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Abstract

Background: Culex quinquefasciatus is a hematophagous insect from the Culicidae family that feeds on the blood
of humans, dogs, birds and livestock. This species transmits a wide variety of pathogens between humans and
animals. The midgut environment is the first location of pathogen-vector interactions for blood-feeding mosquitoes
and the expression of specific peptidases in the early stages of feeding could influence the outcome of the infection.
Trypsin-like serine peptidases belong to a multi-gene family that can be expressed in different isoforms under distinct
physiological conditions. However, the confident assignment of the trypsin genes that are expressed under
each condition is still a challenge due to the large number of trypsin-coding genes in the Culicidae family
and most likely because they are low abundance proteins.

Methods: We used zymography for the biochemical characterization of the peptidase profile of the midgut
from C. quinquefasciatus females fed on sugar. Protein samples were also submitted to SDS-PAGE followed
by liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis for peptidase identification. The
peptidases sequences were analyzed with bioinformatics tools to assess their distinct features.

Results: Zymography revealed that trypsin-like serine peptidases were responsible for the proteolytic activity
in the midgut of females fed on sugar diet. After denaturation in SDS-PAGE, eight trypsin-like serine peptidases were
identified by LC-MS/MS. These peptidases have structural features typical of invertebrate digestive trypsin peptidases but
exhibited singularities at the protein sequence level such as: the presence of different amino acids at the autocatalytic
motif and substrate binding regions as well as different number of disulfide bounds. Data mining revealed a group of
trypsin-like serine peptidases that are specific to C. quinquefasciatus when compared to the culicids genomes sequenced
so far.

Conclusion: We demonstrated that proteomics approaches combined with bioinformatics tools and zymographic
analysis can lead to the functional annotation of trypsin-like serine peptidases coding genes and aid in the
understanding of the complexity of peptidase expression in mosquitoes.
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Background
The mosquito Culex quinquefasciatus is widespread in
tropical and subtropical regions of the world, and it is
adapted to urban/peri-urban areas. Despite having
anthropophilic and endophilic habits, adult females ex-
hibit high plasticity in their feeding behavior that charac-
terizes this species as an opportunistic insect that feeds
on the blood of humans, dogs, birds and livestock. This
feature makes this species important in the zoonotic
transmission of a wide variety of pathogens between
humans and animals [1, 2]. C. quinquefasciatus is im-
plicated in the dissemination of several arboviruses
such as West Nile virus, St. Louis encephalitis virus,
and Venezuelan equine encephalitis virus, and it has
also been implicated in the transmission of protozoan
parasites such as Plasmodium relictum. In addition,
this species plays an important role as a vector of
helminths such as the causative agent of lymphatic
filariasis, Wuchereria bancrofti, and the dog heart-
worm, Dirofilaria immitis [3–8].
In mosquitoes, the main proteolytic enzymes responsible

for food digestion are trypsin- and chymotrypsin-like serine
peptidases as well as carboxy and amino-exopeptidases
[9–12]. Trypsin-like peptidases (EC 3.4.21.4) belong to
serine peptidases family S1 characterized by the His, Asp,
and Ser amino acids residues within the catalytic triad [13].
It has been observed that trypsin-like serine peptidases are
a multi-gene family that can be expressed as different iso-
forms under distinct physiological conditions [14–16].
Whereas the expression of some trypsin genes is constitu-
tive, the expression of other trypsin genes is induced by the
blood meal; hence, the expression pattern of trypsin-coding
genes is biphasic [10, 16–22]. However, the confident
assignment of the trypsin genes that are expressed under
each condition is still a challenge due to the large number
of trypsin-coding genes in the Culicidae family [7, 14, 23].
For example, 380 serine peptidase genes were reported in
the genome of Aedes aegypti [14], but only six trypsin-like
enzymes have been characterized at the protein level in the
midgut tissue [12, 17, 24].
In addition to their role in food digestion, trypsin-like

serine peptidases have been described as key mediators
of pathogen-vector interaction. Among several midgut
trypsin isoforms in Ae. aegypti, only one could limit
Dengue virus-2 (DENV-2) infectivity [25]. Although the
proteolytic environment of the midgut lumen could lead
to pathogen degradation and consequently limit infectiv-
ity, arboviruses from different families such as DENV-2
(Flaviviridae), La Crosse virus (Bunyaviridae) and blue
tongue virus (Reoviridae) use vector midgut peptidases
for the proteolytic processing of virion surface proteins,
increasing viral binding to midgut cells [26–30]. In
addition, Ae. aegypti secreted trypsin peptidases activate
a Plasmodium gallinaceum chitinase that is essential for
peritrophic matrix evasion [31, 32]. Thus, not only the
time course and the quantity of peptidase expression in
the initial time of feeding does influence the infection,
replication and dissemination of pathogens, but the
quality of these peptidases could also be important for
this interaction.
In the midgut of C. quinquefasciatus, trypsin-like

serine peptidases have been detected after blood feeding
[33]. However, the “peptidase status” of the midgut when
the blood arrives into the lumen corresponds to that set
by sugar feeding. Nevertheless, the expression of peptid-
ase genes in the midgut of mosquitoes fed on sugar as
well as the identity of the peptidases expressed (if any)
when mosquitoes are feeding on sugar remains elusive,
most likely because of the abundance of these enzymes
is not enough to detect them [15, 24].
Herein, we focused on the characterization and identi-

fication of trypsin-like serine peptidases constitutively
expressed in the midgut of females of C. quinquefascia-
tus that were fed only sugar. We used zymography for
the biochemical characterization of the enzymes and
SDS-PAGE followed by liquid chromatography–tandem
mass spectrometry (LC–MS/MS) analysis for protein
identification. Eight trypsin-like serine peptidases were
identified by MS/MS and their molecular features were
analyzed by bioinformatic tools.

Methods
Chemicals
All reagents were purchased from Sigma (St. Louis, MO,
USA) or Merck (São Paulo, SP, Brazil). MilliQ-purified
water (Millipore Corp., Bedford, MA, USA) was used to
prepare all of the solutions.

