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Abstract

Background: Giardia is now considered the most common enteric parasite in well cared for dogs and cats in
developed countries. The ecology, epidemiology and clinical impact of infections with this parasite in such animals
is still not fully understood due to variable results across different studies.

Methods: Faecal samples were collected between 2009 and 2012 from privately owned cats and dogs in Germany
presented to local veterinarians for a variety of reasons. Giardia positive samples were identified by microscopy and
coproantigen methods. Total faecal DNA was extracted from Giardia positive samples and multilocus genotyping
methods (185 rDNA, 3-giardin, GDH) were applied. Relationships between host age, sex, and breed, season of
presentation and the different species of Giardia detected were assessed.

Results: A total of 60 cat and 130 dog samples were identified as Giardia positive. Potentially zoonotic Giardia
was identified in both animal species. Cats had a similarly high rate of infection with the G. duodenalis and
G. cati. Cats less than 1 year were more likely to have G. duodenalis than cats older than 1 year. Pure breed cats
demonstrated a greater proportion of zoonotic species than mixed breed cats. In samples from dogs, G. canis
(Cand D genotypes) were identified most commonly. Male dogs were more likely to have G. canis (genotype D) than
female dogs. The 18S rDNA PCR protocol was the most successful followed by the B-giardin and GDH (amplifying from
92%, 42% and 13% of samples respectively).

Conclusions: The potentially zoonotic species G. duodenalis and G. enterica were found in cat and dog samples, with
G. duodenalis found in greater numbers; however, this may be due to the detection techniques utilised. Cats appeared
to show a relationship between G. duodenalis and G. cati with age and breed, which may be explained by different
housing habitats for pure and mixed breed cats. The different success rates for the three loci utilised highlights the
usefulness of the 18S locus as a screening tool, as well as the importance of using multiple loci for genotyping to fully
determine the level of multiple infection of Giardia present.
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Background

The only way to achieve a meaningful understanding of
the ecology and epidemiology of Giardia infections is to
obtain more data on the distribution of species and geno-
types in well-defined host populations. A variety of mo-
lecular genotyping tools are available which can be used in
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multilocus studies to produce such data. Interpretation is
not always clear cut and is open to differing hypotheses
but it is only with the accumulation of such data that a
better picture of the ecology of Giardia infections will be
obtained. This is particularly the case for Giardia in com-
panion animals, dogs and cats. Giardia is now the most
common enteric parasite in well cared for dogs and cats in
developed countries [1-3]. This raises questions about the
clinical significance of Giardia infections, per se and in
cases of polyparasitism, and if this varies between different
breeds of hosts [4,5].
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Since dogs and cats are susceptible to different species
of Giardia which vary in zoonotic potential, it is also im-
portant to obtain data on the frequency of infection in
urban areas. Many surveys to date have focused purely
on the assessment of Giardia prevalence in dogs and
cats [2]. Some have attempted to determine the preva-
lence of specific species and their genotypes in various
populations, often with an emphasis on determining
their zoonotic potential [6]. While many studies fre-
quently identify host adapted species as the most preva-
lent species within populations of dogs there are also
contrasting studies where a higher prevalence of poten-
tially zoonotic species have been identified [7-9]. Studies
on cats describe a higher prevalence of potentially zoo-
notic species [2,10]. Many of these studies, however, rely
on a single genetic locus for characterisation of the in-
fections present in these companion animals. There is
already detailed cautionary criticism of such an approach
[6,11,12]. In brief, it is evident that the use of small frag-
ments of highly conserved genetic targets (18S rDNA)
can result in the misidentification of isolates, while pref-
erential amplification of a species at a single genetic
locus can mean that heterogeneous (mixed) templates
are not identified. The present study was undertaken to
provide additional data on the situation in Germany.
Multiple genetic loci (185 rDNA, B-giardin and Glutam-
ate Dehydrogenase (GDH)) were utilised not only with a
view to identify the frequency of zoonotic species in
dogs and cats but also to determine the frequency and
impact of host adapted species on cohorts within this
population of well cared for animals.

A revised taxonomy for the genus Giardia has been
developed over the last few years [13] based on the ori-
ginal host specificity recognised by early taxonomists
and reinforced by more recent genetic characterisation
and molecular epidemiological studies. A summary of
the proposed taxonomic revision for the genus is shown
in Table 1. In the current study the revised species no-
menclature is used; however, where discussion involves
the subtypes within these species the sub-assemblage
terminology is applied as described by Caccio et al. [14].

Table 1 Species of Giardia
Host(s)

Species
G. duodenalis A

Assemblage

Humans and other primates, dogs, cats,
livestock, rodents and other wild animals.

G. enterica B Humans and other primates, dogs, cats,
and some species of wild animals.

G. canis /D Dogs and other canids

G. bovis E Cattle and other hoofed animals

G. cati F Cats

G. simondi G Rats

Adapted from Thompson and Monis [13].
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Methods

Sampling strategy

Between October 2009 and January 2012 faecal samples
from privately owned dogs and cats were routinely ex-
amined for endoparasites by the commercial Veterinary
Laboratory Freiburg (Germany). The distribution of sub-
mitting veterinary clinics is illustrated in Figure 1(a-b).
Animals were presented to veterinarians for a variety
of reasons including gastrointestinal disorders, routine
examination and vaccination or general health checks.
Age, breed and sex data of Giardia positive cats and
dogs provided the basis to analyse any relationships
between these factors and the presence of species of
Giardia. Samples detected as positive for Giardia spp.
were collected from dogs between September 2009 and
March 2011 with sampling occurring continuously
throughout this period. Samples detected as Giardia spp.
positive were collected from cats between October 2009
and February 2012. Due to low numbers of cyst positive
cat samples the study was extended; therefore, collection
occurred more sporadically throughout the sampling
period than for the dog samples.

