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Parental genetic diversity of brown trout
(Salmo trutta m. fario) brood stock affects
offspring susceptibility to whirling disease
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Abstract

Background: Whirling disease, caused by the myxozoan parasite Myxobolus cerebralis, has high economical and
ecological importance worldwide. Susceptibility to the disease varies considerably among salmonid species. In
brown trout (Salmo trutta) the infection is usually subclinical with low mortality, which increases the risk of
parasite dissemination, especially when farm fish are used for stocking natural habitats. The influence of
intraspecific genetic differences (especially the level of homozygosity) on susceptibility is unknown. Therefore,
we examined the possible correlations between parental genetic diversity and offspring susceptibility of brown
trout stocks to whirling disease.

Methods: Two brown trout brood stocks from a German and a Hungarian fish farm were genetically
characterized using microsatellite and lineage-specific genetic markers. The individual inbreeding coefficient f and
pairwise relatedness factor r were estimated based on eight microsatellite markers. Brood stock populations were
divided into groups according to low and high f and r value estimates and subjected to selective fertilization.
The offspring from these separate groups were exposed to M. cerebralis actinospores, and the infection prevalence
and intensity was measured and statistically analysed.

Results: The analysis of phylogeographic lineage heritage revealed high heterogeneity in the Hungarian brood stock
since > 50% of individuals were Atlantic-Danubian hybrids, while only pure Atlantic-descending specimens were detected
in the German population. Based on fmsat and rmsat estimations, classified non-inbred (NIB), inbred (IB) and a group of
closely related fish (REL) were created. The susceptibility of their offspring varied considerably. Although there was
no significant difference in the prevalence of M. cerebralis infection, the mean intensity of infection differed significantly
between NIB and IB groups. In REL and IB groups, a high variability was observed in infection intensity. No external clinical
signs were observed in the exposed brown trout groups.

Conclusions: Our findings indicate that the allelic diversity of brown trout brood stock may constitute a significant factor in
disease susceptibility, i.e. the intensity of parasite infection in the subsequent generation.
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Background
The effects of inbreeding on salmonid reproduction,
growth and survival have an extensive record in scientific
literature. Numerous studies support the thesis of fitness-
reducing negative effects, which may occur in fish with an
increase in inbreeding [1-3]. The reasons for elevated
inbreeding are usually the selection of less than optimal
(and thus more closely related) individuals in artificial
reproduction, the selection of certain desired phenotypes,
the selection of spawning fish only during short sections
of the spawning period, the use of only few female
spawners due to sufficient amounts of eggs [4-6], the
mixing of gametes of different brood stock animals
[7,8], as well as differences in survival rates or sole re-use
of certain parts of the brood stock population [9-12].
Besides these, selective breeding is often utilized for con-

trolling economically relevant diseases. Through propaga-
tion of disease-survivors as brood stock, or the genetic
manipulation of fish stocks, the disease resistance of fish
populations can be increased [13-16]. In salmonids, resist-
ant strains were developed against common diseases such
as furunculosis [17] and viral haemorrhagic septicaemia
(VHS) [18]. Ceratonova (syn Ceratomyxa) shasta was the
first myxozoan parasite to which resistant strains were de-
veloped and evaluated [19,20]. In genetic studies on various
rainbow trout (Oncorhynchus mykiss) strains with different
susceptibility, several genome regions were found to be in-
volved in resistance to C. shasta. The complex, multigenic
trait of disease resistance has been confirmed for another
myxozoan parasite, Myxobolus cerebralis [21-23]. The para-
site responsible for whirling disease causes serious declines
in wild and farmed salmonid populations worldwide.
M. cerebralis infects a range of salmonid hosts that
vary in susceptibility [24-27]. Fetherman et al. [28]
showed that the introduction of a “M. cerebralis-resistant”
rainbow trout strain to a natural habitat contributed to
the reduction of infection prevalence and disease severity
despite the low survival rate of stocked fish. Fish age and
size also affect parasite development. The susceptibility of
salmonid fry to the parasite decreases with age and growth
[24,29-31]. Surprisingly, resistance is not associated with
the level of skeletal ossification, but rather with other age-
and size-related factors, such as the stage of development
of the central nervous system [32]. Brown trout (Salmo
trutta) is assumed to be the original host, which evolved
with the parasite [33], and is considered one of the least
susceptible salmonid host species. Infection in brown
trout usually proceeds without clinical signs and modest
to absent mortality. However, subclinical infections may in-
crease the risk of the dissemination of the parasite into
natural environments, especially in Europe, where hatchery-
reared brown trout are used for stocking natural habitats, as
a major part of conservation efforts [34]. Therefore, the role
of reservoir hosts needs to be considered carefully and
factored into management plans and epidemics as suggested
for the monogenean ectoparasite Gyrodactylus salaris [35].
In the present study, we examined the correlations be-

