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Abstract

Background: Leishmania enriettii is a species non-infectious to man, whose reservoir is the guinea pig Cavia porcellus.
Many aspects of the parasite-host interaction in this model are unknown, especially those involving parasite surface
molecules. While lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) of Leishmania species from the Old
and New World have already been described, glycoconjugates of L. enriettii and their importance are still unknown.

Methods: Mice peritoneal macrophages from C57BL/6 and knock-out (TLR2 —/—, TLR4 —/—) were primed with IFN-y
and stimulated with purified LPG and GIPLs from both species. Nitric oxide and cytokine production were performed.
MAPKs (p38 and JNK) and NF-kB activation were evaluated in J774.1 macrophages and CHO cells, respectively.

Results: | PGs were extracted, purified and analysed by western-blot, showing that LPG from L88 strain was longer than
that of Cobaia strain. LPGs and GIPLs were depolymerised and their sugar content was determined. LPGs from both
strains did not present side chains, having the common disaccharide Gal(31,4)Man(a1)-PO,. The GIPL from L88 strain
presented galactose in its structure, suggestive of type Il GIPL. On the other hand, the GIPL of Cobaia strain presented
an abundance of glucose, a characteristic not previously observed. Mice peritoneal macrophages from C57BL/6 and
knock-outs (TLR2 -/- and TLR4 -/-) were primed with IFN-y and stimulated with glycoconjugates and live parasites. No
activation of NO or cytokines was observed with live parasites. On the other hand, LPGs and GIPLs were able to activate
the production of NO, IL-6, IL-12 and TNF-a preferably via TRL2. However, in CHO cells, only GIPLs were able to activate
TRL2 and TRL4. In vivo studies using male guinea pigs (Cavia porcellus) showed that only strain L88 was able to develop
more severe ulcerated lesions especially in the presence of salivary gland extract (SGE).

Conclusion: The two L. enriettii strains exhibited polymorphisms in their LPGs and GIPLs and those features may be
related to a more pro-inflammatory profile in the L88 strain.
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Background

The leishmaniases are diseases caused by the protozoa
Leishmania (Kinetoplastida, Trypanosomatidae) trans-
mitted to the vertebrate host by phlebotomine sand
flies (Psychodidae: Phlebotominae). There are over 30
species of Leishmania in the New World, where Leish-
mania enriettii Muniz and Medina 1948 is an example
of a non-infectious species to man [1]. Its vertebrate host
is the guinea pig Cavia porcellus, and its suspected vector
is Lutzomyia monticola [2,3].

Although non-infectious for humans, Leishmania
enriettii is considered a model for the human cutaneous
leishmaniasis (CL) [4-6]. An interesting aspect of this spe-
cies is that it had never been found in any continent other
than the Americas. However, kinetoplastid parasites from
the Leishmania enriettii complex were recently found in
infected Red Kangaroo (Macropus rufus) in Australia. In
this context, the vector species was Forcipomyia lasiohe-
lea, a ceratopogonid [7].

Glycoconjugates are very important during the inter-
action with the vertebrate and invertebrate hosts. In the
New World species, the early events in the innate immune
compartment are crucial for the development of a re-
sponse against the parasite [8]. Glycoconjugates can be as-
sociated with glycosylphosphatidylinositol (GPI) anchors
in the plasma membrane, especially the lipophosphoglycans
(LPGs), gp63 and glycolinositolphospholipids (GIPLs) [9].
GIPLs are present on the cell surface in all stages and rep-
resent the most abundant glycoconjugates [9]. Structur-
ally, GIPLs are widely polymorphic, but with a basic
conserved structure of Manal-4GIcN linked to the lipid
portion, which usually consists of alkylacylglycerol or lyso-
alkylglycerol (Iyso-PI), by means of a phosphatidylinositol
residue (PI) [10] and can be classified into three groups:
Type I GIPLs have, for the greater part, a mannose residue
as the most distal sugar, and can be identified by a substi-
tution of the sixth carbon of the proximal mannose by a
mannose residue (Manal-6Manal-4GIcN-PI). Type II
GIPLs are characterised by the substitution of the third
carbon of the proximal mannose by a mannose residue
(Manal-3Manal-4GIcN-PI). The third group (hybrid
GIPLs), shares structural features with the first two,
possessing one additional mannose in the third and sixth
carbons of the proximal mannose (Manal-3(Manal-6)
Manal-4GIcN-PI). Recently, Leishmania infantum and
Leishmania braziliensis GIPLs were preliminarily charac-
terised, as being of type I and Type II, respectively. An in-
teresting feature of those molecules is their inhibitory
properties via TLR4: during the interaction with BALB/c
and C57BL/6 macrophages [11].

