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Abstract

Background: Zoonotic visceral leishmaniasis caused by Leishmania infantum which is transmitted by phlebotomine
sand flies (Diptera, Psychodidae) is endemic in the Mediterranean basin. The main objectives of this study were to
(i) detect Leishmania DNA and (ii) identify blood meal sources in wild caught female sand flies in the zoonotic
leishmaniasis region of Algarve, Portugal/Southwestern Europe.

Methods: Phlebotomine sand flies were collected using CDC miniature light traps and sticky papers. Sand flies
were identified morphologically and tested for Leishmania sp. by PCR using ITS-1 as the target sequence. The
source of blood meal of the engorged females was determined using the cyt-b sequence.

Results: Out of the 4,971 (2,584 males and 2,387 females) collected sand flies, Leishmania DNA was detected by
PCR in three females (0.13%), specifically in two specimens identified on the basis of morphological features as
Sergentomyia minuta and one as Phlebotomus perniciosus. Haematic preferences, as defined by the analysis of cyt-b
DNA amplified from the blood-meals detected in the engorged female specimens, showed that P. perniciosus fed
on a wide range of domestic animals while human and lizard DNA was detected in engorged S. minuta.

Conclusions: The anthropophilic behavior of S. minuta together with the detection of Leishmania DNA highlights
the need to determine the role played by this species in the transmission of Leishmania parasites to humans. In
addition, on-going surveillance on Leishmania vectors is crucial as the increased migration and travelling flow
elevate the risk of introduction and spread of infections by Leishmania species which are non-endemic.

Keywords: Blood-meal, Leishmania, Phlebotomine sand flies, Phlebotomus perniciosus, Sergentomyia minuta,
Portugal, Southwestern Europe
Background
Leishmaniasis caused by Leishmania infantum is the
only tropical vector-borne disease that has been endemic
in southern Europe for decades [1]. Most of the reported
cases are due to zoonotic visceral leishmaniasis (VL), the
most dangerous form of Leishmania infection, being
lethal when untreated. Dogs are considered the major
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host for these parasites, and the main reservoir for
human infections. In nature, the pathogen transmission
occurs via the infective bite of phlebotomine sand flies
(Diptera, Psychodidae), for both humans and dogs.
In Portugal, as in other countries in the south of Europe,

VL was initially described as a pediatric disease but from
the end of the 1980s onwards, the number of cases in chil-
dren has decreased with a concomitant increase of infec-
tion in adults, commonly associated with HIV/AIDS [2].
In the last ten years (2005–2014), 119 new cases of human
VL (17 in immunocompetent adults, 36 in children and
66 in immunocompromised patients) and 16 cutaneous
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leishmaniasis cases were diagnosed at the Leishmaniasis
Laboratory at the Institute of Hygiene and Tropical
Medicine. Leishmania infantum zymodeme MON-1 is
the most common aetiological agent of autochthonous
human and canine leishmaniasis cases [3] and Phlebo-
tomus perniciosus and Phlebotomus ariasi have been
confirmed as proven vectors [4].
As data regarding Leishmania infection rate and

blood meal sources of phlebotomine sand flies in
Portugal is still too scarce, this study was implemented
so as to allow the (i) detection of Leishmania DNA and
(ii) identification of blood meal sources in wild caught
female sand flies in Algarve, Portugal/Southwestern
Europe.

Methods
Study area
Algarve, located in southern Portugal, has an area of
5,412 Km2 with an estimated number of permanent
inhabitants approximating 450,000 [5], which triplicates
during summer months. Figs (Ficus carica), almonds
(Prunus amygdalus), oranges (Citrus sinensis), carobs
(Ceratonia siliqua), strawberries trees (Arbutus unedo)
and cork oaks (Quercus suber), are the most common
crops in the region [6]. Algarve has a Mediterranean
climate with warm weather (annual average temperature
of 18°C) and low rainfall almost all year round (annual
average of 500 mm). Summer (June-September) is the
driest and warmest season with average monthly tem-
peratures between 16° and 28-30°C (www.ipma.pt).

