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Diagnosis of toxoplasmosis and typing of
Toxoplasma gondii
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Abstract

Toxoplasmosis, caused by the obligate intracellular protozoan Toxoplasma gondii, is an important zoonosis with
medical and veterinary importance worldwide. The disease is mainly contracted by ingesting undercooked or raw
meat containing viable tissue cysts, or by ingesting food or water contaminated with oocysts. The diagnosis and
genetic characterization of T. gondii infection is crucial for the surveillance, prevention and control of toxoplasmosis.
Traditional approaches for the diagnosis of toxoplasmosis include etiological, immunological and imaging techniques.
Diagnosis of toxoplasmosis has been improved by the emergence of molecular technologies to amplify parasite nucleic
acids. Among these, polymerase chain reaction (PCR)-based molecular techniques have been useful for the genetic
characterization of T. gondii. Serotyping methods based on polymorphic polypeptides have the potential to become the
choice for typing T. gondii in humans and animals. In this review, we summarize conventional non-DNA-based diagnostic
methods, and the DNA-based molecular techniques for the diagnosis and genetic characterization of T. gondii.
These techniques have provided foundations for further development of more effective and accurate detection
of T. gondii infection. These advances will contribute to an improved understanding of the epidemiology, prevention
and control of toxoplasmosis.
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Review
Toxoplasma gondii is a protozoan parasite that infects al-
most all warm-blooded animals, including humans, and is
considered one of the most successful eukaryotic patho-
gens [1]. Approximately 30 % of human population world-
wide is chronically infected with T. gondii [2]. Human
infections are primarily obtained by ingesting under-
cooked or raw meat containing viable tissue cysts, or by
ingesting food or water contaminated with T. gondii
oocysts [3, 4]. Primary infections in adults are mostly
asymptomatic, but lymphadenopathy or ocular toxoplas-
mosis can present in some patients [5]. Severe acute, dis-
seminated toxoplasmosis may occur in immunocompetent
individuals when infected with some isolates [6–10].
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Reactivation of a latent infection in immunocompromised
individuals can cause fatal toxoplasmatic encephalitis,
myocarditis and pneumonitis [11, 12]. The immunocom-
promised patients are also at risk of severe disease follow-
ing primary infection or reactivation of chronic infection
[13, 14]. Infection acquired during pregnancy can cause
severe damage to the fetus, such as long-term disabling
sequelae, stillbirths or fetal death [15].
Toxoplasma gondii has been considered a single

species in the genus Toxoplasma. Early studies on the
parasite strains from North America and Europe identi-
fied limited genetic diversity, which were classified into
genetic types I, II, and III [16]. Recent multilocus
polymerase chain reaction-restriction fragment length
polymorphism (PCR-RFLP) genotyping of approximately
1500 samples worldwide has revealed 189 different
genotypes, with the Toxoplasma genome database
(ToxoDB) PCR-RFLP (http://www.toxodb.org/toxo/) ge-
notypes #1 (type II), #2 (type III) and #3 (type II variant)
found worldwide, and highly prevalent in Europe, geno-
types #1, #2, #3, #4 and #5 prevalent in North America,
genotypes #2 and #3 (type III and type II variant)
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prevalent in Africa, and genotypes #9 (Chinese 1) and
#10 (type I) prevalent in East Asia [17]. The conse-
quences of infection with T. gondii may depend on para-
site genotypes and host species [18]. In humans, disease
manifestations range from asymptomatic to severe acute
toxoplasmosis [4, 19]. Type I or type I variants are more
likely to be associated with severe toxoplasmic retino-
choroiditis [20], and the atypical isolates often cause
severe acute or disseminated toxoplasmosis in immuno-
competent individuals [19]. Type I isolates are uniformly
lethal to out-bred mice, while type II and III isolates are
significantly less virulent [21].
Clinical symptoms of T. gondii infection are non-

