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Abstract

important malaria vector.

Background: Anopheles sinensis is one of the most important malaria vectors in Asian countries. The rapid spread
of insecticide resistance has become a major obstacle for insecticide-based strategies for vector control. Therefore,
it is necessary to prepare an insecticide-resistant strain of An. sinensis to further understand the insecticide resistance
mechanisms in this species to facilitate genetic approaches to targeting the insecticide-resistant population of this

Methods: An. sinensis mosquitoes were collected from regions where pyrethroid resistance had been reported.
The mosquitoes were subjected to continuous pyrethroid selection after species confirmation, and the forced
copulation method was used to increase the mating rate. In addition, the knockdown-resistance (kdr) mutation
frequencies of each generation of An. sinensis were measured; and the metabolic enzyme activities of cytochrome
P450 monoxygenases (P450s) and glutathione S-transferases (GSTs) were detected.

Results: The identification of field-captured An. sinensis was confirmed by both morphological and molecular
methods. The population of An. sinensis exhibited stable resistance to pyrethroid after continuous generations of
pyrethroid selection in the laboratory with high kdr mutation frequencies; and elevated levels of both P450s and
GSTs were significantly found in field selected populations comparing with the laboratory susceptible strain. So far,
the colonised strain has reached its eleventh generation and culturing well in the laboratory.

Conclusions: We colonised a pyrethroid-resistant population of An. sinensis in the laboratory, which provides a
fundamental model for genetic studies of this important malaria vector.
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Background

Anopheles sinensis (Diptera, Culicidae) is one of the major
malaria vector mosquitoes in China and other Asian
countries [1-4]. This species is an important member of
the An. hyrcanus group (Diptera, Culicidae) with similar
morphology [5]. Increased attention has been paid to this
species due to its wide distribution, high abundance and
modest susceptibility to malaria parasites reported in pre-
vious studies [6,7].
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Vector control is defined by the World Health
Organization (WHO) as one of the four basic and most ef-
fective measures to prevent malaria transmission and re-
mains a component of malaria control strategies, including
in the elimination stage [8]. The intervention based on in-
door residual spraying (IRS) is the most widely adopted
method in almost all regions in China at risk of malaria
transmission. Pyrethroids are often used for IRS due to their
relative long persistence and low toxicity in comparison with
the other three major classes of available insecticides [9].
However, the substantial increase in pyrethroid-based
malaria vector control in the past decade has resulted in the
rapid spread of resistance among malaria vectors. Further-
more, the widespread use of these compounds for
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agricultural purposes has further accelerated the develop-
ment of insecticide resistance [10]. High-level resistance to
pyrethroids has been reported in An. sinensis, especially in
central China, in recent years, which has placed current na-
tional efforts of malaria elimination at risk [11]. As a result,
improvements to the surveillance of and response to insecti-
cide resistance in An. sinensis in China are urgently needed
and must be based on a greater understanding of the mo-
lecular mechanisms underlying this resistance.

Genetic approaches, such as genetic linkage studies and
QTL mapping [12-14], are useful tools for understanding in-
secticide resistance mechanisms and developing a method
for monitoring insecticide resistance in both the susceptible
and resistant strains. Our laboratory has successfully colo-
nised the susceptible An. sinensis strain; more than five hun-
dred generations of this strain have never been exposed to
any insecticide, dating back to the 1980s. To prepare an
insecticide-resistant strain in the laboratory, in 2013, we col-
lected wild An. sinensis from areas with reports of high
resistance levels in recent years [15] for use in breeding
field-derived, insecticide-resistant An. sinensis in the labora-
tory. The knockdown-resistant (kdr) mutation frequencies
among continuous generations, and the metabolic enzyme
activities were also investigated.