Collection and identification of sand flies
Between May to October from 2011 to 2013, CDC light
traps and sticky oil papers were set up in 11 sampling
points during three consecutive days per month. Col-
lection places included domestic, peri-domestic and
sylvatic environments. In most of the studied biotopes,
in addition to humans and dogs, the major vertebrates
visible within a 50 m radius of the collection spots
were livestock, horses, pigs, rabbits and poultry.
Collected sand flies were stored in 70% ethanol for fur-
ther analysis. A total of 4,971 sand flies (2,584 males
and 2,387 females) were collected and identified mor-
phologically. Phlebotomine specimens of both genders
were identified by their morphological characteristics
to the species level, according to Pires [7]. Female
identification was done by microscopic observation of
the spermatheca, after dissection and mounting of the
three last abdominal segments in Marc-André solution,
while males were identified by direct stereomicroscopic
observation of the genitalia. In addition, for each fe-
male, the presence of eggs (gravid status), and/or blood
(engorged: total or partial vs. unfed) in the abdomen
was recorded (Table 1).
DNA extraction, PCR amplification and DNA sequencing
For each female sand fly, the remainder of the body
(minus genitalia) was used as the source of DNA, ex-
tracted using the Citogene® Cell and Tissue kit (Citomed,
Portugal) following the manufacturer’s instructions, with
the exception that the maceration of the insect’s tissues
was carried out with a piston pellet, and the final elution
volume was 30 μl.
The PCR amplification of the internal transcribed spa-

cer 1 (ITS-1) of the ribosomal operon of Leishmania
was performed using the LITSR and L5.8S primers
generating amplicons with 300–350 bp [8]. A positive
control containing L. infantum DNA (MHOM/PT/88/
IMT151) and a negative control without DNA template
were included. To identify the origin of the blood meal
of engorged females, the modified vertebrate-universal
specific primers (cytB1-F and cytB2-R) were used to
amplify a 350 bp segment of the host mitochondrial
cytochrome b gene (cyt-b) [9]. PCR amplifications were
performed in a 25 μl final volume containing 12.5 μl of
NZYTaq 2× Green Master Mix (Nyztech, Portugal),
1 μl of each primer (10 pmol) and 2 μl of template
DNA. The cycling profile used for the amplification
of ITS-1 sequences included an initial denaturation
step at 95°C for 2 min, followed by 32 repeats of
95°C-20 sec, 53°C-30 sec, 72°C-1 min followed by a
final extension step at 72°C-6 min, while the prepar-
ation of cyt-b PCR products was carried out starting
from 95°C for 5 min, followed by 40 cycles of 94°C-1 min,
55°C-1 min, 72°C-1 min followed by 72°C-7 min. Both
amplicons were visualized under UV illumination after
their resolution by conventional electrophoresis on 1.5%
agarose gels stained with Greensafe premium® (Nzytech,
Portugal), using a 100 bp DNA ladder as a molecular
weight marker. PCR products were purified with a High
Pure PCR Product Purification Kit (Roche® Mannheim,
Germany) according to the manufacturer’s instructions.
Subsequently, purified products were sent to LIGHTrunTM

Sequencing Service (GATC-biotech, Germany) for direct
sequencing by Sanger’s method with the same primers
used for DNA amplification.

DNA sequence analyses
The identity of the feeding host (species level), carried
out on the basis of the analysis of the obtained cyt-b
sequences, was determined according to the closest
BLASTn match (identity ≥ 99%) to a homologous se-
quence deposited at GenBank. The sequences obtained
in the course of this work were deposited at DNA Data
Bank of Japan (DDBJ) (http://www.DDBJ.nig.ac.jp).
Restriction profile was obtained by virtual digestion

for ITS-1 sequence by using the Restriction Mapper
(version 3 available online at http://www.restrictionmapper.
org/).
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Table 1 Sand fly specimens collected according to the capture method and their positivity to Leishmania spp.