Faecal examination

For detection of Giardia spp. samples were analysed by
a coproantigen ELISA (ProSpecT® Giardia Microplate
Assay, Remel Europe Ltd., distributed by Sekisui Virotech
GmbH, Germany) as per manufacturer’s instructions or
by sodium acetate formaldehyde SAF technique [15] to
concentrate cysts of Giardia. Samples found positive for
Giardia spp. by the identification of cysts and also by the
coproantigen method were preserved in 70% ethanol for
shipping.

DNA extraction

Samples preserved in 70% ethanol were received at
Murdoch University (Western Australia) in three con-
signments. In total, 60 cat samples and 130 dog samples
were received for Giardia genotyping. Upon arrival at
Murdoch sub-samples were transferred into 1.7 ml
microfuge tubes and pelleted, the supernatant was re-
moved and discarded. Total DNA was extracted from the
pellets using the Maxwell® 16 Tissue DNA Purification
Kit (Promega, Madison, USA) with the Maxwell® 16 SEV
Instrument (Promega) according to manufacturer’s in-
structions. Total DNA extracts were stored at -20°C until
processing.

Amplification of 18S rDNA

Polymerase chain reactions (PCR) were carried out using
1 pl of both 1:4 diluted and neat total DNA template,
2.5 pl of 10 X reaction buffer, 2.5 pl of MgCl, (25 mM),
0.1 ul Tth Plus DNA polymerase (Fisher Biotech Perth,
Australia), 1 pl of ANTPs (10 mM) (Promega), 1 pl of
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(n=60) and (b) Giardia positive dogs (n = 130).

Figure 1 Geographical origin of animals positive for Giardia spp. by SAF technique and copro-antigen test. (a) Giardia positive cats

each primer (10 pM), 5% dimethyl sulfoxide (DMSO)
(Sigma-Aldrich St. Louis, Missouri) and water-ultra pure
grade, to a final volume of 25 pl. The first-round PCR
conditions were: 96°C for 5 min for 1 cycle, 96°C for
45 s, 50°C for 30 s and 72°C for 45 s for 35 cycles
followed by 72°C for 7 min, using RH11, 5'- CATCCGG
TCGATCCTGCC -3" and RH4, 5'- AGTCGAACCCT
GATTCTCCGCCAGG -3’ from Hopkins et al. [16].
Template for the secondary PCR consisted of 1 ul of first
round PCR reaction. Where a particularly strong or
double banded product was produced a 1:4 dilution of
the primary template that was used. Second-round PCR
conditions were: 96°C for 5 min for 1 cycle, 96°C for
45 s, 55°C for 30 s and 72°C for 45 s for 35 cycles
followed by 72°C for 7 min. For dog samples PCR
primers GiarF, 5'- GACGCTCTCCCCAAGGAC -3" and
GiarR, 5'- CTGCGTCACGCTGCTCG -3 [17] were
utilised. For cat samples a semi nested approach was used
using the primary oligo RH11 as the secondary forward
primer and GiarR as the secondary reverse, allowing for
a longer secondary fragment at the 5° end of the se-
quence, where crucial nucleotide polymorphisms for
G. cati are found.

Amplification of B-giardin gene

PCR reactions used 1 pl of both the 1:4 diluted and neat
DNA template, 2.5 pl of 10 X reaction buffer, 2.5 pl of
MgCl, (25 mM), 0.1 pl Tth Plus DNA polymerase
(Fisher Biotech Perth, Australia), 1 pl of dNTPs (5 mM)
(Promega), 1 pl of each primer (10 pM), 5% DMSO
(Sigma-Aldrich St. Louis, Missouri) and water ultra-pure
grade (Fisher Biotech Perth, Australia), to a final volume of
25 pl. The first round PCR conditions were: 95°C for 5 min
for 1 cycle, 95°C for 30 s, 50°C for 30 s and 72°C for 60 s
for 40 cycles followed by 72°C for 7 min, using primers G7
5'-AAGCCCGACGACCTCACCCGCAGTGC -3 and
G759 5'-GAGGCCGCCCTGGATCTTCGAGACGAC -3’
[18]. Again 1 pl from the first-round PCR was used as tem-
plate for the secondary PCR. Secondary PCR conditions
were: 96°C for 5 min for 1 cycle, 96°C for 45 s, 55°C for
30 s and 72°C for 45 s for 35 cycles followed by 72°C for
7 min using primers 5'- GAACGAACGAGATCGAGGT
CCG -3" and 5'-CTCGACGAGCTTCGTGTT -3’ [19].

Amplification of Glutamate Dehydrogenase gene (GDH)
PCR reactions used 1 pl of both the 1:4 diluted and neat
DNA template, 2.5 pl of 10 X reaction buffer, 2.5 ul of
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MgCl, (25 mM), 0.1 pl Tth Plus DNA polymerase
(Fisher Biotech Perth, Australia), 1 pl of dNTPs (5 mM)
(Promega), 1 pl of each primer (10 pM), 5% DMSO
(Sigma-Aldrich St. Louis, Missouri) and water ultra-pure
grade (Fisher Biotech Perth, Australia), to a final volume
of 25 ul. The primary PCR conditions were: 94°C for
5 min for 1 cycle, 94°C for 30 s, 50°C for 30 s and 72°C
for 60 s for 40 cycles followed by 72°C for 7 min. One
micro litre from the first round PCR reaction was used
in the second-round PCR. Cycling conditions for second
round PCR were: 94°C for 5 min for 1 cycle, 94°C for
30 s, 60°C for 30 s and 72°C for 60 s for 40 cycles followed
by 72°C for 7 min. The primary PCR used primers GDHeF,
5'- TCAACGTYAAYCGYGGYTTCCGT -3'and GDHiR
5'-GTTRTCCTTGCACATCTCC -3'. The secondary PCR
reaction used GDHiF 5'- CAGTACAACTCYGCTCT
CGG -3" and GDHIiR [20].

