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Abstract

Background: Complexes of cryptic species are common in several taxa and this is also the case in the Anopheles
genus, a group including all known human malaria vectors. The Anopheles albitarsis complex comprises at least
nine cryptic species, some of which are implicated as vectors of human malaria. Several different types of data have
been generated for this species complex such as cytogenetics, alloenzymes, morphological and feeding behavioral,
hybridization experiments, RAPD-PCR and RFLP and mitochondrial and nuclear markers. Studies focused on its
postzygotic isolation are still somewhat rare in the literature despite their importance to understand the speciation
process and the level of gene flow potentially occurring among the different sibling species.

Methods: Hybridization experiments between Anopheles albitarsis s.s. and Anopheles marajoara, as well as
backcrosses between hybrids and Anopheles albitarsis s.s., were performed using the induced mating technique.
Results were compared to intraspecific crosses. Larva-to-adult viability and sex ratio were also assessed.

Results: Male hybrids show very low insemination rates and nearly complete sterility, apparently due to
abnormalities in their reproductive organs. Evidence of partial sterility among the hybrid females was also observed.

Conclusions: Our data indicated that Anopheles albitarsis s.s. and Anopheles marajoara show a high level of
postzygotic isolation with a strong hybrid male sterility. This result is consistent with the Haldane's rule which states
that in interspecific crosses the heterogametic sex is the first to be affected. However, the fact that the females are
not completely sterile raises the possibility of introgression between these two siblings species.
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Background
Complexes of cryptic species are common in several
taxa [1,2] and this is the case in the Anopheles genus, a
group including all known human malaria vectors [3,4].
A better understanding of cryptic species can be epide-
miologically relevant since it could offer clues about
differential vector capacity (reviewed in [5]).

Anopheles albitarsis s.l. Lynch-Arribalzaga is widely dis-
tributed from northern Guatemala to northern Argentina
[6] and is a complex of cryptic species that includes some

* Correspondence: jbento@ioc fiocruz.br

"Deceased

'Laboratério de Fisiologia e Controle de Artrépodes Vetores, Instituto
Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brasil

“Laboratorio de Entomologia, Instituto de Biologia do Exército, Rio de
Janeiro, RJ, Brasil

Full list of author information is available at the end of the article

( BioMVed Central

of the most important regional vectors in America [7-9].
The first indication of An. albitarsis s.l. occurring as a
species complex was described by Kreutzer et al. [10].
Since then, several approaches were applied to investi-
gate and characterize the species members: cytogenet-
ics, alloenzymes, morphological and feeding behavioral
analysis, hybridization experiments, RAPD-PCR and
RFLP and DNA sequencing of mitochondrial and nu-
clear markers [6,10-20].

Current knowledge suggests that the An. albitarsis com-
plex comprises at least nine species: (i) An. albitarsis s.s.
Lynch-Arribalzaga or An. albitarsis A, found in Argentina,
Paraguay and Brazil (States of Bahia, Parand, Santa Catarina,
and Sao Paulo); (ii) Anopheles oryzalimnetes Wilkerson
& Motoki or An. albitarsis B, widespread in Paraguay
and probably the species with the wider geographical
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distribution in Brazil (States of Bahia, Ceard, Espirito
Santo, Mato Grosso, Pard, Parand, Rio de Janeiro and
Sao Paulo); (iii) Anopheles marajoara Galvao & Damasceno
or An. albitarsis C, found in Paraguay, Venezuela and
in Brazil (States of Amapd, Amazonas, Mato Grosso, Par3,
Rondoénia and Sido Paulo); (iv) Anopheles deaneorum
Rosa-Freitas or An. albitarsis D, distributed in northern
Argentina and in Brazil (States of Acre, Mato Grosso,
Parand and Rondonia); (v) Anopheles janconnae Wilkerson
& Sallum or An. albitarsis E, found in northern Brazil
(States of Amapd, Pard and Roraima) and in Venezuela;
(vi) An. albitarsis F, in Colombia, Venezuela and Trinidad;
(vil) An. albitarsis G, exclusive to Brazil (States of Amazonas,
Bahia and Pard); (viii) An. albitarsis H, also restricted to
Brazil (States of Mato Grosso and Rondoénia); and (ix) A#n.
albitarsis 1, found in Colombia and Venezuela [9,17,20-24].
Moreover, the number of species within the Anopheles
albitarsis complex can be even higher as An. deaneorum
and An. marajoara might include more than one sibling
species [9,25].