CDC light traps Sitcky papers Total Females

Sand fly species Females Males Females Males Females Males Females + Males Blood fed Gravid Positive

Phlebotomus ariasi 34 8 0 4 34 12 46 3 2 0

Phlebotomus perniciosus 372 305 59 806 431 1111 1542 49 32 1

Phlebotomus papaptasi 1 1 1 1

Phlebotomus sergenti 27 26 27 94 54 120 174 1 1 0

Sergentomyia minuta 212 149 1655 1192 1867 1341 3208 25 49 2

Total 646 488 1741 2096 2387 2584 4971 78 85 3
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Phylogenetic relationships were inferred from ITS-1
nucleotide sequence alignments produced with the
MAFFT multiple alignment program using a combin-
ation of the Q-INS-i and E-INS-i alignment options
[10]. Phylogenetic tree construction was carried out
using a Maximum Likelihood (ML) approach, and the
Kimura’s 2-P (K2P) evolutionary model, also assuming
Γ distributed substitution rates among sites, as indi-
cated by Mega6 [11] and as defined by the Akaike
information criterion. Alternatively, an empirically de-
fined model (GTR + Γ + I) was also used. The topo-
logical robustness of the obtained trees was assessed
by bootstrapping, using 1000 resampling of the original
alignment data. The final trees were manipulated for
display using FigTree v.1.2.2. (available at http://tree.
bio.ed.ac.uk/software/figtree/). NeighborNet networks
(NNn) were constructed using the same distance matrix
using Splits Tree4 software [12]; software available at
http://www.splitstree.org/). Mean genetic distance values
were calculated with the K2P formula, using Mega6 [11].

Results
Morphological identification of sand flies
S. minuta was the most prevalent species totaling a
number of 3,208 specimens (64.53%), followed by P. per-
niciosus with 1,542 specimens (31.02%). Phlebotomus
sergenti (174; 3.50%), P. ariasi (46; 0.93%) and one P.
papatasi female (0.02%) were also collected. Eighty five
females (2 P. ariasi, 1 P. papatasi, 32 P. perniciosus, 1 P.
sergenti and 49 S. minuta) were gravid.

Leishmania DNA detection, sequencing, and phylogenetic
inference analysis
Leishmania DNA was detected in three apparently unfed
females (0.13%) identified as P. perniciosus (n = 1) and in
S. minuta (n = 2). The three positive females were col-
lected in peridomestic biotopes (i.e. P. perniciosus was
collected in a horse stable, and S. minuta were collected
in a cattle pen and close to a kennel, respectively). The
three ITS-1 obtained sequences were submitted to DDBJ
(DDBJ accession numbers: LC028233 to LC028235).
PCR product obtained from P. perniciosus had a similar
size as L. infantum control while the PCRs products
from both S. minuta were slightly bigger (data not shown).
Furthermore, a HaeIII restriction profile characteristic of
L. infantum (184 bp, 72 bp and 55 bp) was obtained after
virtual digestion of the ITS-1 sequence obtained from the
positive DNA control as well as from P. perniciosus. Fi-
nally, sequence homology searches using BLASTn (mega-
blast search option) revealed >99% identity with L.
infantum, L. chagasi or L. donovani (E-values = e−154), and
a sequence coverage >94%. Curiously, however, species as-
signment to the ITS-1 sequences amplified from S. min-
uta could not be carried out on the basis of nucleotide
sequence homology search results. In this case the 15
best matches obtained with BLASTn (megablast) re-
vealed >93% sequence identity (>95% sequence coverage
and E-values < e−122) with only Leishmania sequences of
Chinese origin referred to as Leishmania sp. [13], indi-
cating relatively low identity with any sequence refer-
ences already deposited in the sequence databases.
Virtual HaeIII restriction profiles of the ITS-1 sequences
amplified from S. minuta (strains 5277 and 3400) were
characterized by three DNA fragments (<193 bp,
89 bp, <54 bp), which were found to be similar, though
not identical, to the virtual HaeIII profiles determined
for the Chinese Leishmania sp. sequences (<210 bp,
87 bp, <43 bp) mentioned above.
Definition of the species status of the obtained ITS-1

sequences was further pursued on the basis of phylo-
genetic analyses, along with others directly downloaded
from the public database, and used as references
(Table 2). The use of the suggested evolutionary model
(K2P + Γ) or a more robust one (GTR + Γ + I), empiric-
ally defined by the user, resorted in phylogenetic trees
with identical topologies as that shown in Figure 1 (data
not shown).
One of the sequences obtained in this study (strain