tween parental genetic diversity and susceptibility traits of
brown trout to the whirling disease parasite, M. cerebralis,
for the first time. Marker heterozygosity-based grouping
of brood stock was conducted on the basis of microsatel-
lite and lineage-derived genetic markers, and the suscepti-
bility of the offspring from assorted parental fish was
evaluated in experimental infection trials in order to
measure the effect of different homozygosity levels on the
susceptibility of the resulting offspring.

Methods
Brood stock tagging and sampling
Fish were sampled in a Hungarian and a German trout
hatchery in October, 2010, and in June, 2011. All ex-
amined fish were individually tagged with PIT tags (Loligo
Systems). From the brown trout (BT) brood stock of
Lillafüred trout hatchery in Hungary (48°6′59.22"N,
20°34′ 46.21"E), 167 specimens of 3–4 year-old fish
were examined. From the brood stock of the trout
hatchery in Aufseß, Germany (49°52′47.01"N, 11°13′
41.43"E), 195 individuals (approx. equal number of
males and females) from the same age group were
sampled. During sampling, fin clips of approximately
1 cm2 were cut from the caudal fin of all specimens,
photos were taken of every fish, and the total length
was also recorded. Fin clips were fixed in 70% ethanol
and stored at +4°C for molecular analysis.

DNA extraction and lineage analysis
For DNA extraction, an approximately 5 mm2 fin clip
cut was dried in a Speed Vac Concentrator (Savant), and
homogenized in a 1.5 ml microcentrifuge tube with a
sterile pestle (Eppendorf ) in ultrapure MilliQ water.
Extraction was carried out as described by Estoup
et al. [36]. Briefly, 500 μl 10% Chelex 100 resin solution
(BioRad) containing 0.3 mg/ml proteinase K was added to
the homogenate and incubated under constant shaking
at 55°C for 1 h. Digestion was terminated by heating to
100°C for 15 min. DNA extracts were stored at −20°C
until further use. An approximately 1088 bp fragment of the
mitochondrial DNA control region (mtDNA CR) was PCR-
amplified using the primer pair RiBa (5’-CAC CCT TAA
CTC CCA AAG CTA AG-3’) [37] and HN20 (5’-GTG TTA
TGC TTT AGT TAA GC-3’) [38]. From nuclear DNA,
a 428 bp fragment of the lactate-dehydrogenase gene
C1 region (LDH-C1) was amplified with the primer
pair Ldhxon3F (5’-GGC AGC CTC TTC CTC AAA
ACG CCC AA-3’) and Ldhxon4R (5’-CAA CCT GCT
CTC TCC CTC CTG CTG ACG AA-3’) [39]. The total
volume of PCR reactions was 25 μl, which contained
15–40 ng DNA (0.5 μl), 1× Taq PCR reaction buffer
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(Fermentas, Thermo Scientific), 1.5 mM MgCl2, 0.2 mM
dNTP mix (Sigma), 0.5 μM of each primer and 1.25 units
of recombinant Taq DNA Polymerase (Fermentas, Thermo
Scientific). For PCR conditions, the protocol described by
Marić et al. [40] was followed.
The PCR-restriction fragment length polymorphism

(PCR-RFLP) was conducted as per Marić et al. [40]. The
amplified PCR products of mtDNA CR were digested
with the restriction enzyme SatI (Fermentas, Thermo
Scientific), while BseLI (Fermentas, Thermo Scientific)
was used for LDH-C1 PCR products. The RFLP pattern was
visualized on a 1.5% agarose gel in 0.5× TAE buffer stained
with GelRed nucleic acid stain (Biotium). Photos were taken
using a Gel Logic 212 Imaging System (KODAK).