Sequencing

PCR products were purified using Agencourt” AMPure®
XP PCR Purification (Beckman Coulter) in a 96 well for-
mat as per the manufacturer’s instructions. Sequence reac-
tions were performed using the Big Dye Terminator
Version 3.1 cycle sequencing kit (Applied Biosystems) ac-
cording to manufacturer’s instructions. PCR products were
sequenced with second round primers (1 ul [2.25 pM]).
The cycling conditions for nucleotide sequencing were
1 cycle of 96°C for 2 min and 25 cycles at 96°C for 10 s,
50°C for 5 s and 60°C for 4 min. Reactions were electro-
phoresed on an ABI 3730 48 capillary machine. Sequence
chromatograms were analysed using Sequencher® version
5.2 sequence analysis software (Gene Codes Corporation,
Ann Arbour, MI USA (http://www.genecodes.com).

Species, subtype and genotype identification

To confirm the species (assemblage) sequences were
aligned with published sequences as described previously
[21]. To determine G. duodenalis subassemblage and
subtypes, sequences were aligned and compared with
published sequences as defined by Feng and Xiao [6]
(Table 2). It should be noted that the fragment of the
GDH gene amplified by the protocol utilised here
does not exhibit enough sequence divergence to dis-
tinguish between G. duodenalis subtypes Al and A5
within subassemblage Al In the results this ambiguity
has been noted for isolates falling within this group-
ing at the GDH locus. For G. enterica (assemblage B)
confident grouping was possible to species level only.
Sequence comparisons were made using reference se-
quences for the alloenzyme based subassemblage groups
BIII and BIV [14,22]. Where different sequences con-
tained heterogenous bases or where different loci pro-
duced incongruent results samples were considered to
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Table 2 Subassemblage subtype reference sequences

Species Locus
G. duodenalis* (3-giardin GDH
Subassemblage Al Subtype
Al X14185 AY178735
A5 DQ984131 M84604
Subassemblage All A2 AY072723 AY178737
A3 AY072724 EU278608
A4 EF507657
Subassemblage Alll A6 DQ650649 DQ100288
G. enterica®
Subassemblage Blll AY072726 AF069059
Subassemblage BIV AY072725 AY178738

Reference sequences as described by *Feng and Xiao [6] and *Caccio et al. [14].

contain templates from mixed species, subassemblages
or subtypes.

Statistical analysis

Differences in infection ratios between groups (species,
breeds, sexes) were tested by Chi-squared analysis. To
test whether the prevalence of mixed infections differed
from an independent random distribution pattern, ob-
served frequencies were compared with those expected
under a multiple kind lottery (MKL) model [23] using
Chi-squared analysis. All statistical tests were performed
with JMP® version 4.0.4 (SAS Institute Inc., Cary, NC,
1989-2007), at an alpha level of 0.05.

Results

Sample distribution

A total of 60 cat and 130 dog faecal samples were identi-
fied as Giardia spp. positive by both microscopy and
coproantigen test and submitted to Murdoch University
for genotyping. The geographical origins of these
Giardia positive samples are illustrated in Figure 1(a-b).
Samples from dogs originated from 53 different clinics
with 1 sample as the lowest number submitted by any in-
dividual clinic and 8 as the highest. Samples from cats
originated from 31 different clinics with 1 as the lowest
number submitted by any individual clinic and 7 as the
highest. Data for Giardia negative animals was not avail-
able for this study; the following results are therefore
based on analysis of those samples that were submitted for
genotyping only.

A summary of the distribution of Giardia positive
samples collected for both animal cohorts by sex, breed,
symptoms and age is illustrated (Figure 2(a—d). Symp-
tom assignment (symptomatic or asymptomatic) was
based on clinical history where animals were noted as
displaying any gastrointestinal dysfunction on presenta-
tion to the veterinary clinic.
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Figure 2 Distribution of samples from cats and dogs positive for Giardia spp. by microscopy and coproantigen. Percentage distribution
is shown by: (a) sex, (b) Breed type, (c) Symptoms, (d) Age of animal, (e) Date of submission and (f) Species and mixed species combinations
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Samples from dogs, which were collected continuously
throughout the study, demonstrated a marked fluctuation
in season, with the submission of Giardia positive samples
peaking in the autumn and winter months (Figure 2e).
The cat samples were collected more sporadically
throughout the sampling period; however, there was still a
similar pattern identified with submission of Giardia posi-
tive samples also peaking in the autumn and winter
months (Figure 2e). In addition to the seasonal peaks in
Giardia there appeared to be relationships between the
presence of Giardia cysts with age and with season in
both cats and dogs. In the Giardia positive cats 62% of
samples from younger animals were submitted in the au-
tumn months while 65% of samples from older cats were
submitted in the winter months (X*(3, N = 48) = 8.43,
p =0.04). In Giardia positive dogs overall no such trend
was identified; however, in mixed breed dogs an opposite
trend was identified with 61% of samples from younger
animals submitted in the winter (X*(1, N =39) = 3.13,
p =0.07). Significantly more polyparasitic infections
(samples detected with concurrent infections of Giardia
and one or more other parasites) were detected in dogs
than in cats (X* (1, N = 190) = 5.94, p = 0.02). In addition,
Giardia positive dogs showed significant relationships be-
tween age and sex with polyparasitic infections, where
younger animals (X*> (1, N=117) =55, p=0.02) and fe-
male animals (X* (1, N = 124) = 4.45, p = 0.04) bore a sig-
nificantly greater number of mixed infections. This was
the case for polyparasitism in general but particularly so
for co-infections of Giardia spp. and Cystoisospora spp. in
female dogs (X% (1, N=124)=6.37, p=0.01). In the cats
there were too few samples to statistically test for risk fac-
tors of polyparasitism. Given the relationship between
polyparasitism and sex in dogs, however, it is interesting
to note that in the cats four out of the six samples identi-
fied with polyparasitic infections were in female cats. A
summary of the polyparasitic infections identified in the
cat and dog samples is presented (Table 3). Despite the
low number of cat samples demonstrating polyparasitism
with Giardia spp. a positive relationship between the pres-
ence of G. duodenalis (assemblage A) and co-infection
with Cystoisospora spp. (X*(1, N = 45) = 3.36, p = 0.07) was
also noted. There were no significant relationships be-
tween mixed infections of different Giardia spp. with any
other factor.