1704), amplified from P. perniciosus, was found to segre-
gate in a large monophyletic cluster that included L.
infantum, L. donovani, L. archibaldi and L. chagasi
(Figure 1), characterized by low genetic variability (aver-
age genetic distance of 0.2%). On the other hand, the re-
mainder two ITS-1 sequences (strains 5277 and 3400),
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Table 2 Nucleotide reference sequences used in this work

Species* Strain/isolate/haplotype Origin/host Accession number

Leishmania donovani MHOM/KE/83/NLB189 Kenya/Human AJ634374

Leishmania donovani MHOM/SD/93/9S Sudan/Human AJ634372

Leishmania donovani MHOM/LK/2002/L60c Sri Lanka/Human AM901447

Leishmania donovani MHOM/LK/2002/L60b Sri Lanka/Human AM901448

Leishmania archibaldi MHOM/SD/93/GE Sudan/Human AJ634357

Leishmania archibaldi MHOM/SD/97/LEM3429 Sudan/Human AJ634358

Leishmania archibaldi MHOM/SD/97/LEM3463 Sudan/Human AJ634359

Leishmania donovani MHOM/SU/84/LEM0946 Soviet Union/Human HG512918

Leishmania donovani MCAN/MA/2002/AD3 Morocco/Canine AM901453

Leishmania donovani MHOM/IQ/1981/SUKKAR2 Iraq/Human AM901452

Leishmania donovani MHOM/IN/1983/CHANDIGARH India/Human AM901449

Leishmania infantum MCAN/UZ/2007/LRC-L1309 Uzbekistan/Canine FN398341

Leishmania infantum MHOM/BR/2007/JFF BM Brazil/Human FN398343

Leishmania infantum MHOM/IT/93/ISS800 Italy/Human AJ634354

Leishmania infantum MHOM/PT/00/IMT260 Portugal/Human AJ634344

Leishmania infantum MHOM/MT/85/BUCK Malta/Human AJ634350

Leishmania infantum MHOM/SD/93/452BM Sudan/Human AJ634371

Leishmania chagasi MHOM/BR/85/M9702 Brazil/Human AJ000306

Leishmania chagasi MHOM/PA/79/WR317 Panama/Human AJ000305

Leishmania tropica MHOM/IL/01/LRC-L838 Israel/Human FN677341

Leishmania tropica MHOM/EG/90/LPN65 Egypt/Human HG512927

Leishmania tropica MHOM/PS/01/ISL590 Palestine*/Human FN677345

Leishmania tropica MHOM/YE/86/LEM1015 Yemen/Human HG512919

Leishmania tropica MHOM/TN/88/TAT3 Tunisia/Human AJ300485

Leishmania tropica IHAM/GH/2007/KLE-18 Ghana/Sergentomyia hamoni AB787190

Leishmania aethiopica MHOM/ER/2009/7457 Eritrea/Human FN252411

Leishmania aethiopica MHOM/KE/71/KPS-H2 Kenya/Human HG512908

Leishmania turanica KD85001 Uzbekistan/Rhombomys opimus AJ272378

Leishmania turanica KL3 Kazakhstan/Rhombomys opimus AJ272382

Leishmania gerbilli MRHO/UZ/87/KD-87555 Uzbekistan/Rhombomys opimus AJ300486

Leishmania major MTAT/KE//NLB089A Kenya/ND AJ300482

Leishmania major MHOM/UZ/02/17h Uzbekistan/Human FN677357

Leishmania major MHOM/BF/2004/REN04-8 Burkina Faso/Human HG512963

Leishmania major MHOM/JO/90/JH39 Jordan/Human HG512945

Leishmania major MHOM/TN/97/LPN162 Tunisia/Human FN677342

Leishmania major MHOM/DZ/89/LIPA228 Algeria/Human HG512924

Leishmania mexicana MHOM/PE/02/LH2312 Peru/Human HG512965

Leishmania mexicana MHOM/EC/90/LM Ecuador/Human HG512934

Leishmania amazonensis MHOM/BR/73/M2269 Brazil/Human DQ182536

Leishmania amazonensis IFLA/BR/67/PH8 Brazil/ND AF339753

Leishmania braziliensis MHOM/PE/2003/LH2920 Peru/Human FN398337

Leishmania braziliensis MHOM/BR/00/LTB300 Brazil/Human FN398338

Leishmania peruviana MHOM/PE/2006/LH3667 Peru/Human FN398340

Leishmania peruviana MHOM/PE/1990/HB86 Peru/Human FN398339
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Table 2 Nucleotide reference sequences used in this work (Continued)