LPG is the most studied glycoconjugate in Leishmania.
It is widely expressed in the surface of promastigote
forms having four domains: a lipid anchor (1-O-alkyl-2-
lysophosphatidylinositol); a heptasaccharide core (Gal(x1-6)

Page 2 of 14

Gal(a1-3)Galg(a1-3)[Glcal-POy4]Man(al-3)Man(al-4)-
GlcN(al-)); a region of repeat units (Gal(f1-4)Man
(al-)PO,) and the terminal neutral oligosaccharide cap
[12]. LPG has been involved in a wide variety of func-
tions including recognition, phagocytosis and protection
from the acidic environment of parasitophorous vacuoles
[13,14], resistance to complement, inhibition of phago-
some maturation [15], inhibition of protein kinase C [16],
induction of protein kinease R [17], the ability to intervene
in the integrity of microdomains in phagosomal plasma
membranes [18], modulation of nitric oxide (NO) and
IL-12 production [16,19-21], modulation of MAPKs
[21,22], agonist of TLR2 and TLR4 [17,21,23-25], in-
duction of neutrophil extracellular traps (NETs) [26]
and heme-oxigenase 1 [27] and attachment to the sand
fly midgut [28-31].

Many studies have explored the role of Leishmania dur-
ing the interaction with the vertebrate host [32]. However,
most of those studies focused on Old World species of
Leishmania. Recently, it was demonstrated that the LPG
of L. braziliensis was more pro-inflammatory than that of
L. infantum, suggesting that polymorphisms in the LPG
structures may be important during the immunopathology
of the disease. In C57BL/6 macrophages (and respective
knock-outs) and CHO cells a predominant role of TLR2
was shown [21]. However, those and many other aspects
are still unknown in L. enriettii.

In this work, we have studied two reference strains of
L. enriettii isolated from C. porcellus in two distinct mo-
ments (1945 and 1985). This study aimed to preliminary
characterise their glycoconjugates (LPG and GIPLs) and
their role during in vitro interaction with macrophages
and CHO cells. Additionally, their infectivity was tested
with its natural vertebrate host in the presence and
absence of salivary gland extract (SGE) from Lutzomyia
longipalpis. This is part of a wider study on the glyco-
biology of New World species of Leishmania.

Methods

Ethics statement

All animals were handled in strict accordance with ani-
mal practice as defined by the Internal Ethics Committee
in Animal Experimentation (CEUA) of Fundagdo Oswaldo
Cruz (FIOCRUZ), Belo Horizonte (BH), Minas Gerais
(MG@), Brazil (Protocol p-0297-06). Knock-out mice hand-
ling protocol was approved by the National Commission
of Biosafety (CTNBio) (protocol #01200.006193/2001-16).

Parasites

World Health Organization Reference strains of L. enriettii
(MCAV/BR/1945/1.88 and MCAV/BR/1985/COBAIA_SP)
were used. Promastigotes were cultured in M199 medium
supplemented with 10% heat inactivated fetal bovine serum
(EBS), penicillin 100 units/mL, streptomycin 50 pg/mL,
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12.5 mM glutamine, 0.1 M adenine, 0.0005% hemin, and
40 mM Hepes, pH 7.4 at 26°C until late log phase [33].

Extraction and purification of LPGs and GIPLs

For optimal LPGs and GIPLs extractions, late log phase
cells were harvested and washed twice with PBS prior to
extraction of LPGs and GIPLs. The LPGs and GIPLs ex-
tractions were performed as described elsewhere with
solvent E (H,O/ethanol/diethylether/pyridine/NH,OH;
15:15:5:1:0.017) after a sequential organic solvent extrac-
tion [12]. For purification, the solvent E extract was dried
under N, evaporation, resuspended in 2 mL of 0.1 N
acetic acid/0.1 M NaCl, and applied onto a column with
2 mL of phenyl-Sepharose, equilibrated in the same buffer.
The column was washed with 6 ml of 0.1 N acetic acid/
0.1 M NaCl, then 1 mL of 0.1 N acetic acid and finally
1 mL of endotoxin free water. The LPGs and GIPLs were
eluted with 4 mL of solvent E, dried under N, evaporation
and quantitated as described [34]. Prior to use on in vitro
macrophage cultures, LPG and GIPLs were diluted in
fresh RPMI. All solutions were prepared in sterile,
LPS-free distilled water (Sanobiol, Campinas, Brazil).
All experimental procedures are depicted in (Figure 1).
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Fluorophore-assisted carbohydrate electrophoresis (FACE)
Oligosaccharides

Phosphorylated repeat units were treated with alkaline
phosphatase in 15 mM Tris buffer, pH 9.0 (1 U, 16 h,
37°C) (Figure 1). Samples were desalted and subjected to
fluorophore-assisted carbohydrate electrophoresis (FACE).
Samples were fluorescently labelled with 0.05 N ANTS
(8-aminonaphthalene-1,3,6-trisulfate) and 1 M cyanoboro-
hydride (37°C, 16 h). Oligoglucose ladders (G;—G,) were
used as standards. Sugars were subjected to FACE and the
gel was visualised by an UV imager [35].