Microsatellite analysis
Eight microsatellite (msat) loci were examined on the
tagged brood stock fish populations (Table 1). The DNA
of msat Str-15, Str-60, Ssa-85 and Ssa-197 were amplified
using a tetraplex PCR assay developed and optimized in
the present study. The 25 μl total volume of PCR reaction
contained approx. 50 ng template DNA, 1× AmpliTaq
Gold PCR buffer (Life Technologies), 3 mM MgCl2,
40 μM dNTP (Sigma), 0.5 μM (for Str-15)/0.25 μM
(for Ssa-197)/0.125 μM (for Ssa-85 and Str-60) of each
primer and 1 u AmpliTaq Gold Taq DNA polymerase
(Life Technologies). A duplex PCR to amplify msat
Sso-197 and Str-543 was performed under similar con-
ditions with 0.5 μM of each primer. Microsatellites
SsoSL-438 and OKI-10 were amplified with simplex
Table 1 Oligonucleotides used for microsatellite analysis

Microsatellite locus Oligonucleotide name Sequence (5′- 3’)

Str-15 Str15FAM TGCAGGCAGACGGA

Str15R AATCCTCTACGTAAG

Str-60 Str60FAM CGGTGTGCTTGTCAG

Str60R GTCAAGTCAGCAAG

Str-543 Str543NED ATTCTTCGGCTTTCTC

Str543R ATCTGGTCAGTTTCT

SsoSL-417 SsoSL417HEX TTGTTCAGTGTATAT

SsoSL417R GATCTTCACTGCCAC

SsoSL-438 SsoSL438FAM GACAACACACAACC

SsoSL438R TTATGCTAGGTCTTT

Ssa-85 Ssa85NED AGGTGGGTCCTCCA

Ssa85R ACCCGCTCCTCACTT

Ssa-197 Ssa197HEX GGGTTGAGTAGGGA

Ssa197R TGGCAGGGATTTGA

OKI-10 OKI10FAM GGAGTGCTGGACAG

OKI10R CAGCTTTTTACAAAT

Forward primers were 5’end-labeled with fluorescent dyes FAM, NED and HEX, resp
PCR assays containing half of the amount of MgCl2
and dNTP as mentioned above (1.5 mM and 20 μM,
respectively). The PCR program started with an initial
denaturation at 94°C for 5 min, followed by 35 cycles
of 94°C/30 s, 55 or 60°C as indicated in Table 1 for
30 s and 72°C/30 s. The final elongation step was per-
formed at 72°C for 3 min.
The size of the msat loci were estimated with DNA

fragment analysis on ABI 3100 Genetic Analyzer on
POP6 polymer at 60°C using a GeneScan500 ROX size
standard. Then, msat allele size detection was conducted
with the software PeakScanner v1.0 (Life Technologies).
Raw size values were normalized based on the length of
the nucleotide (nt) repeats in the msat loci; e.g. for 2 nt
repeats “CT” in Str-15, the size 199 was corrected to 200
as 1 nt difference is shorter than one 2 nt-repeat, there-
fore the two size values were treated identically (as they
belong to the same number of 2-nt repeats).
Pairwise relatedness (rmsat) and individual inbreeding

coefficients (fmsat) were estimated using the triadic likeli-
hood estimator (TrioML) in the software COANCESTRY
by J. Wang [46].

Grouping of fish for selective fertilization
On the basis of the obtained data regarding the genetic
status of BT brood stock, four groups were selected.
Classified non-inbred (NIB) and inbred (IB) groups of
parent fish in Aufseß were distinguished based on fmsat

values. One group composed of a dozen NIB individuals
of genetically related male and female parent fish (REL)
Annealing
temperature (°C)

PCR product
size (bp)

Reference

TCAGGC 60 220-226 [41]

GGATTTGC

GTTTC 60 94-104 [41]

CCTCAC

TTGC 55 118-152 [42]

TTATG

GTGTCCCAT 55 160-192 [43]

CTTATGACC

AAGGCAC 55 98-108 [43]

ATGCATTGT

AGCTAC 60 104-116 [44]

AATC

GGCTTG 60 128-158 [44]

CATAAC

ATTGG 55 104-220 [45]

CCTCCT

ectively. R: reverse primer.
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was identified for individual fertilization based on rmsat

values. Four male and female individuals from the
Atlantic-Danubian hybrid (LBT) brood stock group were
used for selective fertilization in the Lillafüred trout
hatchery.