In an evolutionary context, analysis of the reproductive
isolation between cryptic species of insect vectors allows
the identification of potential gene flow among siblings. In
addition, laboratory crossing experiments are likely to re-
veal the exchange of genes potentially involved in vectorial
capacity or insecticide resistance, being therefore import-
ant for vector control programs [16,26-28]. In the
Albi tarsis species complex only two hybridization studies
between siblings have been published so far [16,29]. This
is probably due to the difficulty of keeping these species in
captivity, since neotropical Anopheles albitarsis species
rarely perform free mating crosses under laboratory condi-
tions. In 1991, Klein et al. [29] observed male hybrid ster-
ility in crosses between An. deaneorum and a species that
they called “B”, later defined as An. marajoara (Richard C.
Wilkerson, personal communication). In the second study,
Lima et al. [16] observed that hybrid males from crosses
between An. albitarsis s.s. and An. deaneorum showed
very low insemination rates and suggested that the abnor-
malities in their reproductive organs could explain this. In
the present work, we performed crossing experiments
between two Brazilian sibling species of the An. albitarsis
complex, An. albitarsis s.s. and An. marajoara. We used
these two species in order to analyze the degree of repro-
ductive isolation between them and compare with previ-
ous ones. The present work represents an interesting
study from an evolutionary point of view of An. albitarsis
complex and is epidemiologically relevant focusing a
Neotropical malaria vector such as An. marajoara.

Methods

Mosquito samples

We analyzed specimens of An. albitarsis s.s. from a col-
ony maintained at the Instituto de Biologia do Exército

Page 2 of 8

(Rio de Janeiro State, Brazil) following the protocol de-
scribed by Horosko et al. [30] with slight modifications.
The colony was established in 1993 with mosquitoes
collected from Massaranduba municipality (26° 36" 39"
S, 49° 0" 33" W) (Santa Catarina State, Brazil) [16]. This
species was treated as a control in crosses since the
specimens used were obtained from a stable colony [16].
In addition, An. marajoara females were collected in
Mazagio municipality (0° 6" 58" S, 51° 17" 10" W) (Amapa
State, Brazil). Specimens were identified as Anopheles
albitarsis s.l. according to Faran & Linthicum [31] and
were considered as An. marajoara based on Conn et al.
[7]. The identification was then confirmed by DNA bar-
coding (see below). Laboratory rearing of An. marajoara
was performed according to Lima et al. [16]. The An. mar-
ajoara specimens belonging to F1-F3 generations were
used in crossing experiments. All procedures were carried
out under controlled conditions: 27°C for the immature
stages (larvae to pupae) and 25°C and 70% relative humid-
ity for the adult mosquitoes.

Identification by DNA barcoding

DNA barcodes (658 bp of the mtDNA Cytochrome c
Oxidase — COI) were generated for 11 An. albitarsis s.s.
and 12 An. marajoara specimens (Accession numbers:
KM391793 to KM391815). DNA extraction was carried
out as in Jowett [32] and PCR amplification using the
LCO1490 and HCO2198 primers of Folmer et al. [33].
Sequencing reactions were carried out in both directions
with the Big Dye Terminator Kit and ABI 3730 automated
sequencer (PE Applied Biosystems). Sequences were edi-
ted in Bioedit 7.2.3 [34] and the delineation of species
within Albitarsis group by phylogenetic analysis was
carried out using specimens from each distinctive COI
lineage found by NJ-K2P analysis. The sequences added
were: An. albitarsis H: GenBank: DQ076222, DQ076223,
DQO076224; An. deaneorum: GenBank: DQ076226, DQ07
6227, DQ076229, DQO076230; An. albitarsis G: GenBank:
DQO076221, DQO076225; An. oryzalimnetes: GenBank:
DQ076210, DQ076211, DQ076213, DQ0762105. We used
the Kimura-two-parameter distance model (K2P), Neighbor-
joining analysis (NJ) and 1,000 replicates to produce an
unrooted consensus tree.