Molecular genotyping

Cats

Of the 60 cat samples submitted for genotyping, 88.3%
(53) were typeable at one or more loci with the 18S
rDNA being the most successful and the GDH the least
(Figure 2(f)). Overall, using one or more loci, single spe-
cies of Giardia were identified in 67.9% (36/53) of cat
samples, with multiple species identified in the remaining
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Table 3 Polyparasitic infections detected in dog and cat
samples positive for Giardia spp

Polyparasitic infections detected with Giardia sp. Cats Dogs

Hookworm* 1
Toxascaris leonina 2
Toxocara canis 1 8
Angiostrongylus vasorum 1
Crenosoma vulpis 2
Cystoisospora spp. 4 6
Hammondia/Neospora sp. 1
Sarcocystis spp. 2
Toxoplasma gondii 1

A. vasorum, C. vulpis, Trichuris vulpis 1
T. canis, Taenia spp. 1
T. canis, T. vulpis. 1
T. vulpis, Cystoisospora spp. 1
Hookworm?®, T. canis, Sarcocystis spp. 1
Hookworm*, T. vulpis, Cystoisospora spp. 1
Capillaria spp., Cystoisospora spp. 1
Total 6 30

*Ancylostoma or Uncinaria.

32.1% (17/53). In cat samples that were amplified at mul-
tiple loci the genotypes concurred in 48% (12/25) of cases
(including instances where a second locus confirmed the
genotype identified at the first while simultaneously detect-
ing another genotype — mixed template) (Table 4). In the
remaining 52% (13/25) the genotype amplified at a second
locus differed to the species detected at the first locus
(Table 4).

Of the 53 samples that were successfully amplified,
18S rDNA PCR sequencing yielded genotype informa-
tion for 94.3% (50/53), pB-giardin PCR sequencing for
39.6% (21/53) and GDH PCR sequencing produced lim-
ited results with genotype information for only 24.5%
(13/53) cat samples. The species and genotypes of Giar-
dia amplified at each locus are summarised in Figure 2f.
Sub-genotype information was obtained for 4 cat sam-
ples at the B-giardin and 6 at the GDH loci (Tables 5
and 6); however, due to the heterogeneity present at the
GDH it was not possible to unequivocally assign a sub-
type to these isolates (Table 6).

Overall, across all three loci the most commonly de-
tected species in the 53 cat samples was G. cati 56.6%
(30/53), followed by G. duodenalis 50.9% (27/53) and
then low levels of G. enterica 11.3% (6/53), G. canis
(genotype D) 11.3% (6/53) and G. canis (genotype C)
3.7% (2/53) (Table 5).

Mixed Giardia spp. included 10 samples with G. duode-
nalis and G. cati (one of these also included G. canis (D)),
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Table 4 Summary of molecular genotyping results for Giardia in dogs and cats

Host species Sample size  Number amplified >1 loci Number amplified >2 loci Assemblage concurrence  Assemblage divergence

at multiple loci* at multiple loci
Cats 60 53 (88.3%) 25 (41.7%) 48% (n=25) 52% (n=25)
Dogs 130 123(94.6%) 59 (45.4%) 71% (n=59) 29% (n=159)

*Includes instances where a genotype identified at the first locus was again amplified at the second locus as part of a mixed sequence (indicating a mixed template).

Figures are expressed as a percentage of the number of samples amplified at >2 loci.

4 samples included a mix of G. enterica with G. cati and 3
samples included a mix of G. cati with G. canis (C in
one and D in two samples) (Table 5). There were no strong
correlations between the presence of mixed species of
Giardia with any other factor.

Dogs

Of the 130 dog samples submitted for genotyping, 94.6%
(123) were typeable at one or more loci. As with the cat
samples the 18S rDNA was the most successful and the
GDH the least (Figure 2(f)). Overall, using one or more

Table 5 Species and sub-genotypes for 53 cat and 123 dog samples at one, two or three loci

Host species Single locus amplifications (n) Multiple locus amplifications (n)
18S GDH B-giardin 18S GDH 18S B-giardin 18S GDH B-giardin
Cats A (13) BIV (2) C Q) AF F (1) A Al M F BIV F (3)
D (3) F BIV m A C Q) F F F (3)
F ) F F ) A D Q) A F F Q)
A F 4)
AF A2D (1
AF A2F Q)
AF F 2
F A1D Q)
F F )
Dogs A () F Q) (M D D 1 A A5 @) A Al Al (M
AB (1 Q) A BIILD Q) A Al A5 Q)
AC (M (1) AF C Q) AC F C Q)
B ©) B @} (1) D A2 (M
C (18) C A Q) D CD Q)
cb 6 C Al 1)
D 24) C BIILD )
C C (13)
C D (M
cD A1,C @)
cD CcD (2
D A5 )
D C @)
D CD (M
D D (20)
D ACD @)
DB BIILCD Q)
D DF Q)
D F Q)

A =G. duodenalis, B = G. enterica, C and D = G. canis, F = G. cati. Heterogeneous sequences identified at a single locus are identified by letters separated by commas.
The figure in parentheses indicates the number of samples with this result. For example in the first row 13 cats were detected with G. duodenalis only at the 18S, 2
cats were detected with G. enterica (BIV) only at the GDH, 1 cat was detected with G. canis (C genotype) only at the B-giardin, 1 cat was detected with both G. duodenalis
and G. cati at the 18S as well as G. cati only at the GDH, 1 cat was detected with G. duodenalis at both the 18S and the GDH and finally 1 cat was detected with G. cati at
both the 18S and the B-giardin while in the same sample G. enterica (BIV) was detected only at the GDH.
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Table 6 Sub-genotypes of G. duodenalis and G. enterica
detected in cat and dog samples

Sub-genotypes detected Cats Dogs

G. duodenalis (Assemblage A)
subtype Al 2 (B-giardin) 3 (B-giardin)
subtype A2 2 (B-giardin) 1 (B-giardin)
subtype A5 4 (B-giardin)
subtype A1/A5 2 (2 GDH)

G. enterica (Assemblage B)
subassemblage BIll 3 (B-giardin)
subassemblage BIV 6 (GDH)

loci, single species or genotypes (including mixed G. canis
C or D genotypes or mixed G. duodenalis subtypes) were
identified in 75.6% (93/123) dog samples, with multiple
species or genotypes identified in the remaining 24.3%
(30/123). In dog samples that amplified at multiple loci
the species or genotypes detected concurred in 71.2%
(42/59) of cases (Table 4). In the remaining 28.8% (17/59)
the species or genotypes amplified at a second locus dif-
fered to the genotype detected at the first (Table 4).