specific and unreliable for diagnosis [4, 22]. The trad-
itional diagnosis of T. gondii infection usually depends
on bioassays and serological tests, with the limitations in
detection or differentiating parasite strains [23, 24]. The
detection of T. gondii infection by molecular methods is
appealing, due to their high sensitivity and specificity
[25]. Moreover, abundant T. gondii genotypes have been
identified from various mammals and birds using PCR-
based molecular methods [17, 18]. In this review, we
conducted English literature searches in PubMed from
1948 to 2014 using the key words Toxoplasma gondii,
toxoplasmosis, diagnosis, genetic characterization, geno-
typing and serotyping, and summarize the biotechno-
logical advances in diagnosis of toxoplasmosis and
typing of T. gondii.
Traditional, non-DNA-based diagnostic methods
Microscopic diagnosis
The detection of T. gondii in fecal, water, environmental
and tissue samples has traditionally relied on microscope
examination. However, identification based on light
microscopy alone is less sensitive and unreliable. The
oocysts in fecal, water and environment can be enriched
from large volumes of samples by filtration or centrifuga-
tion for examination, and the tissue cysts can be stained,
which helps to distinguish the parasites from host cells.
Giemsa and Haematoxylin and Eosin (HE) staining is
simple and cost-effective, and commonly used for this
purpose [26–28]. Periodic acid schiff (PAS) can stain amy-
lopection granules in bradyzoites [26]. These methods are
relatively time consuming and require considerable skill
to obtain reliable detection results. Electron microscope is
also employed to detect tissue cysts in mouse brain and
oocysts in the small intestine of infected cats, but it is
difficult to be applicable for routine use [29, 30].
Bioassay
The isolation of T. gondii by bioassay using laboratory
animals is generally considered as the gold standard for
detection of T. gondii infection. Secretions, excretions,
body fluids, lymph nodes, muscle and brain tissues are
possible specimens used for the isolation [31, 32]. Mice
and cats are commonly used for bioassay of T. gondii.
To achieve higher success rate in T. gondii isolation,
INF-gamma knockout mice are preferred, due to high
sensitivity of these mice to T. gondii infection. Alterna-
tively, normal mice may be immune suppressed by
administrating dexamethason (10–15 μg/ml) in drinking
water during the course of bioassay to increase success
rate. Cats can be used to detect small number of viable
T. gondi in meat because larger volumes of tissues can
be fed to cats, therefore increasing the sensitivity.
Overall, the bioassay is expensive and time-consuming
(usually requires 6 weeks). Thus, it cannot be used for
large-scale screening.
Serological assays
T. gondii infection usually shows no or non-specific
clinical symptoms in most individuals, whose diagnosis
mainly relies on serological tests. A variety of serological
tests, such as dye test (DT), modified agglutination test
(MAT), enzyme-linked immunosorbent assays (ELISA),
immunosorbent agglutination assay (ISAGA), indirect
fluorescent antibody test (IFAT) and indirect haemagglu-
tination assays (IHA), have been developed to detect dif-
ferent antibody classes or antigens (Table 1). IgM
antibodies are detectable about 1 week after the infec-
tion and remain for several months or years. So the
detection of IgM antibodies alone is insufficient for the
establishment of acute infection. IgA antibodies are con-
sidered to be a marker of acute infection, which are pro-
duced earlier than IgM, and may persist for several
months. The shorter period of IgE may give a greater
indication of current infection. The presence of IgG
antibodies suggestions the occurrence of infection, but
does not provide any information about the timing of
infection.
Dye test (DT)
DT, first developed by Sabin and Feldman in 1948, has
been considered as gold standard for the detection of
anti-T. gondii antibodies in humans [33, 34]. DT is
both specific and sensitive in humans, but may be un-
reliable in cattle and avian species [35, 36]. The major
disadvantage of DT requires live parasites and healthy
human serum as an accessory factor, severely limiting
the availability of the DT [37]. The test is potentially
hazardous, and requires a high degree of technical ex-
pertise, thus only performed in reference laboratories.
Though tachyzoites prepared from cell culture can be
routinely used in DT, the false negative results may
occur in some cases. Therefore, tachyzoites prepared
from mice are preferred for DT [38].



Table 1 Summary of serological methods for detection of T. gondii infection

Serological methods Antigens or antibodies used Antibody/antigen type tested References

DT Live tachyzoite IgG, IgM, IgA [33]

MAT Formalin-fixed tachyzoite IgG [39]

IFAT Killed whole tachyzoite IgG, IgM [55, 76]

IHA Tanned red blood cells sensitized with soluble antigens IgG [50]

ELISA Tachyzoite lysate antigen, recombinant antigens, specific antibodies IgG, IgM, IgA, antigens [192, 193]

ISAGA anti-human IgM antibodies IgM [79]

LAT Soluble antigen coated latex particles IgG, IgM [194, 195]

PIA Antigen coated gold nanoparticles IgG [90]

WB Tachyzoite lysate antigen, recombinant antigens IgG, IgM [196]

ICT Antigens or antibodies labeled with colloidal gold IgG, ESA [83, 84]