Methods

Mosquito colonisation

From June to July in 2013, living engorged female
anopheline mosquitoes (FO) were captured gently with a
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mouth aspirator in pigsties near a rice field in Yixing
County (119°38" E, 31°16" N), Jiangsu Province, China,
where Plasmodium vivax has been the only prevalent
species of malaria in recent years (Figure 1). Subse-
quently, all of the mosquitoes were transported to the
insectary of the Key Laboratory on Technology for
Parasitic Disease Control and Prevention, Ministry of
Health, Jiangsu Institute of Parasitic Diseases (JIPD) in
Wouxi, Jiangsu Province, China. The insectary is main-
tained at 26+ 1°C, 70-80% relative humidity with a
12 h day/night lighting regime, and the mosquitoes were
provided with 10% (w/v) glucose in water. Distilled
water-saturated filter paper was placed in the mosqui-
toes’ cage, and the females were allowed to oviposit.
Subsequently, the eggs were morphologically identified
to avoid potential contamination with the other similar
anopheline mosquitoes of the An. hyrcanus group, such
as An. anthropophagus (Diptera, Culicidae), which
closely resembles An. sinensis in the adult stage but dif-
fers morphologically in the egg stage. All families identi-
fied as An. sinensis were pooled, and larvae were reared
to adults (first generation, F1). The larvae were fed
finely ground tropical fish food (TetraMin, Germany).
Newly emerged female and male adults were placed in
separate containers to ensure that mating did not
take place prior to exposure to insecticides. Randomly
selected F1 adults were identified using the rDNA ITS,-
based method to further confirm the species’
identity [16].

Figure 1 Study site for field mosquito collection in 2013.
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Pyrethroid-resistance selection

All the 3- to 5-day-old newly emerged female and male
adults, approximately twenty-five mosquitoes per exposure
tube, from each generation were exposed to 0.05%
deltamethrin-treated papers for 1 h according to the stand-
ard WHO bioassay procedure (WHO, 1998). WHO (2013)
criteria were used to classify the resistance status of the
tested mosquito population after 24 h recovery from the in-
secticide [17]. All of the male and female survivors 24 h
post-exposure were placed in separate cages, and the fe-
males were left for blood-feeding followed by forced mating
with the male survivors of similar age. After two days, water
was added to the filter paper, and female mosquitoes were
allowed to oviposit; second bloodmeals were offered to allow
the females to oviposit again [18]. Eggs from each generation
were reared to adults and selected for resistance to delta-
methrin in the same manner until a stable resistance level
was reached, after which insecticide selection with a gener-
ation interval was used.

Forced mating

To overcome the obstacle of the low rate of mating
resulting from the shift to the new environment among
the field-collected mosquitoes in the laboratory, the
forced mating method based on MR4 was used to in-
crease the mating rate [19]. Briefly, the female mosqui-
toes living after 24 h recovery from the exposure to
deltamethrin were blood-fed with an anaesthetised
mouse. The engorged female mosquitoes were anaesthe-
tised by ethyl ether 4-5 h post-blood-feed; the well-fixed
males were decapitated to overcome the potential innate
inhibition of their copulatory muscles. The males were
placed at an angle venter-to-venter with the female until
the males clasped the females and mated successfully.

gDNA extraction and kdr genotype identification

The total genomic DNA of individual mosquitoes was ex-
tracted using QIAGEN DNeasy 96 Kits according to the
manufacturer’s instructions. Briefly, one or two mosquito
legs were added to a mixture of 100 puL of Tissue Lysis
Solution and 10 pL of Proteinase K and were incubated at
55°C for 10 min and 95°C for 10 min. Next, 100 pL of
Neutralization Solution T was added to the mixture, which
was then centrifuged at 17,900 x g for 3 min. The super-
natant was transferred to a new tube and stored at —30°C
for species identification and kdr detection. The DNA ex-
tracts of randomly selected F1 mosquitoes were amplified
for species determination using an rDNA-ITS, based
method. PCR products were visualised under ultraviolet
light after electrophoresis using 2% agarose gel stained with
ethidium bromide. DNA extracts of female mosquitoes
from FO to F11 were genotyped individually using a recently
developed TagMan-MGB probe assay for kdr mutation
detection at codon position 1014 of the para-type sodium
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channel [20,21] and run on a LightCycler 480 qPCR ther-
mal cycler (Roche). The PCR conditions were an initial de-
naturation step of 10 min at 95°C followed by 40 cycles of
95°C for 10 s and 65°C for 15 s.

Metabolic enzyme activity detection

The 3-4 days post emergence female mosquitoes alive 24 h
after 60 min exposure to insecticide from F11, and the
mosquitoes knocked down from colonized laboratory
susceptible populations during the 60 min exposure were
selected, to ensure only the fresh mosquitoes were immedi-
ately tested for metabolic enzyme activities. The selected in-
dividual mosquitoes were homogenized with phosphate
KPOy buffer (0.25 M, pH 7.2), and diluted by adding phos-
phate buffer, and then the supernatant was used to test the
enzyme activities of cytochrome P450 monoxygenases
(P450s) and glutathione S-transferases (GSTs) based on our
previously published protocol [22]. Mean absorbance values
for each tested mosquito and enzyme were converted into
enzyme activity and standardized based on the total protein
amount. All measurements were performed in duplicate.