Of the 123 dog samples that were successfully ampli-
fied, 18S rDNA PCR sequencing was able to genotype
95.9% (118/123), the p-giardin PCR yielded genotype in-
formation for 48.7% (60/123) and the GDH PCR again
produced limited results with genotype information for
only 5.7% (7/123). Sub-genotype information was ac-
quired for 11 dog samples at the B-giardin locus and 2
at the GDH locus. Again due to the heterogeneity
present at the GDH it was not possible to unequivocally
assign a subtype to these isolates (Tables 5 and 6).

Overall, across the three loci the most commonly de-
tected species in the 123 dog samples was G. canis (D)
56.1% (69/123), followed by G. canis (C) 42.2% (52/123),
and then lower levels of G. duodenalis 19.5% (24/123),
G. enterica 6.5% (8/123) and G. cati 4.9% (6/123).

The presence of mixed Giardia spp. was detected in
15 dog samples, these included 13 samples with one or
both of the zoonotic species (mainly G. duodenalis) with
G. canis (genotype C or D or C and D) and 2 samples
included a mix of G. canis (D or C and D) with G. cati
(Table 5). There were no strong correlations between
the presence of mixed Giardia spp. with any other factor
although there was a trend for samples from female dogs
to contain more mixed species (X* (1, N=117) = 3.28,
p=0.07). A mix of the two G. canis genotypes was de-
tected in 15 (Table 5) dog samples.

Host adapted assemblages

Age and sex were identified as significant factors for the
presence of the host adapted G. cati in samples from
mixed breed cats only. Older and male cats in the mixed
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breed group had a significantly higher prevalence of this
species of Giardia (X* (1, N =28)=4.37, p=0.04) and
(X* (1, N=30)=5.79, p=0.02) respectively, than their
younger or female counterparts. Due to the low number
of samples it was not possible to carry out multivariate
analyses on this data to determine a more complex rela-
tionship between the presence of G. cati with sex, age or
breed in this group of animals.

Of the two recognised genotypes of G. canis (C and D)
samples from male dogs had a significantly greater pro-
portion of the D genotype detected in comparison to
female dogs (X* (1, N =117) = 4.45, p = 0.04). This sig-
nificance strengthened when only pure breed dogs were
considered (X* (1, N =73)=4.77, p=0.03). An opposite
trend was detected with the C genotype occurring in a
greater proportion of samples from female pure breed
dogs than from males (X* (1, N=72) =356, p=0.06).
There was no similar correlation for the C genotype in
the smaller cohort of mixed breed dogs. In addition,
overall there appeared to be a negative association with
the C genotype and symptoms (X*(1, N =110) = 4.55,
p =0.03). Given the prevalence of G. canis C and D
genotypes detected in the dog samples (40% and 53%
respectively), under an MKL model the expected preva-
lence of a mixture of C and D genotypes in the dog sam-
ples would be 21%. The actual prevalence of such a mix
was significantly lower at 11.5%, (X% (1, N =130) = 6.45,
p =0.01).

Zoonotic species

Due to the low number of G. enterica positive samples
identified, the significance of zoonotic species was exam-
ined as a whole (both G. duodenalis and G. enterica
together) or with G. duodenalis considered alone. A sig-
nificantly greater proportion of the potentially zoonotic
species were detected in the cats than in the dog sam-
ples (X* (1, N=174) =21.87, p=<0.01). In both hosts
zoonotic species of Giardia were as likely to be identi-
fied in samples with mixed genotypes as in those with
only single genotypes detected. For the cat samples there
was an association with the presence of potentially zoo-
notic Giardia spp. with age. Cats <1 year were signifi-
cantly more likely than cats >1 year to harbour either of
the two zoonotic species (X* (1, N = 40) = 5.63, p = 0.02).

G. enterica alone was identified in too few samples to
determine any significance with any particular factor in
either of the animal groups. It is worth noting, however,
that in both cats and dogs the greater proportion of sam-
ples identified with G. enterica came from animals <1 year
(5/6 and 5/8 respectively). G. enterica was identified
in 3 dogs all amplifying with the B-giardin PCR only.
These sequences matched most closely to the BIII subas-
semblage grouping (Table 6). Conversely the 6 cats identi-
tied with G. enterica were identified with the GDH PCR
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only and all of these matched most closely to the BIV sub-
assemblage grouping (Table 6). Nucleotide changes from
subassemblage B sequences from both the B-giardin and
GDH PCRs are presented in Table 7. Subtype information
at multiple loci was obtained for 2 dog samples. Both
grouped in subassemblage Al one sample with subtypes
Al and A1/A5 and the second with A5 and A1/A5 at the
[-giardin and GDH locus respectively.

In both cats and dogs there was a trend (significant in
dogs) for G. duodenalis in particular to be identified
more often in female animals, (X2 (1, N=46) =3.14,
p=0.08) and (X* (1, N=114) = 4.23, p = 0.04), in cats
and dogs respectively. For the cat samples there was
also an association with breed. There was a trend ap-
proaching significance in pure breed cats, which ap-
peared to harbour a greater proportion of zoonotic
species (X* (1, N = 44) = 3.73, p = 0.05) in comparison to
mixed breed cats. All G. duodenalis subassemblage se-
quences matched with 100% identity to their respective
reference sequences.