Infection trial with M. cerebralis
Offspring of BT brood stock groups IB, NIB and REL
were obtained from the trout hatchery in Aufseß,
Germany, whereas LBT and Steelhead strain rainbow trout
(Oncorhynchus mykiss; LRBT) fingerlings originated from
the Lillafüred trout hatchery, Hungary (Table 2). Fish were
kept in a parasite-free environment in both hatcheries
before transport. Two month old fry were transported
to the laboratory. They were kept in flow-through aquaria
at 15 ± 2°C water temperature, and were fed with commer-
cial trout food. The fish were exposed at the age of
3 months.
Infective Myxobolus cerebralis triactinomyxon spores

(TAMs) were obtained from our in vivo laboratory oligo-
chaete cultures. TAMs were harvested by filtering the
water from the culture containers through 20 μm mesh.
TAMs used for the infection trials were less than 48 h
old [47,48]. Fish were exposed individually to 3000
freshly filtered TAMs/fish in 500 ml dechlorinated tap
water at 15°C for 3 h. Fifty-three individuals per group
were exposed. Non-exposed control fish were kept under
the same conditions with the exception of TAMs. After
individual exposure, fish groups were kept separately in
flow-through aquaria and fed daily. The infection experi-
ment was terminated 4 months post exposure. Fish were
euthanized with 200 mg.L−1 tricaine-methanesulfonate
(MS222, Sigma), and kept frozen at −20°C until further
examination.
Fish were decapitated and whole heads were divided

horizontally. The cartilage and minced skeletal elements
of a half head (including gill arches) were transferred
into a 2 ml microcentrifuge tube containing a metal ball,
and after the addition of 800 μl distillated water, the
Table 2 Fish groups used for infection trials with
Myxobolus cerebralis

Group
identifier

Description Species Origin

NIB Non-inbred (heterozygous
individuals)

Brown trout Aufseß,
Germany

IB Inbred (homozygous individuals) Brown trout Aufseß,
Germany

REL Related (heterozygous, but
related male–female pairs)

Brown trout Aufseß,
Germany

LBT Atlantic-Danubian hybrid Brown trout Lillafüred,
Hungary

LRBT Positive control Rainbow trout Lillafüred,
Hungary
sample was homogenized with a TissueLyser LT (Qiagen)
at 50 Hz for 10 min. Instead of quantifying parasite DNA
of all developmental stages using species-specific PCR,
morphologically intact M. cerebralis myxospores were
counted which are transmission stages and play a key
role in the propagation of the parasite. Spores were
counted in 20 μl tissue homogenate on a microscopic
slide with 20 × 20 mm coverslip under a light micro-
scope (Zeiss Axiostar Plus) in three replicates.

Statistical analysis
Statistical analyses were performed using the R program
for Windows (R commander 2.15.1). A chi-square test
was used for analyzing the difference in infection preva-
lence among BT groups. Difference of mean infection in-
tensities among groups were tested by one-way ANOVA.
Pairwise comparisons were made by Dunnett’s test with
IB as the reference group. Non-infected individuals were
excluded from the statistical analysis of infection inten-
sity as suggested by Rózsa et al. [49].

Ethical statement
We declare that the treatment of fish complied with
the relevant Hungarian legislation (Section 49 of Act
No. XXVIII/1998 on the protection and preservation
of animals, and Executive decree No. 40/2013) and the
Directive 2010/63/EU on the protection of animals
used for scientific purposes and the guidelines and rec-
ommendations of the Federation of Laboratory Animal
Science Associations.