Statistical analysis

The Chi-square test was used to compare the mortalities
between the sexes and the generations. The t-test was
used to determine whether monooxygenases and GST
activity varied between the laboratory strain and the field
An.sinensis mosquitoes.

Ethical approval of animal use

The animal experiments were approved by the Jiangsu
Institutional Animal Care and Use Committee (IACUC),
according to the guideline of administration of lab ani-
mals issued by the Ministry of Science and Technology
(Beijing, China). All animal procedures were approved
by the Institutional Review Board (IRB00004221) of
Jiangsu Institute of Parasitic Diseases (Wuxi, China).

Results

Mosquito species confirmation and colonisation

From June to July, we collected more than 2000 engorged
anopheline mosquitoes. All of the batches of eggs laid by the
parents (FO) were morphologically confirmed as An. sinensis,
which exhibit a relatively wider float than the considerably
narrower one in An. anthropophagus (Figure 2). Anopheles.
anthropophagus has historically been distributed from lim-
ited areas in Jiangsu Province. The randomly selected F1
adults were further confirmed as An. sinensis using the
rDNA-ITS, method [16].

Pyrethroid resistance selection

Male and female F1 An. sinensis mosquitoes were separ-
ately tested with a standard WHO bioassay, and the re-
sistance status of both sexes was classified as “Resistant”.
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Figure 2 Morphological characteristics of the eggs of An. sinensis and An. anthropophagus, observed under a normal dissection
microscope. (A). The wide float in An. sinensis. (B). The narrow float in An. anthropophagus.
A\

As shown in Table 1, the mortality decreased significantly in
males (x2=51.79, v=2, p<0.01) and females (x2=28.07,
v=2, p<0.01) after the deltamethrin selection process from
F1 to F3. After F4, both the male and female populations ex-
hibited zero mortality. The females were more resistant to
the deltamethrin treatment than the males in the F1 (x2 =
1698, v=1, p<0.01) and F2 (x2 =22.52, v=1, p <0.01) gen-
erations; however, no significant difference was observed in

Table 1 Mortality upon exposure to deltamethrin in An.
sinensis populations

Population Sample size (n) Mortality + SE (%)*
Field-F1 Male 570 14.08 £ 048
Female 470 6.21£021
Field-F2 Male 469 11.86+2.21
Female 495 3.66+0.98
Field-F3 Male 402 0.84+0.27
Female 510 0.27+0.12
Field-F4 Male 350 0.00
Female 405 0.00
Field-F5 Male 251 0.00
Female 283 0.00
Field-F7 Male 262 0.00
Female 292 0.00
Field-F9 Male 151 0.00
Female 162 0.00
Field-F11 Male 135 0.00
Female 148 0.00
Laboratory** Male 100 100
Female 100 100
Control*** 40 0

*Mortality refers to the percentage of mosquitoes that died 24 h after recovery
from a 60 min exposure to the insecticides. Resistance was defined as
mortality <90%, probable resistance was defined as mortality 90-98%, and
susceptibility was defined as mortality >98%. **The laboratory mosquitoes
included the susceptible colony, which has been cultured in the insectaria for
more than 500 generations and has never been exposed to any insecticide.
***Forty mosquitoes of laboratory strain were exposed to filter paper without
insecticide for 60 min, and mortality was recorded after the 24 h

recovery period.

the F3 generation (x2 =0.55, v=1, p > 0.05), and both sexes
were completely resistant to deltamethrin after F4. The la-
boratory An. sinensis mosquitoes, by contrast, were all killed
after exposure to the same dose of deltamethrin (Table 1).