Monosaccharides

To access the monosaccharide composition, deaminated
GIPLs headgroups were subjected to strong acid hydroly-
sis (2 N trifluoroacetic acid, 3 h, 100°C) (Figure 1). To de-
termine the monosaccharide composition of the GIPLs,
depolymerised and desalted monosaccharides were fluo-
rescently labeled with 0.1 M AMAC (2-aminoacridone) in
5% acetic acid and 1 M cyanoborohydride. Labeled sugars
were subjected to FACE and the gel was visualized under
UV light. Monosaccharides (D-galactose, D-glucose and
D-mannose) (Sigma) were used as standards [11].

Promastigotes L. enriettii (L88 and Cobaia strains)
(10°-10'% parasites)

Infection in
Guinea Pigs

Promastigotes L. enriettii (L83 and Cobaia strains)
(103 associated or not with SGE)

Pelletedat 3500 g and washed with PBS

Extract containing LPGs Extract containing GIPLs

Dried under N,

Phenyl-Sepharose Purified GIPLs

Strong Acid Hydrolysis

(2N TFA, 3 h, 100°C) —1 Ion Exchange Chromatography

Purified LPGs

Western-Blot

=Macrophage (NO and cytokine production)
=CHO cells (TLR2 and TLR4)
I *MAPKs

e,

Mild acid hydrolysis (0.02N
HCI, 5 min, 100°C)

| Butan-1-ol: water (1:1) partition |

Aqueous phase

Monosaccharides
(Gal, Man, Glc)

Repeating unit

_|

Alkaline phosphatase

Ao, 60

|_| Ion Exchange Chromatography I_ :

Figure 1 Experimental procedures scheme. Promastigotes of L. enriettii were used for infection in C. porcellus in the presence/absence of
Salivary Gland Extract (SGE). LPG and GIPLs were extracted with organic solvents and purified using Phenyl-Sepharose. LPG purification was
confirmed by western-blot. The LPG was depolymerased using mild acid hydrolysis (0.02 N HCl, 5 min, 100°C) and the repeat units were dephosphorylated
using alkaline phosphatase. The profiles were analysed by Fluorophore-assisted carbohydrate electrophoresis (FACE). Purified GIPLs were subjected to
strong acid hydrolysis (2 N trifluoroacetic acid, 100°C, 3 hours) and monosaccharides were analyzed by FACE. Purified LPGs and GIPLs were incubated
with murine peritoneal macrophages, CHO cells and J774.A1 cells for NO, cytokines, MAPKs and NF-kB activation.

Oligosaccharides
(repeating units)

FACE
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Purification of murine peritoneal macrophages and cell
culture

Thioglycollate-elicited peritoneal macrophages were ex-
tracted from C57BL/6 and C57BL/6 (TLR2-/- and
TLR4—-/- knockouts) by peritoneal washing with ice cold
serum-free RPMI and enriched by plastic adherence for
1 h at 37°C/5% CO,. Cells (3x10°cells/well) were washed
with fresh RPMI and cultured in RPMI, 2 mM glutam-
ine, 50 U/mL of penicillin and 50 pg/mL streptomycin
supplemented with 10% FBS in 96-well culture plates
(37°C/5% CO,). Cells were primed with gamma inter-
feron (IFN-y) (3 IU/mL) [36] for 18 h prior to incuba-
tion with L. enriettii LPGs (10 ug/mL), GIPLs (10 pg/mL),
L. braziliensis LPG (10 pg/mL), lipopolysaccharide (LPS)
(100 ng/mL) or live stationary L. emriettii parasites
(MOI 10:1).

Cytokine and nitrite measurements

For CBA multiplex cytokine detection, cells were plated,
primed as described above and incubated with LPGs,
GIPLs, LPS and live stationary promastigotes (MOI
10:1) for 48 h. Leishmania braziliensis LPG (10 pg/mL)
was added as a positive control [21]. For negative con-
trols fresh medium was added. Supernatants were col-
lected and IL1-B, IL-6, IL-10, IL-12p40 and TNF-a were
determined using the BD CBA Mouse Cytokine assay
kits according to the manufacturer’s specifications (BD
Biosciences, CA, USA). Flow cytometry measurements
were performed on a FACS Calibur flow cytometer
(Becton Dickinson, Mountain View, CA). Cell-Quest™
software package provided by the manufacturer was
used for data acquisition and the FlowJo software 7.6.4
(Tree Star Inc., Ashland, OR, USA) was used for data
analysis. A total of 2,400 events were acquired for each
preparation. Results are representative of two experiments
in duplicate. Nitrite concentrations were determined by
Griess reaction [21].