Insects
Experiments were carried out using 5-day-old C. quin-
quefasciatus female adults (Colônia strain) from a closed
colony reared in the Laboratório de Fisiologia e Controle
de Artrópodes Vetores - Instituto Oswaldo Cruz, FIO-
CRUZ, Rio de Janeiro. Larvae of C. quinquefasciatus
were reared in plastic basins (33 × 24 × 8 cm) containing
1 L of dechlorinated water and 1 g of cat food (FriskiesW,
Purina, Camaquã/RS). Larvae were kept in a biological
oxygen demand incubator (BOD) at 25 ± 1 °C, with a rela-
tive humidity of 60 ± 10 % and a light:dark photoperiod of
14:10 h. The adult mosquitoes were maintained on a 10 %
sucrose diet.

Midgut dissection
The mosquitoes were anesthetized on ice and decapi-
tated. Dissection was performed in cold PBS buffer,
pH 7.4 (150 mM NaCl, 10 mM Na2HPO4). The thorax
of each decapitated mosquito was immobilized with for-
ceps (#5) and the gut, Malpighian tubules and gonads
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were dissected by gently pulling at the eighth abdominal
segment region with another pair of forceps. The Mal-
pighian tubules, hindgut and gonads were cut away, and
the midguts were delicately washed twice with PBS buf-
fer and transferred to a microcentrifuge tube containing
the specific lysis buffers for proteome or zymography
analysis. In addition, optical differential interference con-
trast microscopy (DIC) was used to record images from
different midgut dissected samples obtained for both
zymographic analysis and mass spectrometry. Such
images were made with the main objective to verify the
quality of the midgut dissections, i. e. to verify if the cuts
were done consistently in the same regions of the gut and
also to rule out the possibility of contaminations with
metamorphosis remaining tissues into the midgut lumem.
Zymography assays
A pool of 20 midguts were lysed with a VWR® disposable
pellet mixer and cordless motor, and homogenized in a
plastic eppendorff microtube containing a lysis buffer
with10% glycerol, 0.6 % Triton X-100, 100 mM Tris–
HCl pH 6.8 and 150 mM NaCl. The homogenate was
centrifuged at 14,000 xg at 4 °C for 15 min, and the
supernatant was collected. The protein concentration of
the resulting extracts was determined using the Pierce
660 nm Protein assay (Thermo Scientific). For protein
separation, 10 μg of protein were loaded in 10 % poly-
acrylamide gels copolymerized with 0.1 % porcine gelatin
as the substrate. Electrophoresis was performed at 4 °C
at a constant voltage of 110 V. Peptidase activity was
detected as previously reported with few modifications
[34]. The gels were incubated at 37 °C for 2, 4, 6 or 12 h
in reaction buffer containing 100 mM sodium acetate
(at pH 3.5 or 5.5) or 100 mM Tris–HCl (pH 7.5 or 10.0).
Substrate degradation was visualized as clear bands after
staining the gels with 0.2 % Coomassie blue R-250 in
methanol/acetic acid (40:10) and destaining in 10 %
acetic acid. The relative molecular masses of the bands
were estimated by comparison with the mobility of a
commercial molecular mass standard (PageRuler™
Protein Ladder, Fermentas). To determine the classes of
peptidases detected by zymography, peptidase inhibition
assays were conducted. Midgut homogenates were
pre-incubated (before electrophoresis) for 30 min at 4 °C
with one of the following peptidase inhibitors: 20 μM
E-64, 1 mM phenylmethylsulfonyl fluoride (PMSF),
100 μM tosyl-L-lysyl-chloromethane hydrochloride
(TLCK), 100 μM tosyl-phenylalanyl-chloromethyl ke-
tone (TPCK), 10 μM pepstatin-A or 10 mM 1,10-phe-
nanthroline. After electrophoresis, inhibitors were
added to the reaction buffer at the same concentra-
tion, the gels were incubated during 12 h at 37 °C,
and the peptidases were resolved as described above.
The results were derived from three independent ex-
periments carried out in triplicate.

In vitro enzyme assays
The effects of pH and peptidase inhibitors on the proteo-
lytic activities of midgut homogenates were also evaluated
in vitro using the fluorogenic substrate 7-amido-4-methyl-
coumarin hydrochloride (Z-Phe-Arg-AMC). For each
assay, 100 μM of substrate were used. The reactions were
initiated as described previously [34]. Briefly, 10 μg of pro-
tein from the midgut were diluted in 100 mM sodium
acetate (at pH 3.5 or 5.5), 100 mM Tris–HCl (pH 7.5 or
10.0) with or without inhibitor addition. The fluorescence
intensity was evaluated by spectrophotofluorometry for
60 min (SpectraMax Gemini XPS, Molecular Devices,
CA) using excitation and emission wavelengths of 380 and
460 nm, respectively. As a blank, the substrate (100 μM)
was diluted in a reaction buffer containing 100 mM
sodium acetate (at pH 3.5 or 5.5) or 100 mM Tris–HCl
(pH 7.5 or 10.0). The value of the blank was automatically
subtracted by the fluorometer software (SoftMax®Pro,
Molecular Devices, CA) when the data were acquired.
All assays were performed at 37 °C. The results were
derived from three independent experiments per-
formed in triplicate.

Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE), protein digestion and
peptide extraction
Fifty pooled midguts were directly lysed in Laemmli
sample buffer containing 4 % SDS, 20 % glycerol, 10 %
2-mercaptoethanol, 0.004 % bromophenol blue and
0.125 M Tris-HCl, pH approx. 6.8. Lysis was performed
by mechanical homogenization using a plastic pestle.
The lysate was centrifuged twice at 14,000 xg for 10 min
at 4 °C and the proteins in the resulting supernatant
were collected. The protein concentration was deter-
mined using the Pierce 660 nm Protein assay (Thermo
Scientific). Then, the samples were heated for 5 min in a
boiling water bath and separated by 12 % SDS-PAGE,
30 % acrylamide, 0.8 % bis-acrylamide. Proteins were
stained using Coomassie Brilliant Blue and photo-
documented. Three gels from three independent midgut
suspensions were performed. Proteins were enzymati-
cally digested following procedures previously described
[35] with some modifications. Briefly, fine slices from
each protein lane were manually excised and de-stained
three times in 400 μL of 50 % acetonitrile, 25 mM
NH4HCO3 pH 8.0 for 15 min. Proteins were subse-
quently reduced and alkylated using 65 mM dithiothrei-
tol (DTT) and 200 mM iodoacetamide, respectively. Gel
slices were washed with 100 mM NH4HCO3 followed by
dehydration with acetonitrile. Slices were rehydrated
with a solution of 20 ng/μL of sequencing grade
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modified porcine trypsin (Promega, USA) in 50 mM
NH4HCO3 and incubated overnight at 37 °C. Peptides
were extracted using 0.1 % formic acid in 50 % v/v
acetonitrile, desalted and concentrated with Poros oligo
R3 C18 resin (Applied Biosystems, USA). The eluted
peptides were loaded in a nano-high performance liquid
chromatography (nanoHPLC) in-line with a hy'brid lin-
ear trap quadrupole (LTQ) Orbitrap mass spectrometer.

Mass spectrometry analysis
For each sample 4 μL of peptides solution (0.1 % formic
acid) were applied to an EASY II-nanoHPLC system
(Thermo Fisher Scientific) coupled online to an electro-
spray (ESI)-LTQ-Orbitrap Velos mass spectrometer
(Thermo Fisher Scientific). Peptides were eluted through a
trap column (150 μm× 2 cm) packed in-house with C-18
ReproSil 5 μm resin (Dr. Maisch) and an analytical
column (100 μm x 15 cm) packed in-house with C-18
ReproSil 3 μm resin (Dr. Maisch) using a mobile phase A
of 0.1 % (v/v) formic acid in water and a mobile phase B
0.1 % (v/v) formic acid in acetonitrile. Gradient conditions
were as follows: 5 to 40 % B in 180 min. Mass spectra
were acquired in the positive mode using a data-
dependent automatic (DDA) survey MS scan and tandem
mass spectra (MS/MS) acquisition. Each DDA consisted
of a survey scan in a 300 − 2000 m/z range and resolution
60000 with a target value of 1 × 10−6 ions. Each survey
scan was followed by the MS/MS of the 10 most intense
ions in the LTQ using collision-induced dissociation
(CID). Ions previously fragmented were dynamically ex-
cluded for 60 s.

Database searching
Mass spectra were searched against a customized non-
redundant database including sequences of all Culicidae
species available at UniRef100 (101,993 sequences,
downloaded May 2015, http://uniprot.org) using the
Mascot MS/MS ion search engine (Matrix Science,
Oxford, UK, version 2.4.1). The search parameters in the
Mascot server were as follows: lack of taxonomic restric-
tions; one tryptic missed cleavage; carbamidomethylation
of cysteine residues as a fixed modification and oxidation
of methionine and acetylation as variable modifications;
10 ppm mass tolerance for the MS mode and 0.5 Da
tolerance for its corresponding MS/MS fragments. Scaf-
fold (version 4.3.0, Proteome Software Inc., Portland)
was used to validate MS/MS peptide and protein identi-
fications. Peptide identifications were accepted at 95.0 %
probability by the Peptide Prophet algorithm [36] using
the Scaffold delta mass correction. Protein identifica-
tions were accepted at 95.0 % probability and if they
were supported by two or more independent pieces of
evidence (e.g., identification of a peptide with different
charge states, a modified and a non-modified version of
the same peptide, or two different peptides). Protein
probabilities were assigned by the Protein Prophet
algorithm [37].
To confirm peptidase identifications, mass spectra

were also analyzed using the ProLuCID 1.3 engine at the
PatternLab platform [38] against the same customized
database. Searches were performed with one missed
cleavage, with carbamidomethylation of cysteine residues
as a fixed modification, methionine oxidation as a vari-
able modification and mass tolerances of 40 ppm and
0.5 Da for precursor and fragment ions, respectively.
The validity of the peptide sequence matches (PSMs)
was assessed using the Search Engine Processor (SEPro)
at the PatternLab platform [39].

Multiple sequence alignment and bioinformatics analysis
The complete amino acid sequences of the peptidases
identified by mass spectrometry were fully retrieved from
the VectorBase database (http://biomart.vectorbase.org)
[40]. Multiple sequence alignments were performed using
CLUSTAL Omega [41]. FASTA sequences of all trypsin
identified by mass spectrometry were compared against
well annotated sequences of bovine chymotrypsinogen
(CTRA_BOVIN), bovine trypsinogen (TRY1_BOVIN), Ae.
aegypti trypsin 3A1 (TRY3_AEDAE) and An. gambie
trypsin-6 (TRY6_ANOGA). The amino acid sequence of
each identified trypsin was scanned for various domains
and motifs. The residues at the active site (His, Asp, Ser),
the signal peptide, the conserved cysteine residues of
disulfide bounds and the protein size of precursor and
mature forms of peptidases were detected using the
PROSCAN function of the PROSITE suite (http://
prosite.expasy.org) [42]. The signal peptide was also pre-
dicted by SignalP 4.0 (http://cbs.dtu.dk/services/SignalP)
[43]. To predict N-glycosylation and O-glycosylation
sites, amino acid sequences were analyzed using the
NetNGlyc 1.0 Server (http://cbs.dtu.dk/services/NetN-
Glyc) [44] and NetOGlyc 4.0 Server (http://cbs.dtu.dk/
services/NetOGlyc) [45], respectively. To identify species-
specific trypsin we used the Skyline software (http:// pro-
teome.gs.washington.edu/software/skyline) [46] to search
against the same database of Culicidae sequences used for
proteomic analysis.