Results
Lineage analysis
As a result of PCR-RFLP, one genotype was detected
using mtDNA CR, and three genotypes with LDH-C1.
For all examined samples, the PCR-RFLP pattern charac-
teristic of the Atlantic (At) lineage was detected, as the
amplified fragment of mtDNA CR was cut into two frag-
ments, a 654 and a 434 bp long one. The pure Danubian
(Da) genotype, whose amplified mtDNA CR fragment is
not cut by the restriction endonuclease SatI, was not
present in the collected fish samples. In the German brown
trout population, only the Atlantic allele was detected with
the PCR-RFLP of LDH-C1. In every examined fish sample,
the endonuclease BseLI cut the 428 bp LDH-C1 fragment
at one restriction site, resulting in 353 and 75 bp frag-
ments. Thus, 100% of the examined fish from Germany
belonged to the LDH-C1_At-At (Atlantic) genotype.
In the Hungarian brood stock population, both Atlantic

(LDH-C1_At) and Danubian (LDH-C1_Da) LDH-C1 alleles
were present, and the PCR-RFLP patterns of At (LDH-
C1_At-At), Da (LDH-C1_Da-Da) and At-Da hybrid (Hyb)
genotypes (LDH-C1_At-Da) were distinguishable (Table 3).
Half of the Hungarian fish population showed the hybrid



Table 3 Frequency of mtDNA CR and LDH-C1 haplotypes/alleles and LDH-C1 genotypes of brood stock on the basis of
PCR-RFLP pattern

Female Male Total

Nr. of individuals Frequency (%) Nr. of individuals Frequency (%) Nr. of individuals Frequency (%)

genetic markers

Da mtDNA 0/64 0 0/80 0 0/144 0

At mtDNA 64/64 100 80/80 100 144/144 100

LDH-C1_At 70/128 55 98/160 61 168/288 58

LDH-C1_Da 58/128 45 62/160 39 120/288 42

LDH-C1 genotypes

LDH-C1_Da-Da (Da) 15/64 23 10/80 12.5 25/144 17

LDH-C1_At-At (At) 21/64 33 28/80 35 49/144 34

LDH-C1_At-Da (Hyb) 28/64 44 42/80 52.5 70/144 49

mtDNA CR: mitochondrial DNA control region; LDH-C1: lactate-dehydrogenase C1 region; Da: Danubian, At: Atlantic, Hyb: Atlantic-Danubian hybrid. The examined
brown trout brood stock originated from the Lillafüred trout farm, Hungary.
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Figure 1 Frequency of the microsatellite-based individual
inbreeding coefficient (fmsat) values among the examined
brown trout brood stock. Data for female (a) and male (b) parents
are displayed separately. The fmsat columns of non-inbred group are
shown gray; those of the inbred group are black. Empty columns
indicate the intermediate fmsat values excluded from the experiments.
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LDH-C1 pattern, while the genotype Da was detected in 25
cases of 144 (17%). All of the fish having LDH-C1_Da-Da
(Da) showed the At pattern using mtDNA, which might be
explained by back-crossing of hybrid parents. The gender
difference was recognizable since more females than males
(23% and 12.5% respectively) belonged to the Da genotype,
which was the opposite for the hybrids (Table 3).

Microsatellite analysis
The size range of the examined msat loci is displayed in
Table 1. The highest allele size variability was detected
for OKI-10, for which 23 different msat length values
have been observed in the examined brood stock. The
slightest length variation was detected for Str-15 and
Str-60 (4 different msat lengths each).
The estimated fmsat values varied between 0 and

0.2091 for females, and 0 and 0.6197 for males. The ex-
amined brood stock specimens were divided into groups
with relatively low and high individual inbreeding coeffi-
cients with thresholds resulting from the fmsat estima-
tion. These were fmsat > 0.05 for more homozygous (IB)
and fmsat < 0.02 for more heterozygous (NIB) females
and fmsat > 0.1 for more homozygous (IB) and fmsat < 0.02
for more heterozygous (NIB) males. The latter threshold
resulted from significantly higher individual fmsat values
for NIB males, while fish with intermediate values were
excluded from the experiments. The frequency distribu-
tion of fmsat values showed that while more than 40%
of males could be classified as inbred based on our
markers, only about 30% of females had fmsat values
that made them candidates for the IB group (Figure 1).
The assignment of closely related males to selected fe-

males from the NIB group (all individuals’ fmsat < 0.02)
for experimental mating of related and non-related par-
ents (paired samples from single female egg batches)
was based on rmsat estimation. Non-related parents had
an rmsat < 0.0002, close-sib (highly related) pairs had a
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rmsat > 0.2. The rmsat values of male–female pairs consid-
ered related (REL) varied between 0.2208 and 0.4481.
The inbreeding coefficient fmsat of randomly selected