Chinese Hamster Ovary (CHO) cell lines

The CHO reporter cell lines TLR2-TLR4-, which do not
express TLR2 nor TLR4; TLR2+, expressing TLR2 and
TLR4+, expressing TLR4 [37] were maintained as adher-
ent monolayers in Ham’s F-12/DMEM supplemented
with 5% FBS, at 37°C/5% CO,, and antibiotics. All cell
lines were derived from clone 3E10, that has been stably
transfected with a reporter construct containing the
structural gene for CD25 under the control of the hu-
man E-selectin promoter. This promoter contains a NF-
kB binding site; CD25 surface expression is completely
dependent upon NF-kB translocation to the cell nucleus
[21,38]. In order to evaluate the activation of NF-kB by
LPGs and GIPLs, CHO reporter cells were plated at
a density of 1x10°cells/well in 24-well tissue culture
dishes. The following day, either molecule or bacteria
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(Staphylococcus aureus [10% bacteria/well], positive con-
trol of TLR2; LPS (200 ng/well), positive control of
TLR4; or LPGs (0.2 pg or 0.02 pg/ well) and GIPLs
(0.2 pg or 0.02 pg/ well) from the two L. enriettii strains
were added for 18 h. LPGs from L. braziliensis and L.
infantum were used as positive and negative controls,
respectively [21]. The cells were harvested with trypsin-
EDTA, washed with medium and PBS. Subsequently,
1x10° were cells were stained with PE-labeled anti-
CD25 (mouse mAb to human CD25, R-PE conjugate;
Caltag Laboratories, Burlingame, CA) 1:200 in PBS, on
ice, in the dark, for 30 min. After labeling, the cells were
washed twice with the same buffer, resuspended in 1 mM
sodium azide in PBS, and examined by flow cytometry
(BD Biosciences, San Jose, CA) for the expression of
surface CD25 as described [37]. Analyses were performed
using Cell Quest software (BD Biosciences).

Activation of MAPKs

We investigated whether LPGs and GIPLs from the two
L. enriettii strains could modulate MAPKs activation.
J774.1 macrophages were plated as above on 24 well tis-
sue culture plates (3 x 10°/well) for 18 h prior to assay
[21]. The cells were washed with warm RPMI and incu-
bated with LPG and GIPLs from both strains for dif-
ferent times (5, 15, 30 and 45 min) or with medium
(negative control) or LPS (100 ng/ml) as positive control.
Cells were then washed with ice-cold PBS and lysed in
RIPA lysis buffer (Sigma) and protease inhibitor cocktail
(Thermo Scientific). Cells were harvested with a plastic
scraper and centrifuged at 13,000 x g (4°C, 10 min). Super-
natants were transferred to new tubes and stored at —20°C
until used for immunoblotting. Cell lysates were resolved
by SDS-PAGE, transferred to a nitrocellulose membrane
and blocked (5% milk in TBS-0.1% Tween 20) for 1 h.
Primary Abs [dually phosphorylated p38 (Santa Cruz)
and JNK (Sigma) 1:1,000, total p38 primary antibody
(Sigma) was used as a normalizer] were incubated for 16 h
at 4°C. Membranes were washed (3 x 10 min) with
TBS-0.1% Tween 20 and incubated 1 h with anti-mouse
IgG conjugated with peroxidase (1:10,000). The reaction
was visualised using luminol [21]. The data were analysed
by Densitometry using the software Image] 1.48v by
National Institutes of Health (http://imagej.nih.gov/ij).

Sand flies

Lutzomyia longipalpis sand flies were captured in Teresina,
Piaui state, Brazil. The insects were reared in the Laboratério
de Fisiologia de Insetos Hematdfagos at the Universidade
Federal de Minas Gerais in Brazil using existing methodology
[39]. Three to 6-day-old non-fed female sand flies, main-
tained on 30% sucrose were dissected in PBS. Heads,
crops, hindguts, and Malpighian tubules were removed,
and the isolated salivary glands were dissected. Ten salivary
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glands were dissected, placed in 20 pL of PBS and stored
at -80°C. Immediately before use, the glands were soni-
cated for 10 seconds in a water bath [40] and centrifuged
(2100g, 10 min). The supernatant containing Salivary
Gland Extract (SGE) was mixed with 1 x 10° parasites/ml
in PBS prior to in vivo experiments.

In vivo infections with guinea pigs

For intradermal inoculation, we used 1x10° L. enriettii
promastigotes in a volume of 100 pl in PBS [40], associ-
ated or not with SGE. Forty males of Cavia porcellus
(20 per experiment) were divided into 4 groups: group 1
(infected with L88 strain), group 2 (infected with L88
strain + SGE of L. longipalpis), group 3 (infected with
Cobaia strain) and group 4 (infected with Cobaia strain +
SGE of L. longipalpis). The course of infection was
assessed weekly for 91 days by measuring the lesion
areas (mm?).