Results and discussion
Zymographic assays revealed a complex serine peptidase
profile in the midgut of C. quinquefasciatus females
composed of at least eleven bands of proteolytic activity
(Fig. 1). Among these bands, 3 migrated at 28 to36 kDa,
which is the expected molecular mass for monomeric
trypsin [12, 17, 20, 47]. In addition, trypsin activities at
high molecular mass regions such as 55, 80 and 130 kDa
as well as at low molecular mass regions below 20 kDa
were observed (Fig. 1). These activities could be due to
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Fig. 1 Time course of proteolytic activities exhibited by midgut
extracts of female C. quinquefasciatus fed on sugar. Proteolytic
activities were evaluated after 2, 4, 6 and 12 h incubations in 0.1 M
Tris–HCl buffer (pH 7.5). The numbers on the right indicate the
molecular mass of standards utilized in the gel (kDa)
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(i) sample preparation, i.e., protein samples are not
boiled in the presence of SDS and β-mercaptoethanol,
therefore peptidases are not completely denatured or re-
duced, enabling protein aggregation and/or oligomerization
that slows the electrophoretic migration; and (ii) interaction
of peptidases with the substrate could also account for the
slow migration [48, 49]. Despite such factors that could im-
pede the regular migration of the peptidases, we cannot
rule out the possibility that some peptidases could be
extensively processed at the post-translational level,
increasing their apparent molecular mass in the gel
and allowing their association with other proteins in
the midgut extract [49–51]. Despite these possibil-
ities, zymographic analysis is a highly reproducible
method for the study of the proteolytic profiles in
different Culicidae species, suggesting that such high
molecular mass enzymes are common findings and
that they are not experimental artifacts [34, 52, 53].
Similarly, other authors have observed such results in
other insects [54].
To further characterize the profile of proteolytic activ-

ities in the midgut of C. quinquefasciatus females, we
performed a time-course analysis of peptidase activities
over a range of 2-12 h. Although proteolytic bands
began to be visualized from 6 h of incubation, the
complete profile was detected after 12 h (Fig. 1). These
results differ from the proteolytic activities in larval
stages of C. quinquefasciatus [34] where activities we de-
tected at 2 h of incubation. Such difference may be due
to the fact that the larval midgut exhibits high peptidase
activities that are more easily detected due to the high
and constant feeding activity of larvae. Conversely, there
is little peptidase activity in midgut of a sugar fed Culex
adult female, possibly because the insect does not need
it. Such results indicate that different life stages of C.
quinquefasciatus exhibit stage-specific proteolytic pro-
files, which may be related to qualitative and quantitative
differential expression of peptidases according to the
feeding behavior.
The proteolytic activities were evaluated for pH de-

pendence and sensitivity to inhibitors. Although weak
peptidase activities are observed at acid pH, the activities
increased at alkaline pH between 7.5 and 10.0 (Fig. 2).
We observed high proteolytic activities at pH 10, but
several bands overlapped, which impeded an accurate
analysis of the proteolytic profile by zymography (Fig. 2a).
For this reason, all subsequent assays were conducted at
pH 7.5. Although at pH 10 we could hardly detect bands
different from those observed at pH 7.5, we cannot rule
out the possibility that other peptidase activities could
be present at pH 10. In addition, the effect of pH on
peptidase activities was also analyzed using a fluorogenic
substrate (Fig. 2b). This assay corroborated the results
observed by zymography and allowed a quantitative ana-
lysis of proteolytic activities at the distinct pH. In agree-
ment with the results obtained previously for other
Diptera, trypsin-like serine peptidases of C. quinquefas-
ciatus are highly active at alkaline pH [34, 52, 53, 55].
PMSF, a specific inhibitor of serine peptidases, revealed
that the profile of active peptidases expressed in the
midgut of females fed a sugar diet is due to serine pepti-
dases (Fig. 3). To determine whether such activities are
specifically due to trypsin- or chymotrypsin-like serine pep-
tidases, specific inhibitors TLCK and TPCK, respectively,
were used. All activity bands were strongly inhibited by
TLCK, indicating that the serine peptidases detected here
belong to the trypsin-like family. In addition, in vitro assays
confirmed the results obtained in the zymographic analysis.
Proteolytic activities were inhibited by PMSF and TLCK
but not by E-64or TPCK, inhibitors of cysteine peptidases
or chymotrypsin-like serine peptidases, respectively. That
means that the proteolytic profile detected under the condi-
tions here analyzed is due to trypsin-like serine peptidases.
These results agree with previous reports on the expression
of trypsin-like serine peptidases in the midgut of other
Culicidae [12, 14, 17, 24].