Avidity test tachyzoite lysate antigen, recombinant antigens IgG, IgA, IgE [100]
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Modified agglutination test (MAT)
For MAT test, formalin-fixed T. gondii tachyzoites are
added to U-shaped microtiter plates and diluted test sera
are then added. Positive serum samples will produce a
thin mat of agglutination, while negative samples will
produce a compact pellet of precipitated tachyzoites at
the bottom of the well [39]. This test was first described
by Fulton and Turk [40] with low specificity and sensi-
tivity, due to the binding of normal IgM to the surface
of the parasite, and improved by preparing the antigen
using a buffer containing 2-mercaptoethanol to remove
non-specific IgM. This test detects IgG antibodies, with-
out limitation of host species, but the false negative re-
sults may occur during early stages of acute infection.
The specificity and sensitivity of MAT are comparable to
the DT in most species, but it can produce high false
negative results in dogs [41, 42].
The results of MAT differ, depending on the preserva-

tive used to prepare the antigen. MAT using acetone in
place of formalin can detect IgG antibodies in acute in-
fection, which is very useful in diagnosis of toxoplasmo-
sis in AIDS patients, and acute glandular toxoplasmosis
[43]. In addition, MAT can also be used to detect cardiac
fluids for the survey of T. gondii infection in slaughtered
sheep for human consumption, with higher sensitivity
than other serological tests [44]. MAT is so simple and
accurate that, it is convenient both for laboratory diag-
nosis and for epidemiological survey.

Latex agglutination test (LAT)
In this test, soluble antigen is coated on latex particles,
and agglutination is observed when the positive serum
is added. LAT is rapid and easy to perform to detect
anti-T. gondii IgG antibodies. LAT has a sensitivity of
86–94 % and specificity of 100 % in humans, a low
sensitivity of 78.6 % and specificity of 61.9 % in sheep
[45, 46]. Thus, LAT is often used as a screening tool
in epidemiologic survey due to the simplicity of
performance, but the positive result requires further
examination using other serological tests [47].
LAT has also been modified to detect anti-T. gondii

IgM antibodies in humans for diagnosis of recent infec-
tion. Sato et al. [48] isolated microsomal antigen Sp-2
reactive with anti-T. gondii antibodes, whose reactivity
with IgM and IgG antibodies varies with the concentra-
tion. Sp-2 antigen only reacts with IgM when latex parti-
cles are sensitized with less than or equal to 100 mg of
this antigen/mg of particles. Based on this unique reac-
tion of the antigen, a passive latex agglutination reaction
to detect IgM antibodies has developed. Cambiaso et al.
[49] utilized proteinase K-treated antigen-coated parti-
cles to establish LAT for the detection of IgM antibodies
in humans, with an advantage of no significant interfer-
ences by IgG antibodies, or by rheumatoid factor or
antinuclear antibodies.

Indirect hemagglutination test (IHA)
The principle of IHA is that the tanned red blood cells
sensitized with T. gondii soluble antigen can be aggluti-
nated by the positive serum [50]. However, detectable
IHA IgG antibodies are later than DT, so acute and con-
genital infections are likely to be missed by this test [51,
52]. In animals, the detected antibodies with lower titers
may be non-specific [50]. The IgG-IHA test is simple
and rapid, thus recommended for mass screening in epi-
demiologic surveys [53]. Yamamoto et al. [54] described
a modified IgM-IHA test by stabilized human red cells
coated with a T. gondii heat-stable alkaline-solubilized
extract, which can be used for the serodiagnosis of acute
toxoplasmosis in humans, with a sensitivity of 100 %
and specificity of 98.5 %.

Indirect fluorescent antibody test (IFAT)
IFAT is a simple test detecting both IgG and IgM anti-
bodies, and has been widely used in detection of T.
gondii antibodies in humans and animals [55–58]. Killed
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T. gondii tachyzoites are incubated with test serum, the
fluorescent anti-species antibodies are added, and the
result is read under a fluorescence microscope. The test
shows sensitivities of 80.4–100 % and specificities of
91.4–95.8 % [59, 60]. Fluorescent-labeled antibodies for
a variety of species are commercially available, and the
method is relatively inexpensive. However, a fluores-
cence microscope is necessary for the test, and the
results are read by eye, so individual variation may
occur. It may be difficult to find some species-specific
conjugates, and there is a risk of possible cross-reactivity
with rheumatoid factor and anti-nuclear antibodies [61].

Enzyme-linked immunosbsorbent assay (ELISA)
The ELISA system usually includes the solid phase anti-
gen or antibody, enzyme labeled antigen or antibody,
and the substrate of the enzyme reaction, which can be
modified to test both antibodies and antigens (Fig. 1).
ELISA can be automated so that a large number of sam-
ples can be simultaneously tested. There have been
different types of ELISA developed to detect T. gondii
antibodies or antigens, such as indirect ELISA, and
sandwich ELISA.
In the indirect ELISA, the antigen is coated onto the