Statistical analyses

For nitrite and cytokine measurements, the Shapiro Wilk
test was conducted to test the null hypothesis that data
were sampled from a Gaussian distribution (SHAPIRO,
1965). The P value (P > 0.05) showed that data did not
deviate from Gaussian distribution. For this reason,
Student’s “t” test and ANOVA were performed to test
equality of population medians among groups and inde-
pendent samples. Data were analyzed using GraphPad
Prism 5.0 software (Graph Prism Inc., San Diego, CA) and
P < 0.05 was considered significant.

Results

Growth curve

A growth curve was established to determine the division
profile of the parasites for glycoconjugate extraction. The
strains showed similar growth patterns reaching the sta-
tionary phase after the 10™ day. Cobaia reached higher
densities than 188 (8.7x10° versus 6.5 x 10° parasites/mL)
(P <0.05). For this reason, we selected the 10" day of
growth for LPG and GIPLs extraction for both strains.

LPG purification

In Western Blots, purified LPGs from both L. enriettii
strains were recognized by the antibody CA7AE, whose
structural epitope is the unbranched Gal(1,4)Man(al1-PO,)
repeat units, common to all LPGs [41]. The LPG of the
L88 strain showed a higher molecular weight smear
(upper arrow) in Western Blots than that of the Cobaia
strain (lower arrow), suggesting that the former pos-
sessed a longer LPG. As expected, the positive control
(LPG of the BH46 L. infantum strain) [42] was recognised
by the antibody (Figure 2).

Page 5 of 14

BH46 L8& Cobaia

L. infantum L. enriettii

Figure 2 Western blot of purified LPG (10 pg per lane) of L.
infantum (BH46 strain) and L. enriettii (L88 and Cobaia strains)
in the presence of CA7AE antibody (1:1000). Upper and lower
arrow indicates the smears of L. enriettii LPGs (L88 and Cobaia
strains), respectively.

Profile analysis of the LPG repeat units

All LPGs were subjected to mild acid hydrolysis to obtain
their repeat units (Figure 1). These units were tagged with
a fluorescent probe at the reducing ends and subjected to
FACE for visualisation of the carbohydrate profiles. In
order to identify the number of sugars, we used a standard
molecular weight of oligoglucoses (G;-G;), whose bands
indicate the migration profile from mono to heptasacchar-
ides (Figure 3A, STD lane). Both strains showed a band at
the G, position, an expected result since all LPGs possess
the Gal-Man disaccharide (Figure 3A). Therefore, these
data indicate that the LPGs from both L. enriettii strains
are devoid of side chains.

Identification of GIPL monosaccharides

In order to determine the monosaccharide composition
of GIPLs, the purified GIPLs were subjected to strong
acid hydrolysis (Figure 1B). Unlike what was observed in
the polysaccharide gel (Figure 3A), there was a polymorphism
in the GIPLs composition. As expected, mannose and gal-
actose are present in both strains of L. enriettii. The L88
strain is characterised by being rich in the monosaccharide
galactose, suggesting similarity with the type II GIPL [11].
On the other hand, the structure of the GIPL from the
Cobaia strain contains the sugars mannose and glucose in
its composition. It is noteworthy that this GIPL contains
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Figure 3 Carbohydrate profile of LPGs (repeat units) and GIPLs
(core) from L. enriettii (L88 and Cobaia strains). STD, standard
represented by oligoglucose ladder (G;-Gy). (A) Oligosaccharide
profile from LPG repeat units. (B) Monosaccharide profile of L.
enriettii (L88 and Cobaia strains). STD, standard represented by the
monosaccharide sugars (100 pg/mLb). Man, mannose, Glc, glucose,
Gal, galactose.

glucose, a feature never observed in other Leishmania
GIPLs (Figure 3B).

Analysis of NO production in murine macrophages

In order to determine the NO production profile in peri-
toneal macrophages of the C57BL/6, TLR2 (-/-) and
TLR4 (-/-) lineages, and possible participation of TLRs,
these cells were stimulated with LPGs, GIPLs, LPS and
promastigote forms from both L. enriettii strains. No ac-
tivation was observed for the living parasites, growth
medium or IFN-y (Figure 4A). There was no statistical
difference regarding NO synthesis in the wild mice stim-
ulated with LPGs from both strains. However, a higher
NO production was observed in macrophages incubated
with LPGs (Knock-outs) and GIPLs (all lineages) from
L88 strain (P <0.05). This activation was primarily via
TLR?2, and secondarily via TLR4 (P < 0.0001) (Figure 4A).

Analysis of cytokine production in murine macrophages

Similarly to the NO experiment, supernatants from
macrophage cultures of the three strains of mice
(C57BL/6, TLR2 (-/-) and TLR4 (-/-)) were subjected
to CBA analysis to quantitate the cytokines TNF-«, IL-1f,
IL-6, IL-10 and IL-12p40. Similar to previous results with
other Leishmania species [11,21], no cytokine production
by living parasites from both strains was observed
(Figure 4B; Figure 5). A higher pro-inflammatory activity
was observed for the LPG and GIPL from L88 strain,
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where higher amounts (pg/ml) of the citokines TNF-«, IL-
6 and IL-12p40 were detected (P < 0.05). Similarly to NO,
this production was primarily via TLR2 than TLR4, espe-
cially for TNF-a (Figure 4B). No significant levels were de-
tected for the cytokines IL-10 and IL-1f in any of the
experiments (data not shown).