Crossing experiments

Methods for crossing experiments were performed as de-
scribed in Lima et al. [16]. Males and females were sepa-
rated every twelve hours to guarantee the collection of
virgin females [35]. Females were fed according to the
protocol approved by the Fiocruz Ethical Committee on
Use of Animals (CEUA) and subjected to the artificial-
mating technique [36]. Four days after mating, the females
were placed in a plastic device (8.5 cm-diameter x 4.5 cm-
depth) closed with a nylon mesh and submerged in a bowl
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Figure 1 Phylogenetic tree generated using GeneBank sequences and specimens of An. marajoara and An. albitarsis s.s. The lineages are
represented in different colors: 1) An. albitarsis H in blue, 2) An. deaneorum in pink; 3) An. albitarsis G in yellow; 4) An. oryzalimnetes in black;
5) An. albitarisis s.s. in green and 6) An. marajoara in red. Bootstrap values were obtained with 1,000 permutations. Only values above 50% are shown.
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(18 cm-diameter x 7.5 cm-depth) filled with dechlorinated
water. The internal surface of the plastic device was covered
with moist filter paper to keep eggs from drying out. After
two days, the spermathecae (from alive and dead females)
were dissected and examined by light microscopy; mating
success was scored based on the presence of sperm.

Eggs were counted after forced egg laying. Two days
after hatching, larvae were counted and transferred to
water-filled plastic bowls. Every two days numbers of
larvae and living pupae were counted. The immature
stages were reared following the same protocol already
mentioned for the colony maintenance. Adults were
used in the subsequent crosses. Intra and interspecific
mating experiments were performed and the hybrid
offspring were used in backcrosses according to Lima et
al. [16]. The parameters evaluated for each crossing
experiment were: the number of inseminated females,
the total number of eggs, hatching eggs, larvae, pupae
and adults, and also the male and female ratio.

Evaluation of the male genital apparatus

Male genital structures of the offspring were dissected
and examined using stereoscopy microscopy. External
and internal genital structures were mounted in slides
with saline solution, and in some cases, were stained
using the buffer reference standard pH =4.0 (Sigma) for
a better visualization. Chi-square statistical analysis was
estimated by the program GraphPad Prism 5.0 [37].

Results

DNA barcoding

Figure 1 shows a phylogenetic tree with six clusters
clearly defined: 1) An. albitarsis H; 2) An. deaneorum; 3)
An. albitarsis G; 4) An. oryzalimnetes; 5) An. albitarisis
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s.s. and 6) An. marajoara. The latter group included all
individual sequences of An. marajoara showing that we
used a pure lineage on our crossing experiments.

Viability assessment

Table 1 shows larvae-to-adult viability of the offspring from
intraspecific and interspecific crosses between An. albitarsis
s.s. and An. marajoara, and also backcrosses of these hy-
brids with An. albitarsis s.s.. In each case, eight different
crosses were conducted. The hatching number from the
different groups of crosses was highly variable. The two
intraspecific and the interspecific crosses between male
An. marajoara x female An albitarsis s.s. showed very simi-
lar hatching percentages (ranged between 38% and 45%).
Nevertheless, a remarkable reduction on hatching rates was
observed in all backcrosses. Furthermore, crosses between
hybrid males and An. albitarsis s.s. females resulted in null
or near to zero rates. In general, the pupation was a more
homogeneous developmental event than hatching. A sig-
nificant reduction of the larvae viability was observed in
crosses that involved females of An. marajoara, in conspe-
cific crosses of An. marajoara (X*=26.34, df = 1, P < 0.001)
and male An. albitarsis s.s. x female An. marajoara (X =
4.48, df =1, P=0.034). Differing from the dramatically de-
creased hatching in backcrosses, pupation and adult emer-
gence seemed unaffected when hybrid females were used.
Intraspecific and interspecific crosses also resulted in simi-
lar and high percentages of emergence. Finally, we observed
that in all cases the sexual ratio was not statistically differ-
ent from 1:1 indicating similar mortality between genders.