solid phase and the sample containing antibodies are
added, the antigen-antibody reaction is enhanced by the
addition of a secondary enzyme-linked antibody, and the
reaction can be evaluated by quantification of the color
that develops (Fig. 1a). The tests are almost all used to
detect anti-T. gondii IgG, IgM, and IgA antibodies rather
than antigens, depending on the enzyme-linked antibody
Fig. 1 Schematic diagram of ELISA. a Indirect ELISA system almost all used
specific antigen coated onto the solid phase, enzyme-conjugated seconda
antigens involves the specific antibody coated onto the solid phase, enzym
type [62]. The conventional indirect ELISAs using tachy-
zoite lysate antigen (TLA) as coating antigen show a
high degree of agreement with DT, MAT or IFAT de-
tecting IgG or IgM antibodies in humans and animals
[61–63]. Despite the satisfactory results, TLA-based
ELISA may vary significantly between laboratories, or
between batches, thus difficult to standardize, and the
test results are difficult to evaluate. An alternative ap-
proach is to use recombinant proteins, with an advan-
tage of the precise antigen and easy standardization. In
the past 20 years, numerous recombinant antigens, in-
cluding granule antigens GRA1, GRA2, GRA4, GRA6,
GRA7, and GRA8, rhoptry proteins ROP1 and ROP2,
matrix protein MAG1, microneme proteins MIC2,
MIC3, MIC4, and MIC5, and surface antigens SAG1 and
SAG2, have been expressed in Escherichia coli or yeast,
and their potential diagnostic value was evaluated in
humans or animals by ELISA to detect specific IgG and
IgM antibodies [23, 64–68]. Combinations of recombin-
ant antigens have been shown more sensitive and
specific than using single antigen. For example, combi-
nations of SAG2A, GRA2, GRA4, ROP2, GRA8 and
GRA7 are potentially useful to detect IgG antibodies in
humans with recently acquired infection [69], ROP1,
SAG1, GRA7, GRA8, and GRA6 are promising to detect
specific IgM antibodies [70], while GRA7 and GRA8 are
used to detect specific IgA antibodies [23, 71]. Hill et al.
[72] identified a sporozoite-specific embryogenesis-related
protein (ERP), which can react with oocyst-specific anti-
bodies, and be used to differentiate oocyst-induced infec-
tion from tissue cyst-induced infection.
for detection of T. gondii antibodies rather than antigens involves the
ry antibody and substrate. b Sandwich ELISA system detecting T. gondii
e-conjugated antibody and substrate
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In the sandwich ELISA, the antigens or antibodies are
coated onto the solid phase, and the sample containing
antibodies or antigens are added. After incubation and
washing, the antibody-antigen complex is attached to
the solid phase. The captured antibodies or antigens are
detected by the addition of enzyme-labeled specific anti-
gens or antibodies (Fig. 1b). The sandwich ELISA has
been developed to detect T. gondii antibodies and anti-
gens. The sandwich ELISA with TLA is more sensitive
and more specific to detect human IgM antibodies than
IFAT [62], and the sandwich ELISA with recombinant
P35 is more specific for the acute infection than IgM-
ELISA using TLA [73, 74]. Another sandwich ELISA
with anti-MIC10 antibody prepared from two different
species can be used to detect circulating antigen MIC10
for early diagnosis of toxoplasmosis [75]. ELISA is sim-
ple, economical and easily adoptable for field use. Using
an improved ELISA format, it is possible to detect T.
gondii specific IgM, IgG and IgA antibodies, and circu-
lating antigens. However, development of an ELISA test
is labor-intensive and time-consuming, especially when
evaluating its sensitivity and specificity.
A modified ELISA technique, dot-ELISA, in which

the antigen-antibody reaction is performed on nitro-
cellulose in place of the polystyrene plate, has been
established to detect T. gondii antigens and antibodies
[76, 77]. This test is sensitive, and easy to perform in com-
parison with standard ELISA and no special equipment is
required [76, 78].

Immunosorbent agglutination assay (ISAGA)
In this test, microtiter plates are coated with anti-human
IgM antibodies, and the serum sample is added to the
wells for 2 h at 37 °C to allow the binding of IgM. The
plates are washed and the suspension of fixed tachy-
zoites is added to the wells, which are incubated in
moist chamber overnight at 37 °C. The specific IgM in
serum sample will bind to the anti-species IgM and
agglutinate fixed parasite antigens, which is observed as
that of MAT [79]. This test is simpler and easier to per-
form than the IgM-ELISA, but it requires large numbers
of T. gondii tachyzoites. Thereafter, the IgM-ISAGA is
modified by replacing T. gondii tacyzoites with latex
Fig. 2 Schematic diagram of the immunochromatographic test for detectio
antibody is used as the tracer and the cellulose membrane is used as the s
beads coated with soluble antigens [80]. IgM-ISAGA can
be used for the diagnosis of acute acquired and congeni-
tal T. gondii infection.