Analysis of NF-kB translocation by LPGs and GIPLs
Considering that TLR2 and TLR4 were the main receptors
recognising the LPGs and GIPLs from both L. enriettii
strains, the role of each of these receptors was assessed
separately in CHO cells. These cells were treated with
LPGs and GIPLs for 18 hours and the expression of the
CD25 reporter was analysed by flow cytometry [21]. No
activation of TLR2 and TLR4 receptors was observed after
incubation with LPG (0.2 and 0.02 pg). However, a higher
activation of GIPLs, especially in TLR2 than TLR4 was
observed (Figure 6). As expected, the positive control
groups for TLR2, represented by the LPG of L. braziliensis
and the lysate of S. aureus, activated the translocation of
NEF-kB [21]. The positive control group for TLR4, repre-
sented by LPS, also activated NF-kB. Negative control rep-
resented by LPG of L. infantum (BH46 strain) [21], did
not activate NF-kB (Figure 6).

Activation of MAPKs

To better access the signaling events around LPGs and
GIPLs recognition and macrophage activation, J774.1
macrophages were incubated with L. enriettii (L88 and
Cobaia strains) LPGs and GIPLs. MAPK activation was
assessed as a function of time and analysed by Densi-
tometry. Similarly to cytokine production, the LPG of
L88 strain was able to activate JNK more pronounced
than Cobaia strain (Figure 7A and B). No differences in
P38 activation were observed for LPG and GIPLs between
the two strains (Figure 7C and D).

Infection in Cavia porcellus using the two L. enriettii
strains

Since glycoconjugates (LPG and GIPLs) from the two L.
enriettii strains exhibited a distinct pro-inflammatory pro-
file during in vitro experiments, live parasites were inocu-
lated in C. porcellus for evaluation of their infectivity.

No mortality was observed during the experiment
(91 days). There was no statistical difference between
the weights of groups 1 and 2, and between groups 3
and 4 throughout the experiment (P > 0.05). In spite of
the absence of lesions, all Cobaia infected animals ex-
hibited protuberances (Figure 8F). For this reason, le-
sion analysis was restricted to L88 strain (Figures 8A-E
and Figure 9). Infected animals started developing pro-
tuberances and/or lesions during the fourth-fifth week
of infection (Figure 9). The presence of SGE resulted in an
increase of lesion size (477 + 220.2 versus 294.2 + 120.0 mm?)
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Figure 4 Nitrite and TNF-a production by IFN-y-primed macrophages after stimulation with LPGs (10 pg/mL), GIPLs
(10 pg/mL) and parasites. (A) NO concentrations were measured by Griess reaction. (B) TNF-a concentrations were determined by
flow cytometry. ANOVA test was performed and P <0.05 was considered significant. The results represent the average of two

(P <0.05). Also, a greater onset-healing period (ten weeks)
was observed for SGE injected animals. After this period,
a gradual decrease in the area of the lesion was noticed
with a complete absence of lesion after the thirteenth

week (Figure 9).

Discussion

This work compared two L. enriettii strains isolated
from the wild between a 40-year interval The parame-
ters studied included: growth curve, biochemical analysis
of glycoconjugates (LPGs and GIPLs), NO and cytokine
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significant. The results represent the average of two experiments in duplicate. LPGLb, L. braziliensis LPG.

-

production, receptors involved, signaling pathways and for the Cobaia strain, although both achieved stationary
in vivo infectivity for their natural host. This study aimed  phase at the tenth day of culture. This indicates that the
to enhance our understanding of molecular aspects of  strains possess different division profiles.
L. enriettii biology and glycobiology. Studies focusing on Leishmania-host interaction are im-
The two L. enriettii strains showed a lower growth  portant for understanding parasite biology. Surface glyco-
pattern in M199 medium in comparison to L. infantum  conjugates are key factors during this process. They enable
and L. braziliensis from previous studies under the successful infection in the hostile environments present
same conditions, never reaching a density above to 1 x  both in the vertebrate and invertebrate hosts [8,44]. The
107 cells/mL [33,43]. Higher densities were observed LPG is the most studied Leishmania glycoconjugate not
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Figure 6 GIPLs purified from two strains of L. enriettii (L88 and Cobaia) induce translocation of NF-kB through TLRs. CHO cells
expressing TLR2 (TLR2+), TLR4 (TLR4+), or neither (TLR2-/TLR4-) were either untreated (black line) or exposed (gray line) to LPS, S. aureus (SA),
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(GIPL L88) or L. enriettii strain Cobaia GIPL (GIPL Cobaia), as indicated. CD25 expression was measured by flow cytometry 18 h after stimulation.
Percentage = percentage of CD25 expression on stimulated cells minus percentage of CD25 expression on non-stimulated cells.