NIB and IB offspring individuals (ten of each group)
has also been estimated and showed high variance
within the groups as expected (NIB: 0.0002 - 0.3414;
IB: 0.0004 - 0.1353).
Infection trial with M. cerebralis
The exposed BT groups showed no clinical signs of in-
fection. The infection prevalence was highest (91%) in
the positive control group (LRBT) with moderate clinical
signs in the affected fish specimens (blackened tail,
growth retardation and slight spinal deformations). In
the non-exposed, negative control fish, M. cerebralis
myxospores were not detected. The prevalence of infec-
tion varied between 44 and 69% among BT groups, but
the difference was not significant between any of the BT
groups (Figure 2). However, the intensity of M. cerebralis
infection showed a more remarkable difference. The ob-
served mean spore number was highest for the IB group
(274 ± 344.54; mean spore number ± standard deviance,
SD) and lowest for LBT (52 ± 85.41). The group NIB and
REL were mid-ranged regarding mean spore numbers
(91 ± 126.98 and 174 ± 274.72, respectively), while in the
LRBT group an extreme variance in spore numbers was
observed (8517 ± 25793.39). When comparing all values to
that of the group IB as a reference, the infection intensity
of the NIB and the At-Da hybrid group, LBT was signifi-
cantly lower than that of the reference group (p < 0.005).
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Figure 2 Prevalence of Myxobolus cerebralis infection in experimental
NIB: non-inbred, IB: inbred, REL: related, LBT: Atlantic-Danubian hybrid brow
The related group, REL did not differ significantly from the
reference IB group (Figure 3).

Discussion
Inbreeding reduces the rates of reproduction and sur-
vival in most regularly outbred species [50]. But inbreed-
ing depression can not only lead to a strong reduction of
growth in salmonids [51]. According to other studies, in-
breeding causes increased embryo mortality, and affects
spawning age and egg counts of female rainbow trout
[4,52-54]. Interestingly, inbred males had no effect on
hatching success, whereas inbreeding in female spawners
had fatal consequences for developing eggs and caused
poor hatching rates [46]. Our findings support these ob-
servations, as more IB females failed to ovulate in the
spawning period than in the NIB group.
Until now, heterozygosity-fitness correlations remain

in criticism. The subject of controversy is the question
whether relationships between degree of homozygosity
and observed fitness parameters are detectable and com-
prehensible at all. According to Balloux et al. [55] in-
creased heterozygosity is a rather poor indicator for
genome-wide inbreeding and also a large number of
markers can reflect the inbreeding coefficient f only
under extreme conditions of kinship mating. Even pedi-
gree data, as preferred by most authors, computationally
tend to underestimate the real degree of inbreeding.
The decisive advantage of the marker-based approach
is the possibility to investigate the existing inbreeding
(−depression) in animals with identical origin (and thus
same expected f ) on the basis of individual values. To
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n trout, and LRBT: rainbow trout (positive control).



Figure 3 Mean intensity of Myxobolus cerebralis infection in the examined brown trout groups. NIB: non-inbred, IB: inbred, REL: related
individuals, LBT: Atlantic-Danubian hybrid group. *: significant difference from the reference (inbred) group (P < 0.005). Non-infected individuals
were excluded from the analysis.
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circumvent the mentioned problems, especially when
using microsatellite data, Wang [46] proposed a new
probability estimator, TrioML which is better correlated
with fitness parameters and weighted for allelic diversity
of a given population. Therefore, in the present study, the
TrioML estimator was chosen for the calculation of fmsat

to give a more reliable estimation of the homozygosity
level of the examined brood stock.
The signs of whirling disease and their severity vary