Immunochromatographic test (ICT)
The immunochromatographic test is a rapid detection
technique in which the colloidal gold-labeled antigen or
antibody is used as the tracer, and the cellulose mem-
brane is used as the solid support (Fig. 2) [81, 82], and
the detection antibodies or antigens are dropped at the
sample pad on the nitrocellulose membrane, which will
slowly infiltrate the conjugated pad through capillary
action, and antibody-antigen complexes show colloidal
gold color reaction [83]. A rapid immunochromato-
graphic strip using colloid gold conjugated anti-
excretory/secretory antigens (ESA) IgG antibodies was
developed to detect ESA in acute infection of T. gondii
as early as 2–4 days post-infection, showing high
agreement with ELISA in sensitivity and specificity
[83]. The antibody detection results of GRA7-, SAG2-
based ICT are consistent with those of LAT and ELISA
[84, 85]. As ICT is easy, rapid, and convenient to
perform, and no special equipment is required, it is
suitable for field application.

Piezoelectric immunoagglutination assay (PIA)
The agglutination of antigen-coated gold nanoparticles
in the presence of the specific antibodies can be detected
by a piezoelectric device, which has been used for the
detection of parasite infection [86–89]. Wang et al. [90]
developed a piezoelectric immunoagglutination assay for
T. gondii antibodies, whose detection results were in sat-
isfactory agreement with those of ELISA. In contrast to
the conventional piezoelectric assays, the immobilization
of antibody or antigen on a piezoelectric crystal is not
necessary.

Western blotting (WB)
WB can be uses as an aid to conventional serological
test described previously. In this test, sera are reacted
with T. gondii antigen on a membrane transferred
from a polyacrylamide gel, and the resulting banding
patterns are matched with known molecular weight.
n of T. gondii-specific antibody. The colloidal gold-labeled antigen or
olid support
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An immunoblot test exhibited a specificity of 100 %
and a sensitivity of 98.5 % to detect specific anti-T.
gondii IgG antibodies in human saliva [91], but showed
a lower specificity of 83 % for toxoplasmic chorioretini-
tis [92]. WB is a useful complementary tool for the
early postnatal diagnosis of congenital toxoplasmosis,
as the combination of IgA- and IgM-ELISAs, IgG and
IgM WB, and the combination of both techniques
shows a sensitivity of 94 %, 94 %, and 100 % during the
first 3 months of life, respectively [93].

Avidity test
The presence of anti-T. gondii IgG antibodies implies
the parasite infection, but gives no information on in-
fection time; anti-T. gondii IgM is not an accurate
marker of acute infection [94–96], nor is IgA a specific
marker of the acute phase [97]. The IgG avidity test,
first described by Hedman et al. [98], is now widely
used to differentiate between acute and chronic T.
gondii infections [99].
The avidity of T. gondii antigen to specific antibodies

can vary during the course of infection. During the
early stage of infection, avidity values are low, and in-
crease with duration of infection [97, 98]. Thus, the
avidity test can distinguish acute and chronic infection
of T. gondii. In the test, sera are run with or without
treatment with urea, or other protein denaturing
agents, and the difference in titers can be used to deter-
mine recent infection. The test is applicable in IgG,
IgA, and IgE by different serological procedures, such
as ELISA and WB [100–103]. However, there are limi-
tations to the test. T. gondii-specific low-avidity IgG
antibodies in pregnant women may persist for months
[104, 105], and treatment of T. gondii may delay the
avidity maturation during pregnancy [106–108]. High
concentration of antibodies in serum sample may affect
the results of avidity test, making it necessary to
improve detection methods of antibody avidity [109].

Imaging techniques
Imaging techniques, such as computed tomography
(CT), magnetic resonance imaging (MRI), and ultra-
sonography (US), are not specific, but can facilitate
the diagnosis of toxoplasmosis and monitor the thera-
peutic effect [110–115]. As immuno-deficient patients
often develop encephalitis and brain abscesses when
infected with T. gondii, CT and MRI can be used to lo-
cate the lesions. CT is often used as an initial screen-
ing test, and MRI is more suitable for the
determination of the damage extent [113]. For con-
genital toxoplasmosis, US is recommended for pre-
natal diagnosis [116, 117], and CT can detect diffuse
hydrocephalus and brain calcifications of toxoplasmo-
sis in infants [115].
Molecular methods based on detection of parasite
nucleic acids
Molecular methods are used in addition to conventional
serological methods for the diagnosis of toxoplasmosis.
Conventional methods are usually not misleading, but
are limited in prenatal cases or in immunocompromised
patients. For example, a mother may be diagnosed ac-
curately by serology that she has had a current infection
during pregnancy and so her baby is potentially at risk
of congenital infection but the serology results cannot
confirm whether the parasite has been transferred to the
baby. However, the molecular diagnostic techniques may
do so.