Fig. 2 Effect of pH on the proteolytic activities of midgut extracts from C. quinquefasciatus females fed on sugar. a. The pH influence was
evaluated by incubation of protein extracts at 37 °C for 12 h in 0.1 M sodium acetate buffer pH 3.5, 5.5 or 0.1 M Tris–HCl buffer pH 7.5, 10.0. The
numbers on the left indicate the molecular mass of standards utilized in the gel (kDa). b. In-solution assays were performed using the fluorogenic
substrate Z-Phe-Arg-AMC in 0.1 M sodium acetate buffer pH 3.5, 5.5 or 0.1 MTris–HCl buffer pH 7.5 or 10.0
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The C. quinquefasciatus genome codes for 403 puta-
tive trypsin-like serine peptidase genes [14], but it is
unknown which of them are expressed in the midgut
tissue. Here, we identified seven trypsin-like serine pep-
tidases constitutively expressed in the midgut of females
fed a sugar diet using two independent search engines:
Mascot (followed by Scaffold validation) and ProLuCID
(Table 1). In addition, one trypsin-like serine peptidase
was exclusively identified by MASCOT (followed by
Scaffold validation) based on one peptide and one
spectrum evidence (Table 1, B0WW44, gray filled).
Interestingly, the SDS-PAGE bands where peptidases
were identified by MS/MS coincide with the zymo-
graphic regions where peptidase activities were observed
(Fig. 4). Although most of the peptidases were identified
in electrophoretic bands migrating between 25 to
40 kDa (Fig. 4), the Trypsin5 and Trypsin7 were the only
ones found in the high molecular mass region (Fig. 4).
Conspicuously, these enzymes exhibited predicted sites
for N-Glycosylation. Particularly, Trypsin5 also present
predicted O-Glycosylation sites and transmembrane
regions (Table 3). Such features could in fact alter the
migration pattern of the mature protein. Nevertheless,
as sample preparation for each electrophoresis is differ-
ent, a comparison of peptidase mobility is difficult, but,
in any case, both methodologies serve for mapping the
identified peptidases. All identified trypsin proteins
matched with C. quinquefasciatus protein sequences.
The alignment of the full sequence of the peptidases
identified by mass spectrometry showed several struc-
tural features typical of invertebrate digestive trypsin
peptidases: (i) the conserved histidine, aspartic acid and
serine residues forming the catalytic triad; (ii) six cyst-
eine residues at conserved positions involved in the
forming of disulfide bonds; (iii) the signal peptide se-
quence; (iv) the putative autocatalytic activation motifs
immediately after an arginine or lysine residue (R/K-
IVGG); (v) the motifs characteristic of active peptidases
LTHAAC, DIAL, and GDSGGP (Fig. 5, Table 2) [56].
Interestingly, some trypsin peptidases identified here
have distinct features. For example, we observed that the
autocatalytic motif of Trypsin 4 has a His residue instead
of R/K residues, which could suggest that this enzyme
has a specific signal for activation. In addition, the acti-
vation motifs in Trypsin 5, IIGG, and cationic trypsin,
VVGG, differ by one amino acid residue from the clas-
sical motif sequence (IVGG) [57, 58].
An important difference between vertebrate and inver-

tebrate trypsin is the number and location of disulfide
bonds. Vertebrate trypsins commonly have six disulfide



Fig. 3 Effect of peptidase inhibitors on the proteolytic profiles of midgut extracts from C. quinquefasciatus females fed on sugar. a. Samples were
pre-incubated for 30 min in the presence of 1 mM PMSF, 100 μM TLCK and 100 μM TPCK. The proteolytic activities were detected after incubating
the gels for 12 h at 37 °C in Tris–HCl buffer (pH 7.5). The control was processed under the same conditions but in the absence of inhibitors. The
numbers on the left indicate the molecular mass of standards utilized in the gel (kDa). b. The in-solution assays were performed using the fluorogenic
substrate Z-Phe-Arg-AMC in 100 mM Tris-HCl buffer, pH 7.5, in the absence (control) or presence of 1 mM PMSF, 100 μM TLCK, 20 μM E-64 or
100 μM TPCK

Borges-Veloso et al. Parasites & Vectors  (2015) 8:373 Page 7 of 16
bonds, whereas, in general, trypsins from insects and
crustaceans have only three disulfide bonds at conserved
positions, close to the active site [56, 59]. The alignment
of trypsin peptidases identified here shows that five of
them, Trypsin1, Trypsin2, Trypsin4, Serine protease
SP24D and Serine protease ½ have three disulfide bonds
while the Trypsin5 and Trypsin7 have four disulfide
bonds and the Cationic trypsin only has one. Although
the number of disulfide bonds is different in the trypsins
identified here, the role of the disulfide bonds is crucial
for the tridimensional structure of the enzymes and,
consequently, for their activity [56, 60].
Trypsin-like serine peptidases identified here were fur-

ther analyzed regarding their predicted cellular location,
presence of transmembrane helices, and glycosylation
motifs using bioinformatics tools (Table 3). Analysis of
the prediction of cellular location using the Target P ser-
ver indicates that all trypsin peptidases are secreted
enzymes, which is a typical feature of the digestive
enzymes found in the midgut lumen [14, 15, 17]. How-
ever, the prediction of transmembrane helices, using the
TMHMM server, revealed that Trypsin4 and Trypsin5
have one transmembrane domain (Table 3) suggesting
that these enzymes could be targeted to the midgut
membrane [55, 61]. Although glycosylation is not a com-
mon post-translational modification in trypsin, some
glycosylation motifs have been observed in invertebrate
trypsin [15]. Five of the eight trypsin isoforms identified
here have predicted sites for O- and N-glycosylation
(Table 3, Fig. 5). In agreement with this observation,
trypsins peptidases from An. gambiae could be glycosyl-
ated and that such modification might be required for
the association of peptidases with peritrophins in the
peritrophic membrane [51].
Using VectorBase we analyzed the structure of the

genes encoding the trypsin-like serine peptidases identi-
fied here. We observed that the exon number of the
trypsin coding genes varies from one to three. With the
exception of the Serine protease ½ that has an intron
with 298 nucleotides, the other intron sequences are
shorter than those observed in trypsin genes of verte-
brates, varying between 25 and 71 nucleotides. Our ana-
lyses show that the intron exon structure is not
conserved between all trypsin identified here, suggesting
that several events of intron loss and gain have occurred
in this species, which is in agreement with previous



Table 1 Trypsin-like serine peptidases identified by mass spectrometry in the midgut of Culex quinquefasciatus females fed on sugar

Identified Proteins Accession
Number

Molecular
Weight

Mascot
exclusive
peptides

Mascot
total
spectra

Mascot
Coverage %

Peptide sequence
identified by MASCOT

Mascot
Ion score

Peptide sequences
identified by ProLuCID

ProLuCID
unique
peptides

ProLuCID
total
spectra

ProLuCID
Coverage %

Trypsin 4 OS = Culex
quinquefasciatus
GN = CpipJ_CPIJ017414

B0XCW2_CULQU 28 kDa 3 13 18 6 29 28

(R)VGSSYDYQGGTVIDVA
GMTIHPR(Y)

35.21 (R)VGSSYDYQGGTVID
VAGMTIHPR(Y)

(K)DFDFALLR(L) 52.94 (K)DFDFALLR(L)

(K)GCAQPDYYGVYADVE
K(A)

39.12 (K)GCAQPDYYGVYAD
VEK(A)