between fish host species. Among other species such as
Atlantic salmon (Salmo salar), brown trout usually is an
asymptomatic carrier of M. cerebralis and can act as a
vector for the parasite [56]. Approximately 20 d post ex-
posure, the parasite locates in the cartilage (primarily in
the opercula, cranium and spine) causing lesions and in-
flammation, and potentially damaging the skeletal struc-
ture of the fish [57]. Locations of lesions vary among
fish species and can explain variability in disease severity
and survival among different species. Cartilage lesions,
observed by histology in rainbow trout, tend to concen-
trate in the cranium around the brain, but can be found
throughout the cartilage in the body in young fry [27].
However, in brown trout, lesions concentrate in fin rays
and gill arches [58,59]. Under experimental conditions,
Hedrick et al. [58] compared the relative susceptibility of
age-matched brown and rainbow trout fry to M. cerebralis.
Using different TAM doses (from 10 to 10000 TAMs/fish),
they compared the effect of exposure dose on the preva-
lence of clinical signs, the severity of microscopic lesions,
the presence and number of spores in the cartilage of
infected fish, and the relative risk of infection for each
fish species. In our study, a dose of 3000 TAMs/fish
was used for exposure and a significant difference was
detected both in prevalence and intensity of infection,
similarly to the findings of Hedrick et al. [58] when
using > 1000 TAMs/fish.
Although Nichols et al. [20] and Fetherman et al. [23]

presumed that the geographic distribution of fish strains
might have an influence on the genetic basis of resist-
ance to both C. shasta and M. cerebralis, the correlation
between the phylogeographic composition of salmonid
populations and their resistance to the diseases has not
been studied so far. Our study is also the first to com-
pare the susceptibility of different genetic lineages of
brown trout. The examined German brood stock repre-
sents a homogenous population, while the Hungarian
population shows high heterogeneity concerning its phy-
logeographic lineages. Genetic analysis determined that
the German population is Atlantic-descendant, while the
Hungarian brood stock merely contains a higher ratio
of At markers than the autochthonous Da one, and
thereby > 50% of brood stock is comprised of At-Da
hybrids. And the heterogenous group LBT composed
of At and At-Da hybrid parent fish was the least sus-
ceptible to M. cerebralis of all examined fish groups.
As a key finding, the fully heterozygous group NIB

was significantly less susceptible to the parasite than the
more homozygous IB group. Thus, our findings suggest
that there is a positive correlation between degree of
parental heterozygosity and disease resistance. Higher
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variability in infection intensity was observed in the
groups IB and REL compared to NIB and LBT, albeit the
prevalence of infection did not differ significantly among
the examined brown trout groups. The variations in
groups IB and REL was mainly caused by a small frac-
tion of specimens (<5%) that showed extremely heavy
infections compared to their conspecifics. This was the
case in the LRBT group as well, of course with even
higher variance in spore numbers. Individual differences
in resistance to certain myxozoan-caused diseases in-
cluding whirling disease are well-known [60]. In most
cases, the individual differences in immune competence
or the development of the innate immune system are
the causes of variations in disease resistance. But in the
present study, individual variations in the susceptibility of
offspring might be also caused by the allele recombination
of parent fish pairs/groups that may result higher varia-
tions in the homozygosity level of the offspring population
than in that of the parental one. The findings of the gen-
etic analysis of randomly selected offspring individuals
support this, as we showed that IB brood fish also had
NIB offspring and vice versa. The brood stock fish in REL
group were heterozygous, but genetically closely related
individuals were paired, therefore the relatively high sus-
ceptibility of REL offspring can be explained by the
“forced” inbreeding caused by the selective fertilization.
The opposite overall tendency could be observed in the IB
group, in which only the parents were inbred and the se-
lective fertilization probably outbred the offspring, at least
to a certain extent. In the offspring of IB and REL, not
only the elevated homozygosity may be a reason for the
increased parasite susceptibility, but the resulting allele
depletion that lowers immune diversity and versatility.
The variations in infection intensity were less remarkable
in the offspring of the heterozygous groups NIB and LBT,
probably because these brood stock fish were non-related
and the heterozygosity level did not decrease considerably
in offspring.
Conclusions
Our findings indicate that the homozygosity level and
thus the genetic diversity of brood stock has a signifi-
cant influence on the intensity of parasite infection in
the subsequent generations. As there is no effective
treatment against whirling disease as yet, preventive
measures against the parasite should be accompanied
by regular genetic diversification of brood stock under
controlled conditions to avoid increased levels of homo-
zygosity in brood stock populations, even if barely
measurable.
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