only in the Old World [9,35,45-47], but also in the New
World [8,21,33,42,43,48]. The LPGs of L. mexicana [48]
and L. infantum (PP75 strain) have one B-glucose linked
to the repeat units. In L. infantum, this p-glucose is down-
regulated in expression after metacyclogenesis [33]. The
opposite happens with L. braziliensis, where the procyclic
forms do not have side chains and the metacyclic forms
have 1-2 B-glucoses [43]. In this study, the LPG and pre-
liminary GIPL structures of L. enriettii were determined.
Based on our data, the LPGs were devoid of side chains,
being represented by the disaccharide Gal-Man common
to all LPGs. The LPGs from the two L. enriettii strains
were similar to the LPGs of L. braziliensis (strain M2903),

L. infantum type 1 and L. donovani (Sudan strain)
[42,43,46]. A distinguished feature of L. enriettii strain
L88 was observed in the Western-Blot. Its higher mo-
lecular weight is consistent with a longer disaccharide
chain as detected by the antibody CA7AE, specific for
the Gal-Man repeat units of the LPG [41]. Previous
studies with L. major and L. infantum have shown that
more complex LPG structures were able to trigger a
higher NO production by macrophages [20,42]. Consist-
ent, with those data, the longer LPG from L. enriettii (L88
strain) exhibited a greater ability to induce NO production
by macrophages. The preliminary structures of L. enriettii
LPGs are depicted in Figure 10.
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Leishmania GIPLs may be classified as type I, II and hy-
brids [revised by 8]. Type I GIPLs (mannose rich) are found
in L. infantum [11)], L. donovani, L. tropica and L. aethio-
pica [45]. The galactose-rich type II GIPLs are commonly
found in L. braziliensis [11], L. major [10], L. mexicana [9]
and L. panamensis [47]. Finally, hybrid GIPLs have mixed
structural features of type I and II. It is found in L. mexi-
cana and L. donovani [9]. Different from LPGs, the GIPLs
from the two strains exhibited polymorphisms in their
sugar compositions. The L88 strain was galactose rich, sug-
gesting its similarity to a type II GIPL. On the other hand,

Cobaia strain had a composition rich in glucose, a feature
never previously observed in any GIPL of Leishmania [11].

The polymorphisms observed and the LPG size and in
the GIPL composition from both strains were evaluated
in vitro using murine peritoneal macrophages in order
to establish their pro-inflammatory properties in the in-
nate immune compartment. Some of those mechanisms
were observed in this work during interaction with L.
enriettii.

In Leishmania, TLR2, TLR4 and TLRY are the main
receptors activated by parasite PAMPs [8,32,49,50].

Figure 8 Lesions in C. porcellus infected by L. enriettii strains in the presence/absence of salivary gland extract (SGE) from Lutzomyia
longipalpis. Male C. porcellus were inoculated with 1x10° parasites of L. enriettii strains (L88 and Cobaia). (A) non-infected C. porcellus; (B) C. porcellus
infected with L88 strain (4 weeks of infection); (C) C. porcellus infected with L88 strain (5 weeks infection); (D) C. porcellus infected with 188 strain + SGE
(7 weeks of infection); (E) C. porcellus infected with L88 strain (8 weeks of infection) and (F) C. porcellus infected with Cobaia strain (4 weeks

of infection).




Paranaiba et al. Parasites & Vectors (2015) 8:31

L. enriettii (L88 strain)

800

~ (P<0,05)

£ 6001

E

g

& 400-

=

2

$ 2004
0- 1 T T 1
01 2 3 456 7 89 10111213

Weeks

Figure 9 Development of lesions (mm?) in C. porcellus after
inoculation with L. enriettii (L88 strain) in the presence/absence
of salivary gland extract (SGE) from L. longipalpisv. Dark circles,
C. porcellus infected with L. enriettii strain L88 and dark squares, C.
porcellus infected with L. enriettii strain L88 + SGE. Male C. porcellus
were inoculated with 1x10° parasites of L. enriettii (L88 strain). Lesion
size (mm?) was followed weekly.