Leishmania guyanensis MHOM/BR/2002/NMT-RBO013 Brazil/Human FN398331

Leishmania guyanensis MHOM/PE/2006/LH3635 Peru/Human FN398332

Leishmania panamensis Isolate 18, clone 4 ND/Human FJ948442

Leishmania sp. MHOM/CN/80/XJ801 P.R.China/Human HQ830357

Leishmania sp. MHOM/CN/89/GS5 P.R.China/Human HQ830360

Leishmania sp. MHOM/CN/90/SC10H2 P.R.China/Human HQ830352

Leishmania sp. MHOM/CN/86/SC6 P.R.China/Human HQ830356

Leishmania sp. MHOM/CN/90/SC10H2 P.R.China/Human HM130601

Leishmania sp. MCAN/CN/60/GS1 P.R.China/Canine HM130600

Leishmania sp. MHOM/GS6/CHN/SCgq P.R.China/Human HM130599

Leishmania sp. MCAN/CN/86/SC9 P.R.China/Canine HQ830359

Leishmania sp. MHOM/CN/83/GS2 P.R.China/Human HM130603

Leishmania sp. MHOM/GS5/CHN/SCH2g P.R.China/Human HM130602

Leishmania sp. MHOM/SC11/CHN/SCgz P.R.China/Human HM130606

Leishmania sp. MHOM/CN/84/JS1 P.R.China/Human HM130605

Leishmania sp. MHOM/CN/84/SD1 P.R.China/Human HM130604

Leishmania sp. MHOM/CN/89/GS6 P.R.China/Human HQ830355

Leishmania sp. MHOM/CN/90/SC11 P.R.China/Human HQ830361

*Species as defined by the depositors; Israel: Occupied Palestinian Territories; P. R. China: People’s Republic of China; ND: not defined.
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amplified from S. minuta, were found to locate in a
bootstrap-supported (99%) assemblage of multiple refer-
ence sequences of Chinese origin, merely defined as
Leishmania sp. [13], and that included a multitude of
Leishmania sequences from human and canine origin,
with an average genetic distance of 2.6% (ranging from
0% to 8.0%), indicating considerably higher genetic vari-
ability than that associated with the L. infantum/L. dono-
vani/L. archibaldi/L. chagasi cluster. Similar conclusions
were achieved when, instead of assuming a strict tree-
like evolution, the phylogenetic relationships between
ITS-1 sequences were represented as a NNn (Figure 2).

Vertebrate DNA detection in female sand flies
A total of 78 engorged female sand flies (3 P. ariasi, 49
P. perniciosus, 1 P. sergenti and 25 S. minuta) were
tested to determine the vertebrate host source of the
blood meal. A positive PCR amplification result was ob-
tained for 43 of the collected specimens. After DNA se-
quencing of the amplified partial cyt-b sequences, the
origin of 30 (69.77%) blood-meals was identified (Table 3)
on the basis of the closest sequence matches, as defined
by BLASTn sequence homology searches (>99% identity
with deposited at the GenBank/EMBL/DDBJ public
databases).

Discussion
Phlebotomine sand flies are distributed in all countries
around the Mediterranean basin, turning both human
populations and domestic animals living in these areas
into potential targets to sand fly-borne diseases such as
leishmaniasis. Therefore, knowledge on the host prefer-
ences of sand flies under natural conditions is essential
not only to understand their vectorial role, but also as a
means to identify potential reservoir hosts. In this work,
we detected Leishmania DNA and evaluated blood meal
sources of fed females sand flies captured in southern
Portugal, where zoonotic leishmaniasis is known to be
endemic [2].
Similarly to what has been observed by others [14-19]