PCR Ampilification success of Giardia species in dogs

and cats

The cat samples demonstrated a significantly higher
PCR amplification failure rate at the 18S rDNA locus
than dog samples 11/60 (18%) and 11/130 (8.5%) re-
spectively (X*(1, N=181) =829, p=<0.01). There was a
similar trend although not significant for the [-giardin
PCR, with a failure rate of 39/60 (65%) and 69/130 (53%)
for cat and dog samples respectively (X*(1, N = 183) = 3.10,
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p = 0.08). The reverse was true, however, for the GDH PCR
where despite having a very high rate of failure in
both species, the cat samples were more successfully
amplified by this assay with 47/60 (78%) failing com-
pared to 123/130 (95%) in the cats and dogs respectively
(X*(1, N =178) = 9.87, p = <0.01).

Mixed genotypes and/or species were detected in 49
samples in total (including samples with mixed G. canis
C and D genotypes) and these were identified at all three
loci to varying degrees (Table 5). As discussed previ-
ously, 14 of these samples were identified with heteroge-
neous sequences at a single locus, 10 (22%) at the 18S
rDNA locus and 4 (7%) at the [-giardin locus. The
remaining 35 samples were identified by the combined
amplification at a second or third locus. Twenty five
(51%) were identified with a combination of the 18S and
the B-giardin PCRs and 2 (4%) by a combination of the
18S and GDH PCRs. The remaining 6 (12%) samples
were identified by a combination of all three methods
(Table 5).

The effectiveness of each PCR protocol to amplify
each Giardia species was variable. A comparison of the
number of times each PCR amplified each species as a
percentage of the total species identifications (across all
three PCR loci) is illustrated (Figure 3). Despite amplify-
ing at least one species or genotype from 92% of all the
samples submitted, the 18S rDNA PCR, performed com-
paratively poorly with G. enterica isolates amplifying
from 6 of the 14 samples (43%) detected with this spe-
cies. The second most successful protocol used, the

Table 7 Nucleotide changes in G. enterica subassemblage B isolates from cat and dog samples

Isolate GDH
309 356 357 429 447 456 482 502 540 561 572 577 606 608 612
STBIIl reference sequence C T T T G T G C C T G C T G
STBIV reference sequence T C C . T T . . . . A
1116074 T T C C C A ar . T ar . . ar . A/G
1201420 T C C C A A
1116246 C C C/T  AG ar . ar . . T A
1114218 T C C A A T
1111290 T C C A /T
1111426 T C C c/T  AG T ar AlG T . A/G
-giardin
165 171 189 234 249 264 288 315 318 39 399 549
STBIIl reference sequence G C A G C G C C C C C C
STBIV reference sequence . T A T T T . T
1015139 A T A A/G ar T ar T
1102417 . . A/G A T /T
1014340 . . . A T T

Nucleotide substitutions (in bold) are numbered from the ATG codon of each gene, dots indicate identity to the BIIl reference sequence (GenBank Accession Nos.:

GDH, AF069059; B-giardin AY072726).
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Figure 3 The relative effectiveness of each PCR protocol utilised at amplifying each Giardia sp. Effectiveness of each protocol is estimated
by comparing the number of samples in which each protocol amplified a particular species compared to the total number of samples in which
that species was amplified across all of the three protocols utilised.

B-giardin PCR (amplifying from 42% of samples overall),
not only performed poorly when amplifying G. enterica
(3/14, 14%) but in addition amplified from only 14 of a
possible 50 G. duodenalis positive samples. The GDH
protocol, despite being the least successful method utilised
here, (amplifying only 13% of the total number of sam-
ples submitted) was comparable or better than the two
other loci when amplifying G. enterica, equalling the
18S PCR in detecting 6 of 14 possible samples (42%)
identified with this species. Interestingly, in both dogs and
cats a trend showing that samples from males were more
likely to amplify than samples from females was evident
for the GDH PCR. When both animal species were com-
bined this trend became significant (X*(1, N = 164) = 4.38,
p = <0.04).

Discussion

Previously Giardia has been identified as the most
prevalent parasite found in both cats and dogs (12.6%
and 18.6% respectively) in this geographical area [3].
This is one of the highest prevalence rates across several
European countries [24]. Whilst in the current study
data to determine the overall prevalence of Giardia was
not collected, a stable prevalence of endoparasites in
dogs and cats from the same area in Germany has been
demonstrated for nearly 10 years [3,25].

The bias towards samples from symptomatic animals
is probably a reflection of the sampling strategy of this
study, in that animals were sampled once presented to a
veterinarian rather than as part of a cross sectional sur-
vey. In addition, the variation between the two animal
species with respect to breed (in cats more Giardia spp.
positive samples were collected from mixed breed ani-
mals, while in dogs more were collected from pure breed
animals) is likely to be a reflection of the distribution of

these breed types within each of the two populations of
well cared for cats and dogs. This is in contrast to one
previous study which noted a reduced prevalence of
Giardia spp. in mixed breed dogs [26]. There is substan-
tial evidence supporting the increased susceptibility to
Giardia spp. in younger dogs and cats [2,27] and this
factor would account for the greater representation of
dogs <1 year in this study although this was not demon-
strated in the cat samples.

The overall seasonal distribution for both Giardia
positive cats and dogs in this study closely corresponds
to that of an earlier study in Germany [3]. Similar sea-
sonal patterns have been identified in the USA and
Argentina [2] with peaks in prevalence in the winter
months, although this is not the case in other European
based studies [28-30]. The reasons for such a persistent
and striking seasonal fluctuation for Giardia spp. in well
cared for dogs and cats in Germany, while neighbouring
countries with a similar climate fail to show similar asso-
ciations remain unclear.

The possibility of a relationship between younger cats
and sample submission during autumn months is inter-
esting, but this should be regarded with caution. Giardia
positive cat samples were difficult to obtain and sam-
pling for this cohort was not consistent throughout the
study period. There did not appear to be a clear correl-
ation between sample submissions in autumn or winter
with the species of Giardia detected despite positive re-
lationships between younger cats and the potentially
zoonotic G. duodenalis and G. enterica, and similarly in
older cats with the host adapted species G. cati. Such a
relationship should be investigated with sufficient sam-
ples to enable multivariate analysis.