Their activation is dependent on MyD88 adapter protein
resulting in the production of nitric oxide and pro-
inflammatory cytokines [21,23,24]. Previous studies have
shown that Leishmania LPGs and GIPLs are agonists of
TLR2 and TLR4, respectively [11,21,23,24]. In L. enriettii
glycoconjugates, a differential stimulation pattern was
observed by those molecules in murine macrophages,
suggesting the participation of both TLR2 and TLR4 by
murine macrophages for both strains. Interestingly, a
more pro-inflammatory activity was observed for 188

Page 11 of 14

strain in comparison to Cobaia strain not only for LPG,
but also for GIPLs. Previous studies using L. major, L.
braziliensis and L. infantum GIPLs have shown the anti-
inflammatory function of this glycoconjugate thus inhi-
biting the NO production when stimulated with IFN-y
and LPS [11,51]. This profile was not observed in this
study, where the two L. enriettii strains were able to trig-
ger the production of NO and other cytokines. In con-
clusion, the higher pro-inflammatory activity of the L88
LPG may be related to its size, whereas the higher pro-
inflammatory activity of their GIPLs may be due to the
presence of a greater galactose content. Consistent with
those data, a similar profile was observed interspecifi-
cally with L. braziliensis and L. infantum. A higher pro-
inflammatory activity was observed for L. braziliensis
LPG and this was due to their ability to translocate NF-
kB [21]. Consistent with those observations, JNK activa-
tion was more pronounced in L88 LPG than Cobaia
LPG. However, we could not detect any substantial dif-
ference for p38 after stimulation with LPG and GIPLs
from both strains. Confirming this pattern, the ability to
activate p38 was also observed for L. donovani LPG in
J774A.1 macrophages [52]. However, L. braziliensis and
L. infantum GIPLs were not able to activate murine
macrophages [11], a strong indication that this modula-
tion may be species specific.

In the present study, the activation of NO and cyto-
kines by the LPGs and GIPLs of the two L. ewnriettii
strains was done preferably via TLR2 and secondarily via
TLR4. The GIPLs data differ from those observed in L.
major [51] and L. braziliensis/L. infantum [11], whose
activation was mainly through TLR4. Those features are

C Procyclic LPG of L. enviettii Cobaia strain

g

Neutral Oligosaccharide  Repeat unit

Galactose - Mannose - Phosohate
Figure 10 Schematic diagram of L. enriettii LPGs. The central portion of the structure is Gal(a1,6)Gal(a1,3)Galf(a1,3)[Glc(a1-PO,)-6]Man(al,3)
Man(a1,4)GlcN(a1:6), attached lipid anchor to alkyl-2-lyso-1-O phosphatydylinositol (Pl). The repeat units are 6-Gal(31,4)Man(a1)-PO,. The precise
numbers of the repeat units in the L. enriettii LPGs and the CAP constitution are not known. P = phosphate.

S —

Glycan core Lipidic anchor
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consistent with the diversity observed in Leishmania
species, whose variations in their glycoconjugates may
account at least in part for those differences. Since a dual
role of TLR2 and TLR4 was observed after stimulation with
both glycoconjugates, the next step was to observe their
individual role using CHO cells.

The individual evaluation of the function of each TLR
utilizing CHO cells, showed that the LPGs were not able
to activate TLR2 and TLR4 and this feature is very simi-
lar to that observed for L. infantum LPG [11]. This is
the first time that GIPLs were exposed to CHO cells.
Consistent with our previous results in C57BL/6 mice,
the GIPLs were able to activate either TLR2 or TLRA4.
The fact, that LPGs were not able to separately activate
CHO transfected cells may suggest a co-participation of
the two receptors by L. enriettii LPGs. It is well known
that for lipopeptides of bacteria and GPI-mucins of 7.
cruzi [53], a dimerization between TLR1/6 and TLR2/6
is reported [54]. However, the phenomenon of dimerization
between TLR2/4 should be further explored in Leishmania.

Based on the distinguished profile observed in the pro-
inflammatory studies, we examined the infectivity of both
strains in its natural host C. porcellus. Previous studies
have shown that small amounts of sand fly saliva could
promote the infection when inoculated with promasti-
gotes of Leishmania spp [40,55-57]. Consistent with those
data, in the animals infected with L88 strain plus SGE,
the lesion size was 38.35% larger and took longer to
heal. On the other hand, those infected with the Cobaia
strain did not develop ulcerated lesion. Those data con-
firmed the potential of the L. longipalpis saliva in exacer-
bate Leishmania infection and the more pro-inflammatory
activity of L88 strain which was the only one able to
develop lesions in C. porcellus [58-62].

Conclusions

In conclusion, our results showed that the strains of L.
enriettii isolated in two distinct periods (1945 and 1985)
differ biologically in the parameters studied. The in vitro
pro-inflammatory profile and their infectivity in vivo
were confirmed in its vertebrate host. A distinguished
feature of L. emriettii glycoconjugates is that their LPGs
could induce a higher production of IL-12 and their
GIPLs were very pro-inflammatory. This is very different
from what was reported in human pathogenic species
such as L. braziliensis and L. infantum [8,11,21]. This may
lead to the speculation that in the human, the excessive
activation of the innate immune system by L. enriettii gly-
coconjugates may prevent this host to get infected with
this parasite. This study is part of a wider project on the
glycobiology of New World species of Leishmania.
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