To date, this colonised strain has reached its eleventh
generation. An. sinensis mosquitoes from F1 to F5 were
tested with the standard WHO bioassay, followed by the
same treatment in F7, F9 and F11, when exhibited stable
resistant to the deltamethrin (Table 1).

kdr genotype

Two types of kdr mutations at codon position 1014 of the
para-type sodium channel gene among the randomly se-
lected female field An. sinensis were detected (Table 2):
one mutation from TTG to TTT that causes a leucine to
phenylalanine substitution (L1014F) and one mutation
from TTG to TGT that causes a leucine to cysteine substi-
tution (L1014C). The original population collected from
the field (FO) had a high mutation frequency (98.73%),
with a dominant kdr mutation of L1014F. Similarly, all of
the subsequent generations from the field F1 to F4, F5
and F7 after the deltamethrin selection exhibited a high
mutation frequency, and the individuals in F2, F3, F4, F5
and F7 exhibited a 100% mutation frequency. The domin-
ant kdr mutation was L1014F in the F3 generation. How-
ever, no kdr mutation was detected in the susceptible
laboratory strain (Table 2).

Metabolic enzyme activities

100 and 60 randomly selected female An.sinensis from
laboratory susceptible strain and F11, respectively, were
tested for metabolic enzyme activities. The median GST
activity of the lab strain was 0.231 pmol ¢cDNB/min/mg
protein (ranging from 0.17 to 0.31), and the median
P450 activity was 25.5 pmol 7-HC/min/mg protein (ran-
ging from 19.9 to 31.9). Comparing with the lab suscep-
tible strain, significantly elevated levels of both the GSTs
and P450s were found in field-selected mosquitoes, F11
(Figure 3).
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Table 2 Distribution of kdr allele frequencies in An. sinensis populations
Population Wild type Mutation Mutation
TTG/TTG TTT/TTT TGT/TGT TTT/TGT TTG/TGT TTG/TTT I!':Z';*“e“‘y
Field-FO 0 102 14 38 0 4 98.73
Field-F1 0 88 16 48 4 6 96.91
Field-F2 0 58 60 24 0 0 100
Field-F3 0 102 0 0 0 0 100
Field-F4 0 70 0 0 0 0 100
Field-F5 0 81 0 0 0 0 100
Field-F7 0 68 0 0 0 0 100
Field-F9 0 72 0 0 0 0 100
Field-F11 0 78 0 0 0 0 100
Laboratory 63 0 0 0 0 0 0
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Figure 3 Boxplots of metabolic enzyme activities in An. sinensis from laboratory susceptible strain and field-selected, F11. The median
activity is shown by horizontal bar; the upper and lower quartiles is shown by the box, and the full range of the data set is shown by the vertical

lines. *p < 0.05; **p < 0.01. A: P450 monooxygenases; B: GSTs.
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Discussion

The establishment of resistant strains is essential for further
understanding the mechanism of the development of in-
secticide resistance among insects, including anopheles
mosquitoes; the colonised resistant strains could also be
used in testing new malaria interventions/tools that might
counter physiological resistance among these vector spe-
cies. As we already possessed the deltamethrin-susceptible
strain of An. sinensis in the laboratory, we previously
attempted to induce and then select the deltamethrin-
resistant strain from this colony. However, the median le-
thal concentrations (LCsps) after generations of exposure to
deltamethrin in 3rd and 4th instar larvae mosquitoes de-
creased to the original level after only a gradual 1-3-fold in-
crease over several generations. This phenomenon differed
greatly from the insecticide selection in other laboratory
colonised species, Culex pipiens pallens, in which the LC50
to deltamethrin rapidly increased to approximately five-
hundred times the original value after ten continuous gen-
erations of exposure [23]. The distinctly different outcomes
of deltamethrin selection between An. sinensis and Culex
pipiens pallens may be due to the species variation, a possi-
bility that requires further investigation. Compared with
the laboratory colony, wild mosquito populations are under
continuous selection pressure from insecticide-associated
activities related to public health and agriculture [24,25]. As
a result, the susceptible individuals in these populations de-
crease while resistant individuals increase [26]. The annual
report from vector monitoring and surveillance systems
demonstrated that a high level of insecticide resistance in
wild populations has developed. Therefore in the present
study, we collected wild An. sinensis and applied deltameth-
rin as a selection agent instead of applying the selection
process to the laboratory colony.

