [62] and co-feeding transmission
on such an incompetent host would be unlikely unless
babesial sporozoites are pluripotent and could quickly
develop to gametocytes. Cottontail rabbits are infected
by B. microti [2,63] and uncommonly serve as host for
adult I dammini [63,64]. It is possible that they could
serve as the “bridging” host for introduction. Alterna-
tively, infected nymphal deer ticks may not feed to reple-
tion on a bird, detach, and infest rodents to complete
feeding, thereby introducing B. microti to competent
reservoirs in new sites. It is also possible that infected
rodents or even infected host-seeking ticks are inadvert-
ently transported within or on luggage or household
goods of vacationers, introducing infection to their
yards. Finally, avian piroplasms have been described [65]
and we cannot exclude the hypothesis that certain birds
may indeed be reservoir competent for B. microti without
a formal experimental test. Given that there are several
possible means of introduction, it is likely that the cur-
rently expanding pattern of zoonotic B. microti risk in
southern New England reflects both geological and demo-
graphic history as well as transport. Additional analyses
are required, with more comprehensive sampling schemes,
to fully describe the basis for the expanded distribution of
human babesiosis due to B. microti.

Conclusions

We demonstrate that enzootic B. microti in southern
New England is comprised of two distinct populations.
The Nantucket population is limited to Martha's Vineyard,
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Cape Cod and Nantucket Island in Massachusetts,
and is not the source for newly emergent mainland
sites of B. microti transmission. The CT/RI population is
found in Connecticut and Rhode Island, including their
coastal islands of Prudence and Block, as well as Ipswich,
Massachusetts and newly emergent sites in mainland
Massachusetts. Geology, postcolonial faunal and floral
changes, and recent long distance transport events have
all contributed to the current distribution of enzootic
B. microti, but their relative contributions remain to be
fully described.
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