Conventional PCR
Due to inherent limitations of traditional diagnostic
methods, PCR can be used in addition to serology to
diagnose T. gondii infection. PCR is an efficient in vitro
enzymatic amplification method that allows specific
amplification of DNA from minute amounts of starting
material in a short time [118]. To achieve high sensitiv-
ity, several multicopy targeting genes are usually used
for the detection of T. gondii in biological samples,
including the B1 gene, the 529 bp repeat element and
the internal transcribed spacer (ITS-1) or 18S rDNA se-
quences (Table 2). The presence of a parasitaemia is
seldom detected therefore PCR of blood has a low nega-
tive predictive value. Several other single-copy genes,
such as SAG1, SAG2, and GRA1, have also been used as
PCR targets in some laboratories.
The first PCR method for T. gondii detection, targeting

the B1 gene, was established in 1989 [119]. This method
has widely been used in prenatal diagnosis of congenital
toxoplasmosis and T. gondii infection in immunocom-
promised patients [120–124]. PCR with the 529 bp
repeat element was reported to be 10- to 100-times
more sensitive than the B1 gene [125, 126]. The multi-
copy ITS-1 and 18S rDNA have also been used as the
targets in a few studies, showing a similar sensitivity of
the B1 gene [127–129].
To further improve the sensitivity and specificity,

nested PCRs based on the B1 gene, the 529 bp repeat
element, and ITS-1 sequences have been developed
[130, 131]. In the nested PCR, two sets of primers are
used in two successive PCRs. The products of the first
reaction are used as templates for the second PCR. For a
given targeting gene, nested PCR is more sensitive than
the conventional PCR. The detection limit of the 529 bp
repeat element-nested PCR is 640 fg of parasite DNA,
while the rate for B1-nested PCR is 5.12 pg [130], and
the nested PCR targeting the B1 gene is more sensitive
than targeting ITS-1 sequence [131].
The sequence of the PCR product must be verified to

provide adequate diagnostic specificity. The conventional



Table 2 Summary of the molecular approaches used for detection and genetic characterization of T. gondii

Molecular methods Main purposes DNA target regions References

Conventional PCR Species detection B1 gene, 529 bp repeat element, 18S rDNA gene, SAG1, SAG2, and GRA1 [18, 147, 148, 197]

Real-time PCR Species detection B1 gene, 529 bp repeat element, 18S rDNA gene, SAG1 [198, 199]

LAMP Species detection 529-bp repetitive element, B1, SAG1, SAG2, GRA1, oocyst wall protein
genes

[145, 200]

Microsatellite analysis Genotyping TUB2, W35, TgM-A, B18, B17; M33, IV.1, XI.1, M48, M102, N60, N82, AA, N61,
and N83

[156]

Multilocus sequence typing Genotyping BTUB, SAG2,, GRA6, and SAG3 [162, 163]

PCR-RFLP Genotyping SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico [18]

RAPD-PCR Genotyping Genomic DNA [177]

High-resolution melting (HRM)
analysis

Genotyping B1 gene [182]
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technique is hybridization with a specific probe by
Southern blotting, which requires an additional 12–
24 h to complete. The PCR-ELISA is an alternative
technique, in which PCR products hybridize to an
immobilized capture probe. The assay thus measures
sequences internal to the PCR product [132]. Martinez
et al. [133] developed a rapid PCR-ELISA assay using
polystyrene beads for the detection of T. gondii DNA,
whose detection threshold is equivalent to Southern
blotting.
Real-time PCR
Real-time PCR can detect low concentrations of target
DNA and quantify starting copies of specific template
DNA. The amplification product is measured during
each cycle using probes or intercalating dyes, and can be
quantified by a standard of known concentration. Real-
time PCR has been successfully used to detect T. gondii
DNA in human blood, cerebrospinal fluid, aqueous
humor, amniotic fluid, and other samples [134–137].
The real-time PCR is also used to evaluate toxoplasmo-
sis progression and treatment efficacy, since it can esti-
mate the intensity of T. gondii infection [138]. The
real-time PCR assay with the B1 gene is considered as
the best-performing technique for diagnosis of congeni-
tal toxoplasmosis, compared with conventional PCR and
nested-PCR [139]. As a rapid closed-tube system, real-
time PCR eliminates the possible risk of contamination
and produces reproducible quantitative results. Thus it
is suitable for standardization [140].
Opsteegh et al. [141] described a sequence-specific