To our knowledge, this is the first description of select-
ing for deltamethrin resistance and maintaining an An.
sinensis colony by forced mating. As has been well estab-
lished, the greatest obstacle to natural mosquito colonisa-
tion is the low mating rate due to the switch from the
natural environment to the laboratory [27]; the mosqui-
toes prefer to swarm in open areas rather than mate in
narrow cages, especially in the first several generations. In-
deed, we failed to colonise this species in 2012 because
our specimens failed to produce sufficient progeny after
several generations of selection by insecticides. To over-
come this difficulty, the forced mating method was used
in the present study. The forced mating method is still be-
ing used to maintain the colony due to the amount of the
population. It is important to note that healthy males and
females are critical for successful mating. Other practices
can also be helpful, including allowing the engorged fe-
male mosquitoes at least 3—5 h of digestion time prior to
mating instead of mating immediately after blood feeding
and using males of a similar age or younger than the
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females. In the addition, although a bloodmeal feeding to
females prior to artificial mating may not be necessary,
previous research has indicated that the engorged abdo-
men of the female facilitates forced copulation [28].

Given that the wild mosquitoes already exhibited
a high level of resistance to pyrethroids, indicating a very
low proportion of susceptible individuals living in the
natural populations, we were not surprised to find that
the mortality of the progeny of the wild An. sinensis
reached zero after only three continuous generations of
selection by removing the susceptible individuals in the
population. The proportions of both male and female
progeny originating from the natural populations tended
to increase with deltamethrin resistance after selection
by the insecticide. The female cohorts in the first two
(F1 and F2) selected generations exhibited markedly
higher levels of resistance than their male counterparts,
which demonstrated a potential distortion based on the
sex-linked factor associated with resistance. However, it
should be noted that selection for resistance after the
third generation (F3) revealed high levels of survival
among females as well as males, which was also sup-
ported the results of a previous study on insecticide se-
lection in field-collected An. fumestus, which is an
important malaria vector in Africa [29].

The mutation at position 1014 causing a change from leu-
cine to either phenylalanine (L1014F) or serine (L1014S),
conferring knockdown-resistance (kdr), was the most com-
mon among the identified point mutations in the para-type
sodium channel gene in anopheline mosquitoes associated
with pyrethroid resistance [22,30]. In the present study, the
natural population (FO) of An. sinensis included a large sub-
population with the kdr mutation, among which L1014F
and L1014C were identified. However, we did not detect any
L1014S mutation, unlike previous reports on An. sinensis
populations from other regions [31]. Furthermore, the kdr
allele (TTG to TTC) leading to L1014F, which was previ-
ously observed in central China, was not detected [32],
which indicates that the kdr mutation might be largely de-
termined by sampling factors and might differ markedly in
different areas. The dominant kdr mutation was the L1014F
mutation during the process of selection, with an exception
observed only in the F2 generation, consistent with previous
results in Culex pipiens pallens mosquitoes subjected to
deltamethrin selection [33]. We did not detect any kdr
mutation in the laboratory mosquitoes susceptible to
deltamethrin compared with the resistant-phenotype field
mosquitoes with high kdr mutation status, suggesting that
the kdr mutation might play an important role in the for-
mulation of insecticide resistance in this species. However,
the continuous increasing level of resistance from F2 to
the subsequent generations despite the 100% kdr mutation
frequencies achieved as early as F2 suggests that other is-
sues are also involved in insecticide resistance in addition
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to the kdr. In the present study, we found both the levels
of enzyme activity in P450s and GSTs were elevated in
field insecticide-selected populations, with comparison to
laboratory susceptible stain, in which more significantly
elevation was found in P450s, supported by the recent
studies in the field An. sinensis in central China [34,35],
suggesting the metabolic detoxification especially the
modification of P450s activity also play important role in
the deltamethrin resistance in An. sinensis, besides the kdr
mutation [36,37]. The colonised population of An. sinensis
provides a valuable tool for further genetic approaches,
e.g. to screen for the major gene loci among P450s confer-
ring the deltamethrin resistance via QTL mapping using
this colonised population and the susceptible strain, and
to develop the subsequent monitoring method for insecti-
cide resistance detection in this important species.

Conclusions

The established colonised population of An. sinensis from
the field exhibited a high resistance level to deltamethrin
with the dominant kdr mutation allele L1014F and elevated
detoxification enzyme activities. This population serves as a
valuable research tool for future genetic studies in this im-
portant malaria vector to further elucidate the mechanism
of insecticide resistance, and also for testing new malaria in-
terventions/tools that might counter physiological resistance
in this species.
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