Evaluation of insemination
After oviposition, the eggs were counted and the sperma-
thecae dissected and classified as positive or negative

Table 1 Larvae-to-adult viability of the intraspecific offprings and hybrids between species of the Anopheles albitarsis

complex

Crosses Total of  Hatching Pupation Adult emergence  Alive (%) Males N (%) Females N (%) M/F ratio
eggsN N (%) N (%) N (%)

Intraspecific

JALBx QALB 2128 887 (41.7) 475 (53.6) 392 (82.5) (44.2) 192 (49.0) 200 (51.0) 0.96

SMAR x @MAR 2733 1048 (38.3) 258 (24.6)*** 204 (79.1) (19.5) 85 (41.7) 119 (58.3) 0.71

Interspecific

JALBX @ MAR 3812 2194 (57.6)*** 861 (39.2)* 740 (85.9) (33.7) 404 (54.6) 336 (454) 1.20

EMARX Q@ ALB 2352 1057 (44.9) 555 (52.5) 406 (73.2) (384) 197 (48.5) 209 (51.5) 0.94

Backcrosses

SALB x QHybrid A 1479 143 (9.7)%** 76 (53.1) 57 (75.0) (399 29 (50.9) 28 (49.1) 1.04

JALB x QHybrid B 2489 210 (84)*** 111 (52.9) 78 (70.3) (37.1) 39 (50.0) 39 (50.0) 1.00

JHybrid Ax QALB 1823 0 0 0 0 0 0 0

SHybrid Bx QALB 921 1(0.001) 0 0 0 0 0 0

N, number; (%), percentage in brackets; ALB, Anopheles albitarsis s.s.; MAR, Anopheles marajoara; Hybrid A: resulting of interspecific crosses between JALB x QMAR;

Hybrid B: resulting of interspecific crosses between ¢MAR x QALB.
*P < 0.05; ***P < 0.001.
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Table 2 Insemination rates in crosses between species
of the Anopheles albitarsis complex and their reciprocal
hybrids

Crosses Mated females N Spermathecae * N (%)
Intraespecific

JALBx QALB 125 65 (52.0)
IMAR X QMAR 166 35 (21.1)**
Interspecific

JALBx @ MAR 168 76 (45.2)
EMAR X QALB 195 35 (17.9%
Backcrosses

AALB x QHybrid A 95 49 (516)
QALB x QHybrid B 111 55 (49.5)
SHybrid Ax QALB 133 2 (1.5)%*
QHybrid Bx QALB 98 6 (6.1)%**

N, number; (%), percentage in brackets; *positive spermathecae (with sperm in
its interior); ALB, Anopheles albitarsis s.s.; MAR, Anopheles marajoara; Hybrid A:
resulting of interspecific crosses between 3'ALB x $MAR; Hybrid B: resulting of
interspecific crosses between ¢MAR x QALB. **P < 0.01; ***P < 0.001.
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depending on the presence or lack of sperm, respectively.
Females with positive spermathecae were considered in-
seminated. Table 2 shows the number of mated and posi-
tive females for each performed cross. As expected, a
higher percentage of inseminated females was observed in
crosses involving An. albitarsis s.s. males since they result
from induced mating, which introduces a level of selection
[38]. The low An. marajoara male effectiveness can be at-
tributed to the use of F1 and F2 mosquito generations not
adapted to laboratory conditions. The crosses with An.
marajoara males were really challenging, even compared
with other Anopheline species, such as An. deaneorum.
The number of inseminated females was significantly
lower in crosses with hybrid males than with An. albitarsis
s.s. In some cases, females mated with interspecific males
showed immotile sperm or even agglomerated sperm with
dark pigmentation (data not shown).

Figure 2 shows comparisons between different crosses
using the normalized insemination rates estimated from
Table 2 data. Normalization was carried out using results
from the intraspecific cross of An. albitarsis s.s.. Figure 2A
illustrates the normalized insemination rates involving
females of different genotypes crossed to An. albitarsis s.s.
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Figure 2 Normalized insemination rates. (A) Crosses between females of different genotypes and Anopheles albitarsis s.s. males and (B) between
males of different genotypes and Anopheles albitarsis s.s. females. **P < 0.01; ***P < 0.001.
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males. In all cases, the difference between female insemin-
ation rates was not significant, regardless of their genotype.
The results observed for the two types of hybrid females
were expected since they have a similar genotype. Figure 2B
shows the normalized insemination data of An. albitarsis s.s.
females mated to males of different genotypes. Comparing
to the intraspecific cross, a significant reduction of insemin-
ation rates was observed in all other crosses. Anopheles
marajoara males inefficiently inseminate An. albitarsis s.s.
females (P<0.01) and hybrid males performed even less
successfully (P<0.001). However, insemination rates of
crosses using both types of hybrid males did not differ
significantly. Although some females inseminated by
hybrid males laid eggs, their viability was null (see Table 1).