(K)NMLCAGYDEGLR(D)

(R)LSWIGVR(V)

(R)ENYAESR(L)

Trypsin 7 OS = Culex
quinquefasciatus
GN = CpipJ_CPIJ017964

B0XES8_CULQU 27 kDa 4 14 18 5 25 18

(R)GGQLIAVTR(K) 53.31 (R)GGQLIAVTR(K)

(R)DYALLNLAK(S) 50.34 (R)DYALLNLAK(S)

(R)AVDVPIADHDR(C) 24.69 (R)AVDVPIADHDR(C)

(K)DACLGDSGGPLTCSG
K(V)

49.46 (K)DACLGDSGGPLTCSG
K(V)

(F)M*LCAGYDAGGK(D)

Trypsin-5 OS = Culex
quinquefasciatus
GN = CpipJ_CPIJ015103

B0X667_CULQU 30 kDa 3 7 16 3 14 16

(K)IIGGFPAEQGDTLHQ
VSIR(F)

35.64 (K)IIGGFPAEQGDTLHQV
SIR(F)

(K)GCGLAAYPGIYSDVA
YYR(G)

29.61 (K)GCGLAAYPGIYSDVA
YYR(G)

(R)GWIDSCLAGK(C) 31.7 (R)GWIDSCLAGK(C)

Trypsin-1 OS = Culex
quinquefasciatus
GN = CpipJ_CPIJ007079

B0WIS4_CULQU 29 kDa 3 6 18 6 10 34

(R)IVGGFEISIADAPHQVSL
QSR(G)

51.51 (R)IVGGFEISIADAPH
QVSLQSR(G)

(K)HASGGSVISIK(R) 26.21 (K)HASGGSVISIK(R)

(R)AAYVPAYNQNQCNSA
YAR(Y)

29.15 (R)AAYVPAYNQNQCNSA
YAR(Y)
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Table 1 Trypsin-like serine peptidases identified by mass spectrometry in the midgut of Culex quinquefasciatus females fed on sugar (Continued)

(K)DACQGDSGGPLVAD
GK(L)

33.42 (R)NTIDYDYSLLELK(S)

(R)GSHICGGSIISPK(W)

(K)WILTAAHCTDGASVS
NLR(I)

Trypsin 2 OS = Culex
quinquefasciatus
GN = CpipJ_CPIJ005273

B0WE94_CULQU 28 kDa 2 2 12 5 13 30

(R)LEFGHAVQPVDLVR(D) 19.14 (R)LEFGHAVQPVDLVR(D)

(R)DEPADESQSLVSGWG
DTR(S)

27.7 (R)DEPADESQSLVSGWGD
TR(S)

(R)WVLTAAHCTENTDAGI
YSVR(V)

(R)GVLVPLVNR(E)

(K)LGMPVTESMICAGFA
K(E)

Serine protease1/2
OS = Culex quinquefasciatus
GN = CpipJ_CPIJ003826
PE = 3 SV = 1

B0W9S9_CULQU 30 kDa 2 3 18 2 3 10

(R)TGETFVDNQATVSGF
GR(T)

35.91 (R)TGETFVDNQATVSGF
GR(T)

(R)TVDGGPVSPTK(N) 35.12 (R)TVDGGPVSPTK(N)

Serine protease SP24D
OS = Culex quinquefasciatus
GN = CpipJ_CPIJ015368

B0X870_CULQU 27 kDa 1 1 10 1 3 10

(K)LGESIEYDELSQPIALY
EGDDLPK(D)

34.98 (K)LGESIEYDELSQPIAL
YEGDDLPK(D)

Cationic trypsin OS = Culex
quinquefasciatus
GN = CpipJ_CPIJ011378

B0WW44_CULQU 26 kDa 1 1 8

(R)IVVHPQYAEGNLAN
DIAVIR(V)

32.92
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Fig. 4 Representative zymographic profile and SDS-PAGE of total protein extracts of C. quinquefasciatus midgut extract. This figure shows two
different electrophoretic systems used for characterize and identify, respectively, the trypsin-like serine peptidases: the zymography where proteins
are resolved under non-reducing conditions and therefore their activity can be detected, and the denaturating SDS-PAGE ran under reducing
conditions. SDS-PAGE slices were used for peptidase identification by mass spectrometry. The numbers on the left of each electrophoresis indicate
the molecular mass of standards utilized in the gel (kDa). This figure also shows a representative image of midgut recorded by optical differential
interference contrast microscopy (DIC)
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observations in other species [56, 62–64] (Table 3). In
addition, the number of paralogues of each peptidase
identified here was verified (Table 3). According to this
analysis, the trypsin peptidases identified here have be-
tween 13 and 38 paralogues. The Trypsin1, 2, 4, 7,
SP24D and Cationic trypsin are paralogues among them,
suggesting that these peptidases were originated by gene
duplication [14, 23, 65, 66]. In addition, the database
mining shows that trypsin coding genes are generally
clustered. For example, according to VectorBase, Tryp-
sin1 is clustered with five other trypsin genes. It was
suggested that the ancestors of dipterans had only one
trypsinogen gene and that extra copies were gained by
gene duplication [67]. In Culicidae, many trypsin-like
serine peptidase coding genes are clustered in tandem
arrays in different chromosomes, indicating that tandem
duplication plays an important role in the expansion of
this gene family [14, 20]. C. quinquefasciatus has the lar-
gest trypsin-like codifying gene repertoire when com-
pared with other culicidae genomes [14, 23]. Such a
peptidase repertoire may be associated with the ability of
the insect to process blood components from different
sources. In fact, this species has a high plasticity of feed-
ing behavior, being able to feed on different species such
as humans, dogs, birds and livestock [1–8]. Such a diver-
sity of trypsin coding genes in this mosquito represents
a substantial challenge for the assignment of putative
functions, for determining their precise localization and
mechanisms of regulation of expression. In fact, the
understanding of the peptidase tissue expression pat-
terns may be useful for the assignment of the putative
function of such peptidases [64]. Thus, the use of tech-
niques for the identification of active and tissue-specific
peptidases in the midgut, as performed here, contributes
for such function assignment.
The identification of active trypsin peptidases in C.