Previously, analysis of endoparasite infection in well
cared for dogs and cats in Germany identified an increased
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prevalence of infection in animals less than one year of
age [27]. This was also reflected here with a positive rela-
tionship observed between young dogs and polyparasitic
infections with Cystoisospora spp. and Toxocara canis
being the most common. Other studies have identified
an increased risk in cats for Giardia spp. and co-
infections with Cryptosporidium spp. and other coccidia
[31]. While being too few to draw any statistical signifi-
cance it should be noted that in the current study five
out of the six co-infections in cats were with coccidian
parasites. It is also interesting to note that coinfections
with Giardia and Tritrichomonas foetus in cats [32,33]
or Pentatrichomonas hominis in dogs [34] have also
been identified, but examination for these parasites did
not occur in this study.

In both animal groups presented here the most com-
monly detected species of Giardia was the host adapted
species with which they are commonly associated, G. cati
in cats and G. canis (C and D) in dogs. This agrees with
many other studies [2,35-37] but is at odds with a previous
study from the Munich area [7] and in the USA [8] where
the authors found a predominance of zoonotic species
of Giardia. The potentially zoonotic G. duodenalis and
G. enterica were detected to varying degrees in both
species of animal. Subtyping of some of these poten-
tially zoonotic isolates identified several that are com-
monly associated with humans (Table 6) [6,10].

G. enterica was identified in too few samples to de-
termine significance on its own; however, in both
cats and dogs the greater proportion were identified in
animals <1 year (5/6 and 5/8 respectively).

There was a significant difference between the two
species of animals and the proportion of samples de-
tected with potentially zoonotic species of Giardia, 50%
and 21% in the cat and dogs samples respectively. The
high prevalence of G. duodenalis in the cat samples in
this study is consistent with other studies [10,38-40].
Discussion around the allocation of genetic subtypes
into particular subassemblages and multilocus genotypes
(MLGs) is confusing and at times contradictory or in-
complete e.g. [10,14]. Without consistent well defined
reference sequences, meaningful comparison and inter-
pretation of zoonotic potential is difficult. For the pur-
poses of this study G. duodenalis subtype reference
sequences were used as defined by Feng and Xiao [6],
although even here it appears that Portland-1 strain
is used as a defining sequence for subtype Al at the
B-giardin locus and subtype A2 at the GDH. The sub-
types detected in the present study suggest that the
G. duodenalis isolates present fell within subassem-
blage Al With the fragments we used, it was not possible
to separate these further into MLG types. Likewise the
G. enterica isolates present were split between BIII in the
dog samples and BIV in the cats. The host distribution of
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G. enterica (assemblage B) is considered to be predomin-
antly human, and, to a lesser extent, dogs and wildlife
[10]; however, there are no obvious genotypes associated
with zoonotic transmission.

There has been much discussion surrounding the
pattern of transmission for zoonotic and host adapted
species of Giardia particularly in dogs [4,41]. The hy-
pothesis has been offered that transmission of host
adapted species may be favoured by intensive contact
between animals and these may then out-compete other
non-host adapted species [42]. In the current study, the
fact that cats had a much higher prevalence of non-host
adapted species (or zoonotic species) of Giardia than
the dogs may lend weight to this argument if this differ-
ence is placed in the context of the different animal be-
haviours. Owned dogs are generally gregarious animals
that are often exercised in communal areas set aside par-
ticularly for that purpose, thus favouring the transmis-
sion of host-adapted G. canis [43]. Owned cats, however,
are more territorial outside of home groupings [44] and
when allowed to range freely do so in areas that have
not been assigned for that purpose, potentially lessening
their direct contact with other cats (in comparison with
dog to dog contact). This behaviour therefore increases
their propensity to acquire and retain the potentially
zoonotic species of Giardia. In the present study, youn-
ger cats were seen to have a greater proportion of sam-
ples positive for the zoonotic species of Giardia in
general. This was particularly so for the larger cohort of
mixed breed animals. In addition, older animals in this
mixed breed group were also more commonly infected
with the host adapted G. cati. The opposite was true in
the pure breed cats (although based on low numbers of
samples) where older cats had a greater proportion of
G. duodenalis. The difference in the pattern of infection
between these two groups of cats (mixed and pure
breed) may be related to housing conditions. Such re-
strictions may go some way in explaining the difference
seen here. In both breed types in these well cared for an-
imals one would expect younger animals to be kept in-
doors at least until vaccination was complete and the
risk of them acquiring the zoonotic species would be
increased due to their disproportionate contact with
humans in comparison to other cats. As the animals ma-
ture they would be allowed free access to the outside
and would therefore increase their contact with the en-
vironment contaminated with G. cati by other cats. If
some of those animals, however, (more particularly pedi-
gree animals) continue to be restricted to an exclusively
indoor existence then they would have a significantly
lower risk of contracting the host adapted G. cati and
would therefore maintain their infections with the zoonotic
species. In the current study, pure bred cats (particularly
males) demonstrated a higher proportion of zoonotic
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Giardia spp. than their mixed breed counterparts (71% to
50% respectively). No data exists for the housing arrange-
ments of the animals in this study or indeed for the pro-
portions of pedigree cats that are housed exclusively
indoors across European countries in general. There are
studies from several countries such as the UK, USA,
France, Canada and Australia that estimate varying levels
of exclusively indoor housing (10% to 65%) of cats [45-52].
None of these studies give the breed status of the cats kept
indoors although there is some evidence to suggest that
expensive pedigree cats are more likely to be housed
indoors [48]. In Australia, there is evidence supporting a
greater level of exclusive indoor housing for pure breed
cats. In Japan there has been some suggestion that this
factor has an effect on the overall prevalence of Giardia
spp. in such cats) [53,54]. It is therefore possible that pure
breed cats may have been at greater risk of acquiring
G. duodenalis and G. enterica due to greater proportions
of them being restricted to an exclusively indoor environ-
ment. Further study is needed to investigate this associ-
ation properly.