Figure 3 shows the male reproductive organs of An.
albitarsis s.s. and An. marajoara (Figure 3A and B, re-
spectively) and hybrids resulted from interspecific crosses
(Figure 3C-E). Invariably, abnormalities were detected
only in male hybrids. Malformations consisted of reduced
testis with long and thin vas deferens (Figure 3C), abnor-
mal testis with a lobular structure and a malformed and
irregular vas deferens (Figure 3D) or fused testis with
short vas deferens (Figure 3E).

Discussion

Variable patterns of reproductive isolation are observed
between pairs of siblings of Anopheles species complexes.
For example in the An. gambiae complex, two molecularly
distinguished forms, known as M and S, do not show re-
duction in hybrid males and females’ viability or fertility.
This result suggests that other mechanisms, apart from
postzygotic developmental barriers [39], are acting in
this speciation process. In this sense, it has been claimed
that differences in wing-beat frequencies recognition plays
a relevant role [40]. Hybridization between Amnopheles
minimus A and C, from the An. minimus complex, results
in fertile males and females with normal ovaries [41].
However, crosses between An. minimus A and E produce
sterile males and normal females [42].

Concerning the postzygotic isolation mechanisms, the
hybrid sterility seems to be one of the first outcomes
observed in anophelines [16,29,42-46]. Crosses between
An. albitarsis s.s. and An. marajoara produced viable
hybrid offspring from both genders in normal rates sug-
gesting the absence of prezygotic isolation mechanisms.
However, our results point to a high degree of post-
zygotic reproductive isolation between these sibling spe-
cies. The observed pattern of crosses fits the Haldane’s
rule, which states that in interspecific crosses the hetero-
gametic sex shows sterility or viability problems before
the homogametic one [47]. Eggs resulted from crosses
involving hybrid males do not hatch at all. This indicates
that the reproductive isolation is a consequence of males’
sterility, possibly due to abnormalities in their reproductive
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Figure 3 Male reproductive organs showed malformations on
testis and vas deferens. (A) Anopheles albitarsis s.s., (B) Anopheles
marajoara and (C-E) hybrids.
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organs. Although hybrid females exhibit a similar degree of
insemination when compared to An. albitarsis s.s. control,
the hatching percentage of their eggs also suggests post-
zygotic isolation. Moreover, this isolation phenomenon
seems to have a lower effect in females than in males.
Interestingly, the development rate of the hybrid females’
offspring is comparable to the intraspecific An. albitarsis
s.s. control. This indicates some degree of hybrid females’
infertility, a potential further point of control of inter-
specific gene flow, at the embryonic stage. In the An.
albitarsis complex, previous analysis of reproductive isola-
tion between An. albitarsis s.s. and An. deaneorum, also
revealed postzygotic isolation due to sterility of hybrid
males [16]. Differing from the present observations, those
hybrid males exhibited different levels of sterility. In that
case, hybrid males carrying an An. deaneorum X chromo-
some were the most affected. Moreover, An. deaneorum
males were less successful in inseminating An. albitarsis
s.s females than their conspecific females, whereas no
significant difference was observed in the reciprocal
cross. This result suggests that in areas where both spe-
cies occur in sympatry, asymmetrical introgression might
happen. This asymmetry in the hybrid sterility is frequent
in interspecific crosses of closely related species [48]. In
spite of that, our results suggest an established and effect-
ive barrier to this interspecific introgression considering
the almost complete failure of both An. albitaris s.s. and
An. marajoara males. Further crossing experiments and
studies of natural populations using molecular markers
might help to determine the genetic relationships and the
gene flow among siblings of the Albitarsis complex that
includes some of the malaria vectors of America.

Conclusions

Our data confirm that An. albitarsis s.s. and An. marajoara
are distinct species of the Albitarsis complex with a high
degree of postzygotic reproductive isolation between them.
Hybrid males show sterility probably caused by abnormal-
ities in their reproductive organs and a subtle effect was
observed in the hybrid females. This result is consistent with
the Haldane’s rule which states that in interspecific crosses
the heterogametic sex is the first to be affected. The fact that
the females are not completely sterile raises the possibility of
introgression between these two siblings species.
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