the blood meal analysis of the engorged P. perniciosus
revealed that this species fed on a broad variety of verte-
brates hosts (i.e. horses, cattle, sheep, pigs, rabbits and
chickens) highlighting its opportunistic feeding behav-
iour. Interestingly, no dog or human blood was detected
in blood-fed P. perniciosus, despite the fact that it has
been clearly defined as a proven vector of L. infantum in
the Algarve region [19-21]. The apparent absence of P.
perniciosus feeding on dogs and humans might indicate
that in the sampled biotopes, neither of them were the
main blood sources for this sand fly species due to the
presence of other larger sized vertebrates (e.g. horses)
and/or present in greater numbers (i.e. chicken, rabbits),
making them easier targets.
In addition, Leishmania infantum DNA was detected

in one unfed P. perniciosus specimen. Assignment of
species status for the 1704 ITS-1 sequence could not be
clearly carried out solely based on phylogenetic tree ana-
lysis due to the low genetic variability of the ITS-1
sequences that define the L. donovani complex [22] (that
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Figure 1 Maximum likelihood phylogenetic tree (midpoint rooted) of Leishmania ITS-1 sequences amplified from phlebotomine sand
flies collected in Portugal. The percentages of significant (≥77%) bootstrap values of 1000 resamplings of the original data are indicated at
specific branch-nodes. The size bar indicates 0.02 substitutions per site.
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Figure 2 NeighborNet network constructed with SplitsTree software employing the matrix of genetic distances (corrected with the
K2P formula) between individual Leishmania ITS-1 sequences amplified from phlebotomine sand flies collected in Portugal, and
reference sequences.
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include L. infantum, L. donovani, L. archibaldi and L.
chagasi, precluding a clear resolution of this genetic
cluster, as previously observed [13]. Nevertheless, the
ITS-1 amplicon size and virtual HaeIII restriction profile
obtained for the 1704 sequence amplified from P. perni-
ciosus were compatible with it corresponding to L. infan-
tum, and reinforces the maintenance of this sand fly
species as vector of L. infantum in southern Portugal
[19-21].
Sand flies of the Sergentomyia genus, which is widely

distributed throughout the Old World, are proven vec-
tors of reptile Leishmania species [23]. It is generally
accepted that most of Sergentomyia species are not
anthropophilic, and as a consequence cannot transmit
either Leishmania or any other pathogens to humans.
However, in the present study, apart from detecting Tar-
entola mauritanica (a reptile widely distributed around
the Mediterranean area [23,24]) DNA in one engorged
S. minuta, human DNA was also amplified in four spec-
imens corroborating that at least some Sergentomyia
species disclose sporadic/opportunistic anthropophilic
feeding-behaviour [25,26]. Furthermore, Leishmania sp.
DNA was detected in two unfed S. minuta females,
which unambiguously allocated with references within a
cluster of Chinese Leishmania sp. previously isolated
from humans and canine leishmaniasis cases [13]. While
phylogenetic tree reconstruction and NNn analyses
showed that the two ITS-1 sequences amplified from S.
minuta (strains 5277 and 3400) clearly segregated away
from all the others in a genetically consistent assemblage
of Leishmania strains, in this case species assignment was
limited by the unavailability of well characterized refer-
ence strains. However, despite the inability to clearly de-
fine the species of origin of the obtained sequences using
phylogenetic analyses, the detection of Leishmania
DNA phylogenetically related to those considered
pathogenic to humans and dogs in China [13] was
somewhat unexpected.
According to Yang et al. [13], the above mentioned

Leishmania strains of Chinese origin belonged to an un-
defined species, that was found to be genetic divergent
from any of the known New and Old World Leishmania,



Table 3 Identification of sand fly blood meal sources

Sand fly host P. ariasi P. perniciosus S. minuta Blast identity for the blood meal DDBJ accession no.