quinquefasciatus females fed on sugar is in agreement
with previous reports of our group that showed that Ae.
albopictus females fed on sugar express active forms of
trypsin [53]. The presence of active trypsin peptidases in
sugar fed females of other mosquito species has been
reported [20, 68, 69]. Several hematophagous diptera
express a series of constitutive and blood meal-induced
trypsin genes in the gut [16, 20, 22, 54]. The expression



Fig. 5 (See legend on next page.)
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(See figure on previous page.)
Fig. 5 Alignment of C. quinquefasciatus trypsin sequences identified by MS/MS and well annotated trypsin and chymotrypsin sequences (bovine,
Ae. aegypti, An. gambiae). Regions of importance are represented as follows: (Gray) signal peptide; (Italic and bold) N-terminal residues of the
active enzyme; (O) conserved cysteine of disulfide bonds; (*) conserved catalytic triad; (§) accessory catalytic residues; (#) highly conserved Asp
194 based on bovine α-chymotrypsinogen; (underline and bold) glycosylation sites
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of peptidases in the midgut of sugar fed females may
represent the induction of enzymes that was involved in
the digestion of the larval/pupal meconium, or still in-
duced by commensal bacteria into the midgut lumen
[70]. In addition, because nondiapausing anautogenous
mosquitoes need to feed on blood to complete the gono-
trophic cycle, it is reasonable that they prepare their
midgut tissue for blood digestion prior to blood feeding,
so it is not surprising that after five days of adult emergence
they express active trypsin peptidases. In fact, trypsin-coding
genes were down regulated in anautogenous diapause-
destined females. At the end of the diapause period (2–3
months at 18 °C), the expression of digestive peptidases
increases, preparing the females for blood meal uptake
[71]. Thus, the constitutive expression of trypsin pepti-
dases could guarantee an efficient midgut metamorphosis
and digestion of the blood meal, probably by zymogen
activation, leading to improved biological fitness [55–57].
Despite molecular approaches that have allowed the

identification of trypsin coding genes, the confirmation
of the presence of these enzymes at protein level under
different physiological conditions has not been reached,
most likely because they are low abundance proteins
[15, 24]. With the aim of analyzing whether we can
Table 2 General characteristics of Culex quinquefasciatus trypsin-like

Uniprot
accession
number

Protein name Active site
triad position

Cysteine
pair residues

Res
con
sub
spe

B0WIS4 Trypsin 1 His88, Asp133,
Ser229

73-89, 198-214, 225-249 Asp
Gly

B0WE94 Trypsin 2 His75, Asp120,
Ser216

60-76, 183-200, 212-236 Asp
Gly

B0XCW2 Trypsin 4 His70, Asp116,
Ser213

151-219, 181-198,
209-233

Asp
Gly

B0X667 Trypsin 5 His73, Asp127,
Ser221

58-74, 160-227, 192-208,
217-241

Asp
Gly

B0XES8 Trypsin 7 His67, Asp112,
Ser207

52-68, 146-213, 176-192,
203-227

Asp
Gly

B0X870 SP24D His63, Asp109,
Ser195

48-64, 172-181, 191-216 ?

B0W9S9 Serine
protease 1/2

His92, Asp135,
Ser233

77-93, 202-217, 229-259 ?

B0WW44 Cationic
trypsin

His69, Asp114,
Ser202

54-70 ?

Δ Extracted after CLUSTAL Omega aligment analysis
(aa) total number of amino acid residues
? = other residues different than DGG
^ = Indicates the clivage site for zymogen activation
develop selected reaction monitoring (SRM) experi-
ments for detection of specific C. quinquefasciatus tryp-
sin peptidases, we used the SKYLINE software for
determining the occurrence of proteotypic peptides in
those enzymes. SRM is a powerful method for monitor-
ing target peptides within a complex protein sample and
is particularly useful for hypothesis driven proteomics
[72, 73]. Despite the presence of conserved motifs in the
trypsin peptidases, the SKYLINE output shows that five
out of the eight trypsin peptidases identified by mass
spectrometry in our study have differences in amino acid
sequences that allow the detection of unique peptides
(Table 4). Remarkably, these unique peptides were the
same identified by mass spectrometry in our study. The
methodology used here for identifying proteotypic pep-
tides can be used for developing SRM mass spectrom-
etry assays for finding different trypsin peptidases in
specific tissues or under specific stimulus. Noticeably, when
we used the SKYLINE considering not only the sequences of
the C. quinquefasciatus trypsin peptidases but also the se-
quences of those peptidases from other species with known
genome sequences, such proteotypic peptides are both
peptidase-specific and species-specific. This result is not
conclusive because those genomes are not well annotated
serine peptidases identified by mass spectrometry Δ

idues
fering
strate
cificity

Protein size (aa) Activation
site

Conserved regions

Precursor Mature LTAAHC DIAL GDSGGP

223,
246,Gly256

274 226 YR^IVGG LTAAHC DYSL GDSGGP

210,
234,Gly244

261 226 GK^IVGG LTAAHC DFCL GDSGGP

207,
230,Gly240

258 233 FH^IVNG LTAAHL DFAL GDSGGP

215,
238,Gly248

293 268 PK^IIGG LTAAHC DIAL GDSGGP

201,
224,Gly234

252 229 SR^IVNG LTAGHC DYAL GDSGGP

240 217 RR^IFGG LTAAHC DIAL GDSGGP

283 235 SR^IVNG LTAAHC DIGL GDSGGP

244 216 GR^VVGG LTAGHC DIAV YDGGSP



Table 3 In silico characterization of trypsin-like serine peptidases identified in the midgut of Culex quinquefasciatus females fed on sugar