magnetic capture method for the isolation of T. gondii
DNA from large samples of tissue, which can overcome
the heterogenous distribution of T. gondii tissue cysts,
and the small size of the sample. This technique com-
bined with real time PCR can be used in meat samples,
and provide an alternative for bioassays to evaluate the
burden of T. gondii in various tissues of food-borne
animals [142, 143].
Loop-mediated isothermal amplification (LAMP)
LAMP is a unique DNA amplification technique under
isothermal conditions using four primers that recognize
six regions on the target DNA [144]. This method is
slightly more sensitive than conventional PCR, but
slightly lower than real time PCR [145, 146]. LAMP
assays targeting the T. gondii SAG1, 529-bp repetitive
element, B1, SAG2, GRA1, oocyst wall protein (OWP)
genes, and 18S rRNA were developed for the veterinary
and medical samples, and water samples [145, 147–152].
The LAMP based on SAG1 can detect T. gondii in the
blood of experimentally infected pigs as early as 2 days
post-infection, suggesting that this approach can be used
for early diagnosis of toxoplasmosis [145]. The detection
limit of both the B1- and OWP-LAMP assays is 0.1
tachyzoites DNA [151]. LAMP assays targeting SAG1,
SAG2, and B1 are useful to detect T. gondii in blood
samples of humans [147, 150, 153, 154], as well as in
water resources [155]. As LAMP requires only a water
bath or heat block, and allows visual detection of ampli-
fication products, it may be an alternative diagnostic
method in the field, where sophisticated and expensive
equipment may not be available [144]. However, in our
hands, the LAMP seems extremely sensitive to contam-
ination; therefore a rigorous quality control is essential
to rule out false positives.
Genotyping methods based on molecular technologies
For epidemiological studies, it is important to identify
genotypes of T. gondii infection, and some molecular
technologies, including microsatellite analysis, multilo-
cus sequence typing, PCR-RFLP, RAPD-PCR, and high-
resolution melting (HRM) analysis, have been developed.
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Microsatellite analysis
Microsatellite (MS) sequences are tandem short DNA
motif repeats that are widespread in eukaryotic genomes
and the sequences usually change due to insertion or
deletion of repeat units. The numbers of repeat units
differ in a population, thus producing multiple alleles at
an MS locus. The tandem repeats in T. gondii are often
simple, and composed with as few as 2 nucleotides, and
occur 2–20 times [156–159]. A total of 15 MS markers,
including TUB2, W35, TgM-A, B18, B17; M33, IV.1,
XI.1, M48, M102, N60, N82, AA, N61, and N83, have
been used to genotype T. gondii in different laboratories
[156, 157, 160, 161]. Ajzenberg et al. [156] developed an
easy-to-use method for genotyping T. gondii in a single
multiplex PCR assay using 15 microsatellite markers, in
which the 8 MS markers (TUB2, W35, TgM-A, B18,
B17, M33, IV.1, and XI.1) could differentiate types I, II,
and III from all the atypical genotypes, and the other 7
markers (M48, M102, N60, N82, AA, N61, and N83)
could enhance genetic resolution in differentiating
closely related isolates within one haplogroup or clonal
lineage [158]. The 15-MS multiplex assay is the best tool
available to identify T. gondii isolates genetically differ-
ent or identical, i.e., to identify the infection source in an
outbreak, laboratory contamination and mixed infections
[158]. The limitation of this assay is the requirement for
an automated sequencer. In addition, small amount of
DNA from biological samples could cause the absence
of detectable peaks or peaks of low intensity, which is
undistinghishable from nonspecific PCR products [156].

Multilocus sequence typing (MLST)
Multilocus sequence typing (MLST) is based on DNA
sequence polymorphisms, including the single nucleotide
polymorphisms (SNPs), and deletion and insertion of
nucleotides, which has the highest resolution among all
typing methods when enough genomic DNA is available
[18]. Several studies have revealed some alleles unique to
the Brazil isolates, including 5′-SAG2, 3′-SAG2, BTUB,
GRA6, and SAG3 [162, 163]. However, this approach is
not a good choice for clinical samples, as a large quantity
of genomic DNA is required for this assay.

PCR-RFLP
The PCR-RFLP is based on the ability of restriction
endonucleases to recognize SNPs, digest PCR products
and subsequently display distinct DNA banding patterns
on agarose gels electrophoresis [16]. How and Sibley
[16] identified 3 predominant lineages (types I, II and
III) from 106 T. gondii isolates from humans and animals
by PCR-RFLP using 6 markers. Since then, several differ-
ent sets of multilocus PCR-RFLP markers have been
employed to characterize individual T. gondii isolates
in different laboratories [164–169]. The conventional
multilocus PCR-RFLP relies on single-copy polymorphic
DNA sequences, and usually requires a relatively large
amount of parasite DNA. Thus, it is difficult to genotype
T. gondii in biological samples, due to the limited para-
site DNA available.
To alleviate this problem, a multiplex multilocus

nested PCR-RFLP (Mn-PCR-RFLP) was developed, using
10 genetic markers, including SAG1, SAG2, SAG3,
BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico [170].
The sensitivity of this method is increased by at least 10
times, comparing with conventional PCR-RFLP [18].
The advantage of this method is that only a limited
amount of DNA sample is needed, and it is very useful
when only small amounts of ‘precious’ samples are avail-
able. Mn-PCR-RFLP has widely been applied to the
genetic typing of clinically positive samples, and a large
amount of data regarding genetic diversity and popula-
tion structure of the parasite were generated [171–176].
The major precaution for this assay is that, if the con-
tamination occurs in the early cycles of PCR, erroneous
results may be generated. To avoid error results of PCR
amplification in Mn-PCR-RFLP, the negative control has
to be included in each experiment. In addition, several
reference T. gondii isolates should be included to moni-
tor the efficiency of PCR amplification and restriction
enzyme digestion [18].