Horse (Equus caballus) 0 12 0 99-100% AB985687 AB985693-97 AB985699 AB985703 AB985708 AB985711 AB985714

Chicken (Gallus gallus) 0 5 0 99-100% AB985704 AB985705 AB985710 AB985713 AB985715

Human (Homo sapiens) 0 0 4 99-100% AB985688 AB985689 AB985698 AB985712

Rabbit (Oryctolagus cuniculus) 0 3 0 99% AB985690 AB985700 AB985709

Pig (Sus scrofa) 0 2 0 99 AB985707 AB985716

Cattle (Bos taurus) 1 1 0 99 AB985702 AB985706

Sheep (Ovis aries) 0 1 0 99 AB985701

Lizard (Tarentola mauritanica) 0 0 1 99 AB985692

Total 1 24 5
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on the basis of ITS-1 sequence analysis. Similar results
were obtained when kinetoplast cytochrome oxidase II
(COII; [27]) or CYT-b coding sequences [28] amplified
from these same strains were analysed. Interestingly,
both phylogenetic inference reconstruction studies re-
vealed that the Chinese Leishmania sp. isolates were
most closely related to the lizard-infecting L. tarentolae.
Unfortunately, in the present study it was not possible to
evaluate if the two Leishmania sp. detected in S. minuta
were genetic related to this reptile Leishmania species, as
no ITS-1 sequences of L. tarentolae have yet been depos-
ited in DNA sequence databases for public access. On the
other hand, exhaustion of the DNA extracts on which the
analysis presented in this report was based ruled out any
possibility of generating cyt-b and/or coII sequence data.
Nevertheless, and taking into account the results obtained
with cyt-b/coII [27,28], in the near future it will be import-
ant to analyse more of these Leishmania parasites ob-
tained from both vertebrate (including reptiles) and
invertebrate infected hosts for assessment of the parasite
species as well as to determine their clinical significance,
and estimate the potential risk their endemic establish-
ment in Portugal/Europe. Ideally, should the laboratory
settings allow it, further genetic analysis-based studies
should be supported, as much as possible, by sequence
datasets combining information from multiple genetic
loci, so as to tentatively increase the phylogenetic signal,
and achieve a better resolution of the observed genetic
clusters, including the L. donovani complex [29].
Based upon literature reviews, a consideration of the

role of Sergentomyia in the circulation of mammalian
leishmaniasis becomes apparent as Leishmania DNA has
been identified in several species. These include the mo-
lecular detection of L. major in S. sintoni in Iran [30], S.
garnhami in Kenya [31], S. darlingi in Mali [25], and S.
minuta in Portugal [32]. Furthermore L. donovani has
been detected in S. babu in India [33], L. infantum in S.
dubia, S. magna and S. schewtzi in Senegal [34], and L.
siamennsis in S. gemmea in Thailand [35]. Finally, more
recently, L. tropica has been found in S. ingrami and S.
hamoni in Ghana [26]. Nevertheless, PCR positivity
alone should not be used for incrimination of Sergento-
myia sand flies as Leishmania vectors since the detec-
tion of DNA does not give any information about the
parasites’ viability or its presence as virulent metacyclic
promastigotes [36,37]. In fact, and although L. infantum
DNA had been detected in S. schwetzi from Senegal
[34], the refractoriness of this African species to some
Leishmania species infecting humans (including L. dono-
vani, L. infantum and L. major) has also been recently
demonstrated [38]. In any case, the refractoriness of this
particular Sergentomyia species does not necessarily ex-
tend to the whole of the genus. In this line of reasoning,
the competence and permissiveness of the different
species from Phlebotomus spp. to different Old World
Leishmania has also been observed [39]. As L. major
DNA had previously been detected in one S. minuta
captured in the same region [32], together with the de-
tection in this study of both human and Leishmania sp.
DNA in this species, it would be important to determine
if S. minuta fulfils the criteria that support its incrimin-
ation as vector for this parasite, and that include (i) the
isolation of metacyclic promastigotes from the digestive
tubes of field-collected specimens; and (ii) the experi-
mental demonstration of its capacity to transmit Old
World Leishmania species with medical and veterinarian
importance as a result of blood-feeding on mammals.

Conclusion
The apparent anthropophilic behavior of S. minuta to-
gether with the detection of Leishmania sp. DNA high-
light the need to determine the role played by this sand fly
species in the transmission of pathogenic Leishmania to
humans. In addition, our data confirms that P. perniciosus
is an opportunistic feeder and suggest that is responsible
for the maintenance of L. infantum in sourthern Portugal.
Altogether, the obtained results reinforce the need for on-
going surveillance with systematic epidemiologic surveys
on Leishmania vectors so as to investigate the transmis-
sion, distribution and spread of infections by Leishmania
species.
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