There are a number of studies that have examined the
different species of Giardia affecting different popula-
tions of cats and dogs, e.g. shelter/stray and veterinary
presentations, urban and rural, etc.,, and some have
seen associations with Giardia presence and breed
(Rottweilers) and sex (higher levels in female household
dogs) [4,55]. As far as we are aware this is the only study
to date that has attempted to correlate particular geno-
types or species of Giardia to factors such as age, sex,
breed or season within a single population type, i.e. well
cared for cats and dogs. The possibility that female dogs
and cats are more likely than their male counterparts to
harbour not only potentially zoonotic Giardia spp. (rather
than host adapted species) but also concurrent endopara-
sitic infections along with Giardia needs verification.
Future studies should also aim to understand if this
bias is due to behavioural (affiliative or gender based)
or intrinsic biological reasons, if indeed this bias does
exist. In addition, this is the first study to identify
possible factors (age, sex and breed) involved in the
acquisition of host adapted species or genotypes of
Giardia. The relationship suggested in this study, be-
tween transmission of host adapted species/genotypes
and their host’s sex, age or breed deserves further
investigation. For clarity such studies would need to
look at these factors within particular groups of ani-
mals, since previous studies comparing across differ-
ing groups (owned, stray or shelter) of animals have
given variable results that are difficult to interpret in
this context [41].

The observed difference between the actual and ex-
pected occurrence of mixed C and D genotypes in dog
samples may well be explained by an association between
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these genotypes and gender as noted in this study. Further
investigation is needed to rule out the role of any competi-
tive exclusion that may be occurring between these two
genotypes. Coupled with the observed association of C
genotype and fewer symptoms as well as the genetic differ-
ence between these two genotypes [12] there may well be
cause to revisit the classification of C and D genotypes
within G. canis.

The success rates for each of the PCR methods used
on the samples in this study are consistent with several
other studies using large numbers of clinical samples
[4,7,40]. There has been some criticism with regards to
the inclusion of sequence data based on the 18S rDNA
[12,41]. Indeed, while the limitations of the information
gleaned from this locus (short, highly conserved frag-
ments giving species (assemblage) level information
only) are acknowledged here, had this locus been ex-
cluded from this study over half of the samples would
have remained without any genetic characterisation what-
soever and many instances of mixed genotypes would have
gone undetected. The results of this study clearly support
the inclusion of the 18S rDNA locus in similar genotyping
studies, particularly for difficult samples such as those
from dogs; however, until a suite of reliable and well char-
acterised loci are identified for Giardia genotyping it is
critically important that multiple loci are utilised along-
side, and that 18S rDNA data is not used in isolation. In
this case the -giardin was the next most cost effective op-
tion. Further work must include the development or en-
hancement of protocols including other locus options
such as the triose-phosphate isomerase (tpi), GDH and
possibly the more recently utilised ITS [56-59] to apply to
such notoriously difficult sample types.

For the purposes of this study, the assumption has
been made that each genotype detected within a sample
represents a single infection from a non-recombining
population and that where mixed genotypes were de-
tected a coexisting multiple infection was present. Given
this assumption, a total of 73 and 167 different isolates
were identified in 53 cats and 123 dogs respectively. The
use of multiple loci was responsible for detecting almost
70% of the mixed species/genotypes detected in this
study, with the most successful combination being the
18S rDNA PCR with the B-giardin PCR. The use of
multiple loci was attempted for all Giardia positive sam-
ples and while advocated by the authors here this ideal
proved practically difficult and expensive to pursue.
Such difficulties have been discussed previously [8,58]
and the use of freshly extracted DNA has been recom-
mended to improve the overall amplification success of
the various loci included. This is not our experience;
more recent studies have used freshly extracted DNA
from fresh samples as a template for the same PCR pro-
tocols used here, resulting in the same variable success



Pallant et al. Parasites & Vectors (2015) 8:2

rates (Unpublished data). The relative strengths and
weaknesses of each of the PCR protocols at amplifying
from particular species of Giardia should be examined
further and taken into account when deciding which
methods to employ to detect potentially zoonotic species
in animal samples. Preferential amplification of geno-
types by particular protocols has been described [8]. In
the present study the 185 rDNA PCR amplified frag-
ments from 6 of the total 14 samples detected as positive
for G. enterica. The p-giardin PCR amplified poorly from
both zoonotic species, particularly G. enterica and while
the GDH performed very poorly in general it did amplify
from as many (and different) G. enterica positive sam-
ples as with the 18S rDNA protocol. This has been
noted previously in studies from our laboratory [60].
There did appear to be a gender bias with the GDH
protocol, however, this may be due to gender differences
in the species or genotypes that are preferentially ampli-
fied. The likelihood is therefore, that for this study the
number of potentially zoonotic species as well as the
number of mixed genotypes actually present in these
samples has been underestimated.

Conclusions

This study has demonstrated the complexity of Giardia
ecology in domestic dogs and cats, and has reinforced
the influence exposure to different species of Giardia
may have on which dominates under certain environ-
mental and/or anthropogenic circumstances. As with
other studies, the results reported here reinforce the
public health significance of Giardia in companion ani-
mals with the occurrence of zoonotic species in dogs and
cats, but demonstrate that it is impossible to extrapolate
from one geographical area to another on the prevalence
of zoonotic versus host adapted species, even in the same
country. Polyparasitism, whether this involves mixed in-
fections of Giardia species and/or other parasites, par-
ticularly Cystoisospora, is clearly an aspect of enteric
parasitism that requires further study, especially in dogs
and cats less than one year of age. Is G. duodenalis or
G. canis/G. cati more pathogenic in dogs and cats, and
what is the impact of co-infections with Cystoisospora in
young animals particularly prior to weaning? Finally, our
results have demonstrated the importance of taking a mul-
tilocus approach in studies on the molecular epidemiology
of Giardia infections, and particularly the relevance of in-
cluding 18S rDNA as one of the loci examined.
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