Random amplified polymorphic DNA-PCR (RAPD-PCR)
RAPD-PCR is a PCR-based technique that can be used
to identify DNA polymorphisms without predetermined
genetic data. It is based on the amplification of genomic
DNA using single short arbitrary primers under low
stringency conditions. RAPD-PCR is good for detecting
genetic differentiation of closely related organisms, and
has been employed to identify the genotype of T. gondii
strains [177–179]. T. gondii could be classified into viru-
lent and avirulent strains based on the murine virulence
by RAPD-PCR using arbitrary primers, and some
primers are useful to identify the virulence markers
[177]. This technique is quick, simple and efficient.
However, RAPD band profiles may be difficult to repro-
duce between, even within laboratories, if personnel,
equipment or conditions are changed. Only a small
amount of DNA is required for this assay, but it must be
highly pure [180]. Thus, RAPD-PCR cannot be directly
used for the clinical samples.

High-resolution melting (HRM)
HRM is a homogeneous, close-tube and post-PCR
method to analyze genetic variations, which can
characterize polymorphisms based on their melting
temperatures related to their sequences, lengths and
GC contents [181]. Based on a single SNP of the mul-
ticopy B1 gene, HRM analysis can correctly classify T.
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gondii strains into three distinct types [182]. HRM is
more informative than the microsatellite analysis,
therefore, becoming a supplementary test for multi-
locus microsatellite analysis [182, 183]. This assay was
developed to directly genotype T. gondii infection
from biological samples, with a higher genotyping
capacity using multi-copy gene than single-copy gene,
thus avoiding cell culture or bioassay [183]. HRM is a
potentially simple solution for genotyping, mutation
scanning, and sequence matching.

Serotyping methods based on polymorphic polypeptides
T. gondii infection induces a strong and persistent
humoral immune response in the hosts. Some T. gondii
antigenic proteins present sequence polymorphisms in
different clonal types. The polymorphic peptides from
the T. gondii antigens SAG2A, GRA3, GRA6, and GRA7
can accurately recognize the type I, II, and III in mice,
and peptides from GRA6 can distinguish type II from
non–type II infection [184]. Xiao et al. [185] developed
ELISAs based on polymorphic peptides derived from
three dense granule antigens GRA5, GRA6 and GRA7,
which can distinguish type III- from type I-infections in
humans. Several trials have been made to type T. gondii
infections using ELISA formats, in which synthetic pep-
tides are coupled via keyhole limpet hemocyanin, or dir-
ectly to the solid phase [185–188]. The recombinant
antigens can also be used for serotyping [189]. The
peptide-microarray tests for T. gondii serotyping in
humans and cats have been established, which are more
sensitive than peptide-ELISAs [190, 191]. As serotyping
is fast, inexpensive, relatively noninvasive, and there is
no need to isolate parasites, this technique has the po-
tential to become the method of choice for typing T.
gondii in humans and animals. However, there are some
limitations to the serologic assay. The selected peptides
may be low sensitive, or cross-reactive in detecting
recombinant strains [186]. The immunosuppressed
patients may not produce sufficient specific antibodies
to reach the detection threshold (DT titer of 1:64).
Importantly, infection with the rare genotypes may in-
duce entirely different humoral responses that may not
be detectable using polymorphic polypeptides [184].

Conclusion
This review has attempted to provide a survey of avail-
able and developing biotechnologies for the detection of
T. gondii infection, the diagnosis of toxoplasmosis and
typing of T. gondii isolates. A key to effective manage-
ment of toxoplasmosis is prompt and accurate diagnosis
of disease. Though diagnosis of toxoplasmosis by detec-
tion of the parasite using microscopy and bioassays is
regarded as the gold standard, its clinical diagnosis is
more likely made by serological methods, and various
serological tests have been established for the detection
of T. gondii-specific antibodies, or circulating antigens.
The molecular technologies based on nucleic acid ampli-
fication can be used in addition to conventional sero-
logical methods for the diagnosis of toxoplasmosis, and
have been the focus of continued development in recent
years. The recent development of the Mn-PCR-RFLP
method makes it possible to genetically characterize or
classify T. gondii from biological samples with high reso-
lution. Serotyping methods based on polymorphic poly-
peptides have the potential to become the choice for
typing T. gondii in humans and animals. With the in-
creased usage of genomic, transcriptomic, and proteomic
technologies and development of multilocus genotyping
methods, the integrated use of molecular and bioinfor-
matic technologies will be crucial to investigate genetic
characterization of T. gondii, and could provide pros-
pects for the design of entirely new diagnostic methods
for toxoplamosis.
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