Uniprot accession
number

Protein name Target P
prediction ①

Signal P
prediction ②

TMHMM prediction ③ N-Glycosylation
prediction ④

O-Glycosylation
prediction ⑤

Exon
number ⑥

Paralogues
number ⑥

Supercontig ⑥

B0WIS4 Trypsin 1 S (0.901) 23^24 (0.761) No 158-NETV (0.7243) 36-T (0.627995)/
40-S (0.689668)

1 36 3.14

B0WE94 Trypsin 2 S (0.910) 18^19 (0.818) No No No 2 36 3.94

B0XCW2 Trypsin 4 S (0.973) 22^23 (0.935) inside: 1-6/Tmhelix:
7-26/outside: 27-258

27-NGTQ (0.8040) No 2 36 3.91

B0X667 Trypsin 5 S (0.952) 17^18 (0.855) inside: 291-293/Tmhelix:
268-290/outside: 1-267

65-NRTV (0.6702)/
183-NVTV (0.8306)

151-T (0.653105)/
159-S (0.523482)

3 13 3.59

B0XES8 Trypsin 7 S (0.832) 21^22 (0.665) No 106-NVTF (0.6360) No 3 36 3.11

B0X870 SP24D S (0.891) 20^21 (0.801) No 69-NGSV (0.6998)/
75-NLSV (0.6183)

No 2 24 3.66

B0W9S9 Serine
protease 1/2

S (0.960) 26^27 (0.750) No No 44-S (0.785129) 2 38 3.54

B0WW44 Cationic
trypsin

S (0.926) 20^21 (0.794) No No No 3 24 3.33

① TargetP 1.1 Server. Prediction of the subcellular location of trypsin. S = secreted. The number into the parenthesis indicates the probability
② SignalP 4.0 Server. Prediction of presence and location of signal peptide cleavage sites in the trypsin sequences. The numbers indicates the number of the amino acid residues involved in the cleavage. The number
into the parenthesis indicates the probability
③ TMHMM 2.0 Server. Prediction of transmembrane helices in proteins. Tmhelix: transmembrane helix
④ NetNglyc 1.0 Server. Prediction of N-Glycosylation sites based on the presence of Asn-Xaa-Ser/Thr motifs. The number into the parenthesis indicates the probability
⑤ NetOglyc 4.0 Server. Prediction of mucin type GalNAc O-glycosylation sites
⑥ According to VectorBase database
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Table 4 Proteotypic peptides from trypsins identified by MS/MS. Proteotypic peptides were predicted using SKYLINE software

Uniprot accession
number

Protein name Peptides identified by MS/MS Species-specific
peptide

Trypsin unique
peptide

Other proteins witn the same peptide

B0WIS4 Trypsin 1 R.AAYVPAYNQNQCNSA
YAR.Y

Yes No Q1KWX6 (Trypsin-like fragment) -
C. quinquefasciatus

R.IVGGFEISIADAPHQVSL
QSR.G

Yes Yes -

R.GSHICGGSIISPK.W Yes Yes -

R.NTIDYDYSLLELK.S Yes Yes -

K.WILTAAHCTDGASVS
NLR.I

Yes Yes -

K.HASGGSVISIK.R - - Not predicted by Skyline

B0WE94 Trypsin 2 R.DEPADESQSLVSGWG
DTR.S

No No Q962G7 / Q56GM3 (Trypsin) -
Culex pipiens

R.LEFGHAVQPVDLVR.D No No Q962G7 / Q56GM3 (Trypsin) -
Culex pipiens

R.GVLVPLVNR.E No No Q962G7 / Q56GM3 (Trypsin) -
Culex pipiens

B0XCW2 Trypsin 4 K.GCAQPDYYGVYAD
VEK.A

Yes Yes -

K.DFDFALLR.L Yes Yes -

R.VGSSYDYQGGTVIDV
AGM
TIHPR.Y

- - Not predicted by Skyline

B0X667 Trypsin 5 K.IIGGFPAEQGDTLHQ
VSIR.F

Yes Yes -

K.GCGLAAYPGIYSDVA
YYR.G

Yes Yes -

R.GWIDSCLAGK.C Yes Yes -

B0XES8 Trypsin 7 K.DACLGDSGGPLTCS
GK.V

Yes Yes -

R.DYALLNLAK.S Yes Yes -

R.AVDVPIADHDR.C Yes Yes -

R.GGQLIAVTR.K - - Not predicted by Skyline

B0X870 SP24D K.LGESIEYDELSQPIAL
YEGD
DLPK.D

- - Not predicted by Skyline

B0W9S9 Serine protease 1/2 R.TGETFVDNQATVSG
FGR.T

Yes No C. quinquefasciatus - Q23731
(Serine protease)

R.TVDGGPVSPTK.N Yes No C. quinquefasciatus - Q23731
(Serine protease)

B0WW44 Cationic trypsin R.IVVHPQYAEGNLAN
DIAVIR.V

Yes Yes -

Borges-Veloso et al. Parasites & Vectors  (2015) 8:373 Page 14 of 16
and in addition, the genomes of other related species have
not yet been sequenced. However, the possibility to identi-
fied species-specific proteotypic peptides from trypsin
peptidases is very interesting and should be followed.

Conclusion
The coupling of zymography, proteomic approaches and
bioinformatic analyses, as performed here, shows to be a
powerful approach in exploring the presence of active
peptidases, which helps in the identification of genes
that are in fact expressed at the protein level in a specific
tissue. In this work, we identified eight different trypsin-
like serine peptidases that have singularities at their gene
organization level and at the protein sequence level. We
identified and characterized trypsin peptidases that are
expressed in the midgut of C. quinquefasciatus. The bio-
informatics analysis conducted here allowed us to sug-
gest that such trypsin peptidases could have primarily
digestive functions. Importantly, we identified proteoty-
pic peptide sequences that could be used in the future to
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directly identify trypsin peptidases in complex tissue-
specific protein extracts of C. quinquefasciatus. This
work represents the first step in the identification, at the
protein level, of peptidases expressed in the C. quinque-
fasciatus midgut and in understanding their role in the
complex physiological processes